Distributed Fair Assignment and Rebalancing for Mobility-on-Demand Systems via an Auction-based Method

Published date: 
Monday, December 4, 2023

In this paper, we consider fair assignment of complex requests for Mobility-On-Demand systems. We model the transportation requests as temporal logic formulas that must be satisfied by a fleet of vehicles. We require that the assignment of requests to vehicles is performed in a distributed manner based only on communication between vehicles while ensuring fair allocation. Our approach to the vehicle-request assignment problem is based on a distributed auction scheme with no centralized bidding that leverages utility history correction of bids to improve fairness. Complementarily, we propose a rebalancing scheme that employs rerouting vehicles to more rewarding areas to increase the potential future utility and ensure a fairer utility distribution. We adopt the max-min and deviation of utility as the two criteria for fairness. We demonstrate the methods in the mid-Manhattan map with a large number of requests generated in different probability settings. We show that we increase the fairness between vehicles based on the fairness criteria without degenerating the servicing quality.