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Abstract. Ensuring the safety of autonomous vehicles is paramount
for their successful deployment. However, formally verifying autonomous
driving decisions systems is difficult. In this paper, we propose a frame-
work for constructing a set of safety contracts that serve as design re-
quirements for controller synthesis for a given scenario. The contracts
guarantee that the controlled system will remain safe with respect to
probabilistic models of traffic behavior, and, furthermore, that it will fol-
low rules of the road. We create contracts using an iterative approach that
alternates between falsification and reachable set computation. Coun-
terexamples to collision-free behavior are found by solving a gradient-
based trajectory optimization problem. We treat these counterexamples
as obstacles in a reach-avoid problem that quantifies the set of behaviors
an ego vehicle can make while avoiding the counterexample. Contracts
are then derived directly from the reachable set. We demonstrate that
the resulting design requirements are able to separate safe from unsafe
behaviors in an interacting multi-car traffic scenario, and further illus-
trate their utility in analyzing the safety impact of relaxing traffic rules.

Keywords: Logic and Verification, Collision Avoidance, Falsification,
Rules of the Road

1 Introduction

Traditional approaches to establishing trust in autonomous driving decision sys-
tems (ADDS) involve exhaustive road testing and numerical simulations. To
address such needs, learning-based approaches have been gaining attention re-
cently as being able to model realistic behaviors of traffic [34, 28, 24]. Nonetheless,
testing-based strategies are still limited in their ability to cover all the possible
scenarios encountered in the world, as they are costly to execute, and do not pro-
duce formal, interpretable safety certificates. Efforts focusing on formal proofs of
safety guarantees with respect to vehicle, environment, and traffic models have
therefore been proposed [2, 26].

For any realistic scenario involving a large number of interacting agents and
complex ADDS implementations (some of which involve learned structures), ob-
taining correctness guarantees becomes prohibitively expensive. Moreover, the
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(a) Iteration 2 (b) Iteration 3

(c) Iteration 7 (d) Iteration 14

Fig. 1: Different iterations of the approach. Within each iteration, the upper
two plots indicate a counterexample trajectory of the traffic system that falsifies
collision-free behavior under the proposed contracts. The lower plot illustrates
a new contract that guards against the counterexample.

verification process typically must be executed anew whenever any part of the
ADDS (e.g. planner, controller, perception systems) is modified. Verifying an
ADDS is further challenged by the fact that the vehicle must operate in an un-
predictable, probabilistic traffic environment, and be robust to a vast number of
possible situations. Lastly, the concept of safety in autonomous driving incorpo-
rates notions of rules of the road. A formal approach should analyze the impact
of such rules within the context of a scenario; for instance, in some situations
it may be beneficial to relax certain rules for the sake of absolute safety of the
traffic system.

In this work, we leverage formal verification and falsification to generate
assume-guarantee contracts for safety of complex systems involving many in-
teracting cars. Rather than certifying a particular ADDS, our system uses ver-
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ification to guide the creation of constraints that guarantee the safety of the
controlled system provided that the assumptions on the vehicle, traffic behav-
iors, and environment are met. The contracts consider certain rules of the road,
such as “drive in the right lanes”, in order to propose initial hypotheses on driv-
ing behaviors and to understand their relationship with respect to safety [37,
21]. Contracts may manifest as constraints used in the design of provably-safe
controllers, e.g., within model-predictive control [16, 33]. They could enable safe
autonomy in other ways; for instance, a contract could be part of an online as-
surance system, disengaging the decision system if it places the car’s safety in
jeopardy.

The contract synthesis method is based on reachability analysis [26] which
computes, at each time step, the safe (collision-free) subset of the state space.
To overcome tractability issues arising from the rich probabilistic behavior mod-
els of the other traffic participants, we employ falsification; searching for coun-
terexamples of the required safety properties (e.g. collision-free behavior). We
combine the two methods in an iterative framework, where, at each iteration:
(a) a reachable set is computed for the autonomous vehicle (candidate contract),
(b) counterexamples are generated which are used to synthesize constraints, and
(c) the constraints are used to prune the unsafe states from the reachable set.
Given a candidate contract, falsification solves for trajectories of the ego-car and
the other vehicles to meet a chance constraint for collisions induced by a proba-
bilistic model of traffic behaviors. For each counterexample trajectory found, the
contract is updated, in a minimal way, with additional constraints. An example
of adding such contracts is shown in Fig. 1. When no new counterexamples can
be found, the output is a contract that certifies the safety of any controller up
to a chance constraint on the modeled behavior of the traffic system.

The generated counterexamples depend on the driving style models of other
vehicles as well as traffic rules. The framework can thus provide a means to
assess, with probabilistic grounding, the impact of relaxing certain rules in order
to preserve safety of the system as a whole. The case in Fig. 1 shows how the
rule “drive in the right lanes” can be relaxed in order to keep the ego-car (blue)
at a safe distance from the other cars in a highway overtake scenario.

The traffic models we use consider reactivity between agents, and are general
enough to originate from black-box learning. We argue that finding falsification
examples results in explainable verification: when a set of contracts is found, the
counterexamples used in synthesis can explain the precise behaviors that the
contracts guard against.

The contractual approach to verification and validation has been proposed
for complex system design in many different domains [31]. It allows the separa-
tion of verification and design of controllers. Our work is similar to [22, 23], where
a compositional approach to synthesizing contracts is presented for traffic net-
works that must adhere to global specifications. The idea of creating constraints
based on a behavioral model may be viewed as an instance of robust explicit
model-predictive control. The approach in [38] aims to synthesize controllers
that satisfy a high-level task specification, while in [14] the goal is to synthesize
simple partitions of the state-space based on reachable sets. In contrast to our
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work, both approaches assume simple, non-probabilistic environment behaviors.
The contracts in this paper are represented as simple state-space constraints
on the car’s behaviors, which are shown to be valid for highway-type scenarios,
including lane keeping, lane changing, and merging.

Formal safety proofs can be obtained using a variety of methods. Reachability
analysis for dynamical systems is one approach to formal verification that a large
amount of research has been devoted to, e.g., finite [12], continuous [6, 10], and
hybrid systems [3, 27, 4, 9]. Approximation algorithms for reachability analysis
include zonotope-based computations [1], flowtubes [8], Hamilton-Jacobi formu-
lations [27], and sampling-based approaches [25]. These have been used for safe
motion planning [7, 17], reinforcement learning [19], and autonomous driving [2,
26]. Our work, compared to previous approaches, enables the inclusion of com-
plex traffic behaviors and rules without sacrificing computational tractability.

Falsification [29, 10, 6] aims to find counterexamples that violate a given prop-
erty, and enables the analysis of more complex systems than verification, at the
cost of completeness. The problem becomes one of finding failures, rare events
within distributions capturing realistic driving behaviors, which can be difficult
to solve. Methods include counterexample guided abstraction refinement [11,
20] and sampling-based [6]. In contrast to sampling-based methods, e.g., cross-
entropy methods [32], we contribute a gradient-based probabilistic optimization
to falsification of systems involving a large number of agents in short scenarios
with few discrete decisions. This approach allows us to quickly converge on so-
lutions by optimizing their utility at each iteration step. The highly nonlinear
nature of the problem prevents a globally-optimal solution, i.e., conclude that
the added certificates are a formal proof of safety. However, our approach seeks
to iteratively find locally-optimal counterexamples at each step of the contract-
generation process and hence targets important failure cases that sampling-based
approaches may miss.

We contribute the following:

1. A framework and software implementation for generating safety constraints
(contracts) for ADDSs that consider rules of the road and probabilistic traffic
behaviors for a wide array of any multi-lane highway-type scenarios.

2. A gradient-based falsification approach that allows to efficiently generate
a wide variety of probabilistic traffic scenarios with tunable behavior via
chance constraints.

3. Empirical results demonstrating the broad applicability and practical effec-
tiveness on real-world-inspired traffic scenarios.

2 Problem Statement

In this section, we introduce background and formally state the problem of
computing contracts for driving scenarios.
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2.1 Stochastic Models of the Traffic System

We start with uncertain continuous-time parameterized models of the form

ẋ = fρ(x, u, w) (1)

where x ∈ X ⊆ Rn are states, u ∈ U ⊂ Rm are control inputs, w ∈ Rd is a
Gaussian-distributed disturbance vector, w ∼ N (0, Σρ), where Σρ is positive
definite, and ρ ∈ P are fixed model parameters. Our system model fρ(·) is as-
sumed to be C1 continuous, and the sets X and U to be compact. We work from
a decomposition of our system model as a coupling of N closed-loop parame-
terized traffic vehicle models, plus one additional system capturing the physics
model for the ego vehicle:

ẋ =


ẋ0

ẋ1

...
ẋN

 =


fego(x

0, u)
f1,ρ1(x,w1)

...
fN,ρN (x,wN )

 (2)

Here, we decompose x as xi ∈ X i ⊆ Rni,ρi , w as wi ∈ Rdi,ρi , wi ∼ N (0, Σi
ρi), i =

1, . . . , N , as representing an uncontrollable perturbation for each traffic vehicle
i, explaining the uncertainties in how individual drivers behave. We dedicate u
as being the driving commands for the ego vehicle, whose state is x0 ∈ Rnego .
Given a discretization k = {0, . . . , T}, we define a trajectory as the sequence
of {xk, uk, wk}Tk=0, and denote p(w0, . . . , wT ) as the joint probability density
function over the disturbances {w0, . . . , wT }.

Note that the above disturbance model satisfies many learning-based struc-
tures in the literature. For instance, to implement the model of [5], each vehicle’s
behavior model would take on a feedback form involving a nonlinear function of
state and an additive Gaussian-distributed stochastic term, which is a special
case of (1). The parameter ρ may characterize particular styles of driving behav-
iors, for instance the spectrum describing average driving to aggressive driving.
We will illustrate this point further in Section 4.

2.2 Problem Formulation

Let a scenario be defined as a tuple S = (R,P, X0, X
0
F ) consisting of a specifi-

cation of a road in R2 and its ruleset (a Boolean formula in states) R, a fixed
set of model parameters P, and a set of possible initial conditions for each car
X0 ⊆ X and a final set for the ego car X0

F ⊆ X 0.
Let ϕ be a safety condition, a Boolean formula denoting functions of states

that describe the conditions for safety of the vehicle. ϕ can represent, for instance,
collisions between cars, departing a lane, or breaking certain rules or liability
bounds. We further define ψ : Rn → R to be a quantitative measure on the state
space for the entire traffic system, and say that x ∈ Rn satisfies ϕ (i.e. x |= ϕ)
if and only if ψ(x) > 0. Otherwise, the specification is falsified (i.e. x 6|= ϕ).

Our goal is, for a given scenario S and safety condition ϕ, to find a set of coun-
terexamples to ϕ as bounded-time trajectories for all of the traffic participants.
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For each counterexample, we then seek a contract C ⊂ X 0 that can be applied as
a rule for the ego vehicle to follow in order to guard against the counterexample
and thereby locally satisfy ϕ. We impose the following requirements:

1. C yields certain constraints on the ego vehicle’s trajectories that prevent
violating a given ruleset (e.g. rules of the road),

2. C yields additional constraints on the ego vehicle’s trajectories that prevent
violation of ϕ with respect to the counterexamples associated with C,

3. C generalizes to protect the ego vehicle against a continuum of possible traffic
vehicle behaviors under wi, in addition to those in the finite set of counterex-
amples, and

4. the counterexamples associated with C satisfy a chance constraint describing
reasonable driver behaviors, i.e. p(w1, . . . , wT ) ≥ αT for some α > 0.

If a particular counterexample satisfies such a chance constraint, then we know
that it is reasonably well-explained by the underlying behavior model of actual
driver behaviors. On the other hand, if this check fails, then the counterexample
can be considered to be “uncanny” behavior that does not resemble true driving
behaviors and the ego vehicle needs not have a contract. Contracts with different
road rules can be compared to examine the affordances or compromises to safety.

For the sake of simplicity of the contracts, the approach in this paper seeks
to attain a convex contract representation that asserts, under the assumptions
of the scenario S, the ego vehicle is guaranteed to remain safe with respect to a
finite, but diverse, set of counterexamples associated with C.

3 Constructing Safety Contracts

Contracts are created by an alternation between falsification and reachability,
under the scenario model (2). The overall approach is as shown in Algorithm 1.
Starting with a set of initial contracts that enforce a certain ruleset, the fal-
sification step (GenerateCounterexamples) generates counterexamples to
these contracts (if any exist) by solving for possible ego-car and traffic behaviors
that result in failure of ϕ. In the reachability step (GenerateContract), a
reach-avoid problem is then solved to find the set of time-indexed states for the
ego-car, to over-approximation, for which the ego car is able to steer away from
the generated counterexample. The failure case is indicative of an undecidable
result, where it is inconclusive whether the ego vehicle can take any action to
remain safe under the given scenario.

Figure 2 depicts two iterations of the overall procedure. The left-hand side
depicts the reachablility step, in which a ruleset and any existing contracts are
considered as constraints in the reachable set computation. The right-hand side
illustrates how we use falsification to find counterexamples with respect to the
contracts. The counterexample is treated as an obstacle to avoid in the subse-
quent iteration, at which point, a set of constraints are created that separates
the set difference between the reachable set at the previous step and the one at
the current step.
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Algorithm 1 SynthesizeContracts

Input: S = (R,P, X0, X
0
F ): scenario, ψ(·): safety condition function, α: chance con-

straint, T : time horizon.
Output: C: safety contract for each timestep k ∈ {0, . . . , T}.
1: C ← InitializeContract(S)

2: repeat

3: x̄, p(w̄)← GenerateCounterexamples(S, C, ψ(·), T )

4: C ← GenerateContract(S, C, x̄)

5: until (p(w̄) < αT ) ∨ (C = ∅)
6: if (C = ∅) ∨ ¬IsReachable(X0

F , CT ) then

7: return failure

8: return C

X0
0

safe reach sets

InitializeContract

X0
0

X i
0

x0
0

x0
1

x0
2

x0
3

xi0xi1
xi2

xi3

GenerateCounterexamples

κ13(·) = 0

k = 0 k = 1 k = 2 k = 3

X0
0

GenerateContract

k = 0 k = 1 k = 2 k = 3

X0
0

X i
0

x0
0 x0

1

x0
2

x0
3

xi0

xi1

xi2
xi3

GenerateCounterexamples

Fig. 2: Two iterations of the overall approach.

Solving the reach-avoid problem, versus constructing contracts based only on
counterexamples, serves two purposes. First, it allows selection of new contracts
that minimize the volume of the reachable set treated as unsafe in the next
iteration under the contract. Second, we can verify whether it is feasible for the
ego-car to reach the final set from within the initial set under the computed
contracts (the check IsReachable in Algorithm 1).

3.1 Gradient-Based Probabilistic Falsification

In general, we are interested in finding counterexamples to the safety specifica-
tion: dynamically feasible trajectories that falsify our safety condition ϕ within
a given chance constraint on the underlying probabilistic behavior model. We
solve a direct-collocation trajectory optimization problem [30], by discretizing
time k = {0, . . . , T}, with time step h, where t = hk. We let ū, w̄, x̄ denote,
respectively, the sequences ū = {uk}Tk=0, w̄ = {wk}Tk=0, and x̄ = {xk}Tk=0.
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The counterexample trajectory is summarized by a collection of decision vari-
ables {h, ū, w̄, x̄} that falsify the condition x̄ |= ϕ but satisfy, at a minimum, the
system dynamics (2), the initial conditions, and some threshold on the likelihood
of selecting the random perturbations w̄. We aim to find the most likely expla-
nations of the failure under the given model, motivating the following problem:

max
h,ū,w̄,x̄

p(w̄)

s.t. xk+1 − xk = hfcollocation, ∀k = 0, . . . , T − 1 (dynamics)

xk ∈ X , ∀k = 0, . . . , T

uk ∈ U , ∀k = 0, . . . , T − 1

x0 ∈ X0, u0 ∈ U (initial conditions)

ψ(xT ) ≤ 0 (safety specification)

κjk(xk) ≤ 0, ∀j = 1, . . . , Q, ∀k = 0, . . . , T (contracts)

p(w̄) ≥ αT (chance constraint)

(3)

where fcollocation = 1
6 (fk + 4f̃ + fk+1), fk = fρ(xk, uk, wk), and

f̃ = fρ

(
1

2
(uk + uk+1) +

h

8
(fk + fk+1),

1

2
(uk + uk+1),

1

2
(wk + wk+1)

)
.

The function κjk(·) ∈ C represents constraints of the form (ajk)Txk ≤ bjk, ajk ∈
Rnego , bjk ∈ R at time step k due to a contract j, the safety-preserving contracts
the ego vehicle must adhere to. When (3) is solvable, we end up with corner
cases to the hypothesis for κj(·) found thus far. Every time a new constraint is
added to C, the condition ϕ becomes harder and harder to falsify. We revisit the
computation of κj(·) in Section 3.3. Notice that we can choose to leave out the
last constraint in (3), since the optimal choice of w̄ is a maximizer for p(w̄) and
hence a check of the optimal values is sufficient to verify the chance constraint.

The task now is to find the representation p(w̄) and express J(w̄) as a convex
cost such that arg maxw̄ p(w̄) = arg maxw̄ J(w̄). Taking wk ∼ N (0, Σ) (where Σ
is block-diagonal of Σi) and noting the probability of action wk is drawn from

the distribution p(wk) = (2π)−
n
2 |Σ|− 1

2 exp(− 1
2w

T
kΣ
−1wk) we can easily obtain

the log-likelihood representation of the probability as

log p(w̄) =
N∑
k=0

log p(wk) = −nN
2

log 2π − N

2
log |Σ| − 1

2

N∑
k=0

wTkΣ
−1wk.

Due to monotonicity of the log operator, the cost function may be more sim-
ply written as J(w̄) =

∑N
k=0 w

T
kΣ
−1wk, and the chance constraint log p(w̄) ≥

logα − log T . We argue that maximizing p(w̄) serves the important purpose of
maximizing the diversity of the new counterexamples.

Note that the problem in (3) is a nonconvex one to solve in general. Hence, we
cannot guarantee a solution will be found, and hence cannot hope to exhaust all
possible counterexamples (i.e. achieve completeness). However, it is important
to note that we can achieve soundness of our solutions to (3).
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3.2 Collision-Free Safety Conditions

Let B(xik) ⊂ R2 be the orientation-dependent footprint of the ith vehicle at time
k, that is, the Cartesian space occupied at state xi. Our safety criteria is one
where we wish to avoiding crashes with other vehicles, ϕ =

∧
i,k(B(x0

k)∩B(xik) =

∅). We apply the mild assumption that we only search for conditions in which the
ego vehicle is in collision with only one other vehicle at a time, which makes it
easy to reduce a potentially combinatorial problem into one in which we solve (3)
sequentially.

Unfortunately, finding analytical forms for collision of two rectangular objects
involves Minkowski operations, which is difficult to solve analytically. We instead
express collision in terms of two inscribing ellipses using the following result.

Lemma 1. Let ai and bi be the length and width of vehicle i, zi = [xi yi ]T be

its Cartesian coordinates, and θi its angle. Let Ci = R(θi)

[
ai 0
0 bi

]
, where R(θi)

is a rotation matrix, and let z̃ = C−1
0 (z1 − z0). Then,

B(x0) ∩ B(x1) 6= ∅ ⇒ z̃T (C1 +R1)−1(C1 +R1)−T z̃ ≤ 1. (4)

Proof. (sketch) Condition (4) can be obtained directly by transforming one of
the ellipses to the unit disc, then applying the same transform to the other ellipse
and writing out the expression for containment of the origin.

We note that the constraint (4) preserves soundness of the falsification prob-
lem; when a trajectory is found that satisfies this condition, that trajectory
falsifies ϕ.

3.3 Reachability with Contracts

Let F (tk;X0
0 ) denote an over-approximation to the reachable set at time tk at

iteration j of the main loop in Algorithm 1, i.e. the time-indexed set of states
x0
k ∈ X 0 for which there exists a control u : R≥0 7→ U containing the trajectories

satisfying ẋ0 = fego(x
0, u) when starting in the initial set X0

0 .
Our objective is essentially the converse of the falsification problem: to com-

pute a safe reachable set for the ego vehicle Fsafe(tk;X0
0 ) ⊆ F (tk;x0

0) such that
it preserves the ruleset R and is not in collision with any other traffic vehicle at
all timesteps. An overview of the approach may be found in Algorithm 2. For
simplicity, we only present the computation of forward reachable sets, but this
can be extended to backward reachable sets with the modifications explained
in [26]. Once a contract is created, we extend the reachable set to verify that it
intersects the goal region.

Given a safe reachable set Fsafe(tk;X0
0 ) computed at some iteration j of the

main loop in Algorithm 1, we want to select a hyperplane for each of the i vehicles
of the form (aik)Tx0

k ≤ bik such that our new safe set Fsafe(tk;X0
0 ) at time step k

is a valid reachable set that is safe with respect to the counterexample. Precisely,
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Algorithm 2 GenerateContract (⊕ denotes the Minkowski sum)

Input: S = (R, X0,P): scenario, C′: previous contract, x̄: a trajectory for the system
of traffic cars, T : time horizon.
Output: C: safety contract for each timestep k ∈ {0, . . . , T}.
1: Fsafe(t0;X0

0 )← X0
0 ∩ C′0

2: Ck ← X 0, ∀k ∈ {0, . . . , T}
3: for all k ∈ {0, . . . , T} do
4: F (tk;X0

0 )← F (h;Fsafe(tk−1;X0
0 )) ∩ C′k . Compute the reachable set

5: Oik ← B′(xik,R)⊕ B(F (tk;X0
0 )) . Compute the traffic constraints

6: for all i ∈ {1, . . . , N} such that Oik 6= ∅ do
7: Ck ← ComputeContract(F (tk;X0

0 ) ∩ C′k, Oik) ∩ Ck
8: Fsafe(tk;X0

0 )← F (tk;X0
0 ) ∩ Ck . Compute the safe reachable set

9: return C

in line 4, values for aik, bik are selected such that (aik)Tχi > bik for all vertices χi

of Oik, the ith footprint of the counterexample, so that we obtain

Fsafe(tk;X0
0 ) = F (tk;X0

0 ) ∩ {x | (aik)Tx0
k ≤ bik,∀i = 1, . . . , N}. (5)

That is, we select aik and bik such that we may treat it as an obstacle in computing
the reachable set at future times. In line 5, we let B(X) denote an orientation-
dependent Cartesian expansion of some set X ⊂ Rnego , and let B′(x,R) denote
a state-dependent inflation of B(x) according to the ruleset R, as explained in
Section 3.4.

Within ComputeContract, we select one hyperplane, i.e. aik and bik, in
such a way as to maximize the volume of the resulting safe reachable set Fsafe(·).
If we assume F (·) is a union of polytopes, we can easily choose one from among
the facets that maximizes the union of the remaining polytopes in (5) and satis-
fies (aik)Tχi > bik. Ck is returned as the intersection of C′k and the new contract.

3.4 Rules of the Road

In the following we consider the subset of rules from the Vienna Convention
on Traffic Rules [15], see Table 1. We select these rules as they form a subset
of engagement rules for highway scenarios, and exclude rules involving traffic
signals and other discrete conditionals. For simplicity, we show the constraint
sets for straight road segments, and equally sized cars.

We assume that the centerline of carriageway is along the x axis of the ego-
car for straight road segments. The length of the road segment is denoted by L,
the width of a lane by W , and the number of left and right lanes by nleft and
nright, respectively. A sequence 0 ≤ ξ1

x < ζ1
x < ξ2

x < . . . < ζnsolidx ≤ L defines
the solid line segments (ξ`x, ζ

`
x) along the centerline of the road. The pose and

longitudinal speed of the vehicles are denoted by (xic, y
i
c, θ

i) and vi, respectively,
where 0 ≤ i ≤ N , and i = 0 represents the ego-car. The average speed of
vehicles around the ego-car and in the same lane is denoted by v̄. The safe
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distances to other vehicles ahead and behind the ego is expressed as εsafex > 0,
while the lateral safe distance to oncoming vehicles is expressed as εsafey > 0.
Overtaking maneuvers are performed within a stretch of the road segment of
length 2 εovertakex > 0 centered on the car that is being overtaken. Overtaking
is safe if there are no other cars in the left lane where the ego-car performs the
maneuver within a distance of εsafe−overtakex around the car being overtaken.
Lastly, the legal speed limit for a lane is given by εlegalv > 0.

Those rules that are only a function of the ego car (rules 1, 4, 8) are included
in InitializeContract, while those that are functions of the joint state space
are included only when a counterexample is obtained from the falsification step.
Hence, these rules are included in ComputeContract as a modification to the
traffic car footprint, i.e. B′(·).

Table 1: Rules of the road for highway scenarios.

No. Rule Constraint set

1 Don’t drive in the left lanes. {0 ≤ x0
c ≤ L,−nright ·W ≤ y

0
c ≤ 0}

2 If driving behind another car, keep a rea-
sonable distance away to avoid collision
if it suddenly stops.

{xic−x
0
c ≥ ε

safe
x v0 | ∀i . xic−x

0
c ≥ 0∧|yic − y

0
c | < W}

3 If you want to slow down, give clear
warning and do not inconvenience
drivers behind you.

{x0
c−x

i
c ≥ ε

safe
x v0 | ∀i . x0

c−x
i
c ≥ 0∧|yic − y

0
c | < W}

4 Don’t cross solid lines. {ξ`x ≤ x
0
c ≤ ζ

`
x∧−nright·W ≤ y

0
c ≤ 0 | 1 ≤ ` ≤ nsolid}

5 Overtake on the left when it is safe. {y0c − y
i
c > W ∧ v0 > vi |

∀i . vi > 0 ∧ |x0
c − x

i
c| ≤ ε

overtake
x ∧

@j .( |xjc − x
i
c| ≤ ε

safe−overtake
x ∧ y0c − y

j
c ≤ W )}

6 If another vehicle is trying to overtake
you keep right and don’t accelerate. If
necessary, slow down and pull over.

{u0
a ≤ 0 ∧ yic − y

0
c ≥ W ∧ y

0
c ≤ 0 |

∀i . yic − y
0
c ≤ 1.5W ∧ vi > 0 ∧ |xic − x

0
c| ≤ ε

overtake
x }

7 If passing oncoming traffic, leave suffi-
cient lateral space to not get hit. If ob-
structed, slow down.

{yic − y
0
c ≥ ε

safe
y | yic ≥ 0 ∧ vi ≤ 0}

8 Don’t drive abnormally slowly such that
you impede the progress of other vehi-
cles. Don’t drive above the speed limit
or abnormally fast.

{|v0 − v̄| ≤ εv, |v0| ≤ εlegalv }

4 Results

We implemented the falsification algorithm, scenario, and system models using
the Drake toolbox [35]. We use the SNOPT optimization package [18] for solving
the sequential quadratic program (SQP) in (3). We furthermore parallelize the
constraint evaluation before passing to the solver in order to speed up the solve
time. To generate new contracts, we compute the reachable sets using a Taylor
expansion to the nonlinear dynamics with sets being expressed as zonotopes; we
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do this with the aid of the CORA reachability tool [1]. Set operations are carried
out using the MPT toolbox, which is based on a polytopic representation of sets.

We consider the following model for both the ego vehicle and traffic vehicles:

ẋ =


ẋc
ẏc
θ̇
v̇

 =


v cos(θ)
v sin(θ)
v
L tan(uδ)

ua

 , u =

[
uδ
ua

]
.

As previously, xc and yc are Cartesian positions at the center of the vehicle, θ
is the heading angle, and v is the forward speed, while uδ and ua denote the
steering angle and acceleration inputs, respectively.

To represent naturalistic behaviors for the traffic cars, we consider the intel-
ligent driver model (IDM) [36], a model whose parameters are typically fit to
driver data and which is used to represent the longitudinal actions (acceleration)
of actual drivers. We consider a pure-pursuit controller [13] to model the lateral
actions (steering) of drivers. Essentially, the IDM model allows cars to react to
one another, while adapting to a driver’s preferences for speed, acceleration and
time headway between vehicles. The pure-pursuit controller allows steering to
be adjusted smoothly so that the vehicle converges to a desired curve. In our
experiements, we set the desired curve to be fixed as the centerline of a target
lane to drive to. We randomize these traffic behaviors by defining Σi, where
Σi = diag{σδ, σa}, and be treating the disturbance signal as additive noise to
the nominal acceleration and steering commands provided by IDM and pure
pursuit. We adapt to different driving styles by using the complete list of pa-
rameters in Table 2. We furthermore augment the implementation by ignoring
vehicles beyond a limited perception range.

Table 2: Parameters used to model driver behaviors for the traffic cars.

Driving Style
Description Symbol Normal Aggressive

IDM

Reference speed (m/s) vref 10 1.5
Maximum acceleration (m/s2) a 1 4
Comfortable deceleration (m/s2) b 3 6
Minimum-desired net distance (m) s0 1 0.5
Time headway to lead vehicle (s) th 0.1 0.05
Free-road exponent δ 4 4

Pure-Pursuit Lookahead distance (m) slook 15 10

Perception Range (m) sperception 100 100

Disturbances
Steering angle variance (rad2) σδ 0.1 5
Acceleration variance (m2/s4) σa 0.1 2.5

The road geometry is configurable for highway scenarios in which any number
of lanes and lane sizes can be chosen for the scenario. Our aggregate model of the
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(a) Relaxed rules, normal driving (b) Relaxed rules, aggressive driving

(c) Strict rules, normal driving (d) Strict rules, aggressive driving

Fig. 3: The contract for timestep t = 4.8s at iteration 4 for each set of parameters.

entire traffic system is implemented to account for all of the traffic participants
in the context of their positions on the road. The models are encoded such that
partial derivatives can be easily obtained via automatic differentiation.

4.1 Leading/Trailing Car Scenarios

In this scenario, we consider the ego-car sandwiched between two traffic cars
in the right lane of a two-lane highway with opposing traffic lane, which may
be used for overtaking if free. We synthesized contracts using both the ruleset
in Table 1 and again with a relaxed ruleset, in which we disable rules 1 and 3
to enable evasive maneuvers onto the other lane. For both rulesets, we explore
traffic models having two levels of aggressiveness (normal and aggressive) using
the parameters in Table 2. In Fig. 1, we depict different iterations of Algorithm 1
for the relaxed rules and normal driving style. We compare the contracts obtained
at a fixed iteration of the algorithm for each case in Fig. 3 and, for each case,
report the log-likelihood of the counterexample normalized on |Σ| in Fig. 4.

We observe that with more iterations (and more unlikely behaviors of the
traffic cars), more contracts are added, making the contract more restrictive, but
also harder to falsify, as indicated by the log-likelihood. With a greater number
of rules and more aggressive traffic, we note that the contract gets smaller and
more prohibitive (see Fig. 3). We also note that relaxing the ruleset (e.g. allowing
lane switches) enables more behaviors for the ego-car, demonstrating that safety
can be preserved at the expense of rule-breaking in some scenarios. Moreover, the
ego-car can readily estimate the cost of violating rules of the road by observing
the varying contracts depending on the set of actively enforced rules.

We note that for the normal driving style, the log-likelihood quickly de-
creases, whereas for the aggressive driving styles, the log-likelihood remains
high as contracts are added, indicating that aggressive traffic can induce fail-
ure regardless of the ego-car’s behavior. In both of the agressive-driving cases,
empty contracts were returned before exhausting possible counterexamples. Of
the normal-driving cases, the relaxed set provides a contract with 14 counterex-
amples, whereas the strict set provides five counterexamples, indicating that
changing lanes presents more possible failure events to guard against.
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Fig. 4: The log-
likelihood for each
test case across all
iterations. The red ×
marks iterations where
the contract terminated
with an empty set, and
the green dashed line
indicates the chance
constraint α.

5 Conclusion

In this paper, we presented a novel framework for the synthesis of safety con-
straints for autonomous decision systems that can be applied and used by a
wide variety of real-world systems. The framework allows for incorporating a
large variety of scenarios, with a diverse set of probabilistic traffic behaviors,
and for subsequently generating the appropriate safety constraints. We overcome
issues of computational tractability by iteratively generating a set of safety con-
straints, based on reachability analysis, and generating counterexamples, i.e.,
traffic scenarios, using gradient-based probabilistic falsification. We judiciously
account for rules of the roads, in terms of state space constraints enforced during
reachability analysis.

The empirical results on a variety of real-world inspired scenarios validate
the favorable performance of our approach, and reaffirm the practical applica-
bility. We envision that our method can be used to inform the decision-making
and planning system of an autonomous agent about the appropriate safety con-
straints applicable in a particular traffic scenario. In future work, we plan to
extend our method to synthesize safety constraints that are simultaneously ap-
plicable across a wide variety of traffic scenarios and show the effectiveness in
real-world experiments.
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