
Language-Guided Sampling-based Planning
using Temporal Relaxation

Francisco Penedo1, Cristian-Ioan Vasile2, and Calin Belta1

1 Boston University, Boston, MA, U.S.A.
{franp, cbelta}@bu.edu

2 Massachusetts Institute of Technology, Cambridge, MA, U.S.A.
cvasile@mit.edu

Abstract. In this paper, we focus on robot motion planning from timed
temporal logic specifications. We propose a sampling-based algorithm
and an associated language-guided biasing scheme. We leverage the no-
tion of temporal relaxation of time-window temporal logic formulae
(TWTL) to reformulate the temporal logic synthesis problem into an op-
timization problem. Our algorithm exhibits an exploration-exploitation
structure, but retains probabilistic completeness. Moreover, if the prob-
lem does not have a solution due to time constraints, the algorithm
returns a candidate path that satisfies a minimally relaxed version of
the specification. The path may inform operators about timing problems
with the specification or the system. We provide simulations to highlight
the performance of the proposed algorithm.

1 Introduction

Motion planning is a fundamental problem in robotics. The objective is to gen-
erate control policies for a robot to drive it from an initial state to a goal region
in its state space under kino-dynamic constraints [22]. Even without considering
dynamics, the problem becomes increasingly difficult in high dimensions, and it
has been shown to be PSPACE-complete [7]. Cell decomposition, potential fields
and navigation functions [9] are some of the most used techniques to solve the
problem. However, they scale poorly with the dimension of the state space and
number of obstacles. To overcome these limitations, a class of algorithms was
developed relying on randomly sampling the configuration space of the robot
and planning local motions between these samples. Probabilistic Roadmaps [18]
and Rapidly Exploring Random Trees [22] are among the most widely known ex-
amples, along with their asymptotically optimal variants, PRM∗ and RRT∗ [16].

Robots are increasingly required to perform complex tasks, where correctness
guarantees, such as safety and liveness in human-robot teams and autonomous
driving, are critical. One approach is to encode the tasks as temporal logic specifi-
cations and leverage formal methods techniques to generate control policies that
are correct by construction [4]. As opposed to traditional methods restricted to
reach-avoid setups, these frameworks are able to express more complex tasks
such as sequencing (e.g., “Reach A, then B”), convergence (“Go to A and stay

there forever”), persistent surveillance (“Visit A, B, and C infinitely often”), and
more complex combinations of the above. Temporal logics, such as Linear Tem-
poral Logic (LTL), Computational Tree Logic (CTL), and µ-calculus, and their
probabilistic versions (PLTL, PCTL), have been shown to be useful as formal
languages for motion planning [20, 38, 6, 15, 10]. Model-checking and automata
game techniques were adapted [20, 8] to generate control policies for finite mod-
els of robot motion. These models were obtained through an abstraction process
that partitions the robot configuration space and captures the ability of the
robot to steer between regions in the partition [5]. As a result, these algorithms
suffer from the same scalability issues as the cell-based decomposition methods.

Some applications additionally require time constraints [30, 27, 12]. For ex-
ample, consider the following task: “Visit A, B, and C in this order. Perform
action a for 2 time units at A within 10 time units. Then, perform b for 3 time
units at B within 6 time units. Finally, in the time window [3, 9] after b is finished,
perform c for 1 time unit at C. All three actions must be finished within 15 time
units.” Tasks with explicit time constraints may be expressed using bounded
linear temporal logic (BLTL) [31, 14], metric temporal logic (MTL) [19], signal
temporal logic (STL) [24], and time-window temporal logic (TWTL) [35, 1, 36].

A natural approach to generate control strategies from rich task specifications
for robots with large state spaces is to combine sampling-based techniques with
automata-based synthesis methods. The existing works in this area show that
synthesis algorithms from specifications given in µ-calculus [15, 17] and LTL [34]
can be adapted to scale incrementally with the graph constructed during the
sampling process. In all of these, sampling is performed independently of the
specification. Hierarchical planning frameworks were proposed in [28, 25], where
a higher level planner performs a discrete search in a partition of the workspace of
the robot that guides a lower level sampling-based planner in the configuration
space. The idea of language-guided synthesis was also explored in [2], where
an iterative partition-refinement algorithm is proposed together with cell-to-cell
feedback controllers, and in [37], where candidate discrete plans are enumerated,
and then motion plans are generated using an optimization-based procedure.

In this paper, we propose a language-guided sampling-based method to gen-
erate robot control policies satisfying tasks expressed as TWTL formulae. We
leverage the notion of temporal relaxation [35] to reformulate a temporal logic
motion problem as an optimization problem, where the objective is to minimize
the temporal relaxation of the specification. This approach has two advantages:
(a) the growth of the sampling graph is biased towards satisfaction of a relaxed
version of the specification without initially taking into account deadlines, and
(b) after an initial policy has been found, sampling can be focused on the parts
of the plan that need to be improved. The two stages can be thought of as
exploration-exploitation phases, where initially candidate solutions are found,
and then focused local sampling is performed on the parts that need to be im-
proved in order to satisfy the specification, i.e. time constraints. As a byproduct,
a satisfying policy with respect to a minimally relaxed version of the specifica-
tion may be returned when the original problem does not have a solution. Such

a policy may inform operators about timing problems in the specification or sys-
tem (i.e., robot dynamics and/or environment). The algorithm uses annotated
finite state automata [35, 36, 1] to represent all possible temporal relaxations of a
TWTL formulae. Lastly, we prove that our solution is probabilistically complete.

As opposed to [35], we do not assume a finite model of the system, and
propose a sampling-based approach. Although the synthesis algorithm in [35] is
more general (w.r.t. the range of specifications it can handle), it is not incremen-
tal and thus not suitable for use with sampling-based techniques. Moreover, we
define a new temporal relaxation measure over τ -relaxations of TWTL formu-
lae called linear ramp temporal relaxation that is better suited for incremental
computation. Other studies have investigated minimal violations of LTL frag-
ments [29, 33, 32, 21, 26, 13]. Our approach differs from [29, 33, 32] because
we consider explicit time constraints in the specification, and a different seman-
tics for relaxation of a specification. The minimum violation policies strive to
minimize the duration that the specification is violated, i.e., satisfaction is pre-
empted. Temporal relaxation on the other hand minimizes the deviation from
the deadlines in the specification, and does not allow task interruption. In [13],
the specifications were relaxed by minimally revising symbols associated with
the transitions of the Büchi automata. Both [21, 26] modify LTL to accomodate
partial satisfaction without considering explicit time bounds. Due to the frag-
ment of TWTL we allow, our work is related to the scheduling literature, such
as [23, 11]. However, these works do not allow partial satisfaction. In [3], explicit
time constraints, as well as first order quantifiers, are allowed in the specification,
but no partial completion is considered. A different approach is taken by [39]
using the concept of resources to impose soft constraints in the specification.
Notation: Given x,x′ ∈ Rn, n ≥ 2, the relationship x ∼ x′, where ∼∈ {<,≤
, >,≥}, is true if it holds pairwise for all components. x ∼ a denotes x ∼ a1n,
where a ∈ R and 1n is the n-dimensional vector of all ones. Let S be a finite set.
We denote the cardinality and the power set of S by |S| and 2S , respectively.

2 Preliminaries

2.1 Time-Window Temporal Logic (TWTL)

In this paper, we use Time-Window Temporal Logic (TWTL) as a specifica-
tion language for temporal properties with time constraints. For details see [35]
and [36, 1] for applications to robotics. TWTL is a linear-time logic encoding
sets of discrete-time sequences with values in a finite alphabet. The syntax of
TWTL formulae defined over a set of atomic propositions Π is

φ ::= Hds |Hd¬s |φ1 ∧ φ2 |φ1 ∨ φ2 | ¬φ1 |φ1 · φ2 | [φ1][a,b]

where s is either the “true” constant > or an atomic proposition in Π; ∧, ∨, and
¬ are the conjunction, disjunction, and negation Boolean operators, respectively;
· is the concatenation operator; Hd with d ∈ Z≥0 is the hold operator; and [][a,b]

with 0 ≤ a ≤ b is the within operator. The semantics is defined with respect

to finite (output) words o = o0o1...ok over the set 2Π . The Boolean operators
retain their usual semantics. The hold operator Hds specifies that an atomic
proposition s ∈ Π should be serviced (satisfied) for d time units (i.e., o |= Hds if
ot = s ∀t ∈ [0, d]). For convenience, if d = 0 we simply write s and ¬s instead of
H0s and H0¬s, respectively. The within operator [φ][a,b] bounds the satisfaction
of φ within [a, b] time window (i.e., o |= [φ][a,b] if ∃k ∈ [0, b−a] s.t. o′ |= φ where
o′ = oa+k . . . ob). Lastly, the concatenation of φi and φj (i.e., φi · φj) specifies
that first φi must be satisfied and then immediately φj must be satisfied. The
satisfaction of a TWTL formula by a word can be decided within bounded time.

The notion of temporal relaxation of a TWTL formula was introduced in [35,
1]. To illustrate the main ideas, consider the following TWTL formula:

φ1 = [H1A][0,2] · [H3B ∧ [H2C][0,4]][1,8], (1)

which reads as “Perform task A of duration 1 within 2 time units. Then, within
the time interval [1, 8] perform tasks B and C of durations 3 and 2, respectively.
Furthermore, C must be finished within 4 time units from the start of B.” If φ1
cannot be satisfied, one way to relax φ1 is to extend the deadlines for the time
windows captured by the within operators:

φ1(τ) = [H1A][0,2+τ1] · [H3B ∧ [H2C][0,4+τ2]][1,8+τ3], (2)

where τ = (τ1, τ2, τ3) ∈ Z3. However, the choice of τ must preserve the feasibility
of the formula, i.e., the following must hold for φ1(τ): (i) 2+τ1 ≥ 1, (ii) 4+τ2 ≥ 2,
and (iii) 7+τ3 ≥ max{3, 4+τ2}. Note that τ may be non-positive. In such cases,
φ1(τ) becomes a stronger specification than φ1, which implies that the sub-tasks
are performed earlier than their actual deadlines.

Definition 1 (Feasible TWTL formula). A TWTL formula φ is called fea-
sible if the time window corresponding to each within operator is greater than
the duration of the corresponding enclosed task expressed via the hold operators.

Let φ be a TWTL formula. Then, a τ−relaxation of φ is defined as follows:

Definition 2 (τ−Relaxation of φ). Let τ ∈ Zm, where m is the number of
within operators contained in φ. A τ -relaxation of φ is a feasible TWTL formula
φ(τ), where each subformula of the form [φi]

[ai,bi] is replaced by [φi]
[ai,bi+τi].

Clearly, for any φ, we have φ(0) = φ. Moreover, let τ ′, τ ′′ ∈ Zm such that
φ(τ ′) and φ(τ ′′) are feasible relaxations, where m is the number of within oper-
ators in φ. Note that if τ ′ ≤ τ ′′, then o |= φ(τ ′)⇒ o |= φ(τ ′′).

Let φ be a TWTL formula and φ(τ) its τ -relaxation, where τ ∈ Zm and
m is the number of within operators contained in φ. We denote by Iτ (φ) =
(τ1, . . . , τm) the ordered set of deadline deviations.

Definition 3. Given an output word o, we say that o satisfies φ(∞), i.e., o |=
φ(∞), if and only if ∃τ ′ <∞ s.t. o |= φ(τ ′).

Similarly, if τ <∞, then o |= φ(τ)⇒ o |= φ(∞), ∀ τ .

Definition 4 (Concatenation Form). A TWTL formula φ is in concatena-
tion form (CF) if and only if φ = φ1 ·φ2 · . . . ·φn, where φi are TWTL formulae
that do not contain concatenation operators.

In the following, we use φi to refer to the ith subformula of a formula in CF
in the same way as in the previous definition. We also denote as φj = φ1 · . . . ·φj
the subformula of φ that includes all subformulae φ1, ..., φj , which is also in CF.

2.2 Specification Automaton and System Abstraction

In this section we provide a short presentation of the mathematical objects
defined in [35] that we will be making use of.

Definition 5 (Deterministic Finite State Automaton). A deterministic
finite state automaton (DFA) is a tuple A = (SA, s0,A, δA, FA), where SA is
a finite set of states, s0 ∈ SA is the initial state, A is the input alphabet, δA :
SA × A→ SA is the transition function, and FA ⊆ SA is the accepting set.

A trajectory of the DFA s = s0s1 . . . sn+1 is generated by a sequence of symbols
σ = σ0σ1 . . . σn if s0 ∈ SA is the initial state of A and sk+1 = δA(sk, σk) for all
0 ≤ k ≤ n. The function δ∗A : A∗ → SA is defined such that sn+1 = δ∗A(σ). An
input word σ is accepted by a DFA A if δ∗A(σ) ∈ FA .

Definition 6 (Transition System). A transition system (TS) is a tuple T =
(V, x0, E,Π, h), where V is a finite set of states, x0 ∈ V is the initial state,
E ⊆ V ×V is a set of transitions, Π is a set of properties (atomic propositions),
and h : V → 2Π is a labeling function.

A trajectory of the system is a finite or infinite sequence of states x = x0x1 . . .
such that (xk, xk+1) ∈ E for all k ≥ 0. A state trajectory x generates an output
trajectory (or word) o = o0o1 . . ., where ok = h(xk) for all k ≥ 0.

Definition 7 (Product Automaton). Given T = (V, x0, E,Π, h) and A =
(SA, s0,A, δA, FA), their product automaton, denoted by P = T × A, is a tuple
P = (SP , p0, ∆P , FP), where SP = V × SA is the set of states, p0 = (x0, s0) is
the initial state, ∆P = {((x, s), (x′, s′)) | (x, x′) ∈ E ∧ s′ = δA(s, h(x′))} is the
set of transitions, and FP = V × FA is the set of accepting states of P.

A trajectory of P is a sequence p = p0 . . . pn+1 such that (pk, pk+1) ∈ ∆P for
all 0 ≤ k ≤ n. A trajectory p = (x0, s0)(x1, s1) . . . of P is accepted if and
only if s0s1 . . . is accepted by A. A trajectory of T obtained from an accepting
trajectory of P satisfies the given specification encoded by A.

3 Problem Formulation

Consider a dynamical system Σ(x0) : xk+1 = f(xk, uk), where xk ∈ Rn and
uk ∈ U ⊂ Rm are the state and control input at time k, respectively, U is

the control space, and x0 is the initial state. Let W ⊂ Rn be a convex region
denoting the workspace, O ⊂W the obstacle set, Wfree = W \O the free space,
Π = {πi|i = 1, ..., p} a set of atomic propositions, and L : W → 2Π the state
labeling function. Let x = x0x1 . . . be a trajectory of Σ(x0). We say that x is
collision-free if for all k ≥ 0 and λ ∈ [0, 1], λxk + (1 − λ)xk+1 ∈ Wfree. The
output word generated by x is o = o0o1 . . ., with ok = L(xk). System Σ(x0)
under control signal u = u0u1 . . . is said to satisfy a TWTL formula φ if o |= φ.

Problem 1. Given a TWTL formula φ over Π and an initial state x0 ∈ W , find
a control policy u∗ with control inputs in U such that the trajectory of the
closed-loop system Σ(x0) under policy u∗ is collision-free and satisfies φ.

We can formulate an optimization problem equivalent to Problem 1 by taking
advantage of temporal relaxations of TWTL formulae in the following way:

Definition 8. The linear ramp temporal relaxation (LRTR) of a τ -relaxed for-
mula φ(τ) is defined as:

|φ(τ)|LRTR =
∑

j∈Iτ (φ)

max{0, τj}. (3)

Problem 2. Let φ be a TWTL formula over Π, and φ(τ) its τ -relaxation. Con-
sider the optimization problem

min |φ(τ)|LRTR s.t. ∃u∗ : Σ(x0) under u∗ satisfies φ(τ). (4)

If the minimum obtained from (4) is equal to 0, find a corresponding policy u∗.

Note that this notion of temporal relaxation, LRTR, is different from the
one defined in [35], where it is denoted by |·|TR. Intuitively, LRTR measures the
accumulation of positive deviations from the deadlines, as opposed to the worst
deviation in TR. In both, when the temporal relaxation is 0, the unrelaxed for-
mula is satisfied. The almost linear structure and monotonicity of LRTR allows
the algorithm proposed in this paper to be incremental.
Example. Consider the workspace in the bottom right of Fig. 1, with areas of
interest A, B and C, and several obstacles. The specification is “Perform tasks
at A, B, and C, in this order, within time intervals [0, 2], [0, 3], and [0, 4] from
the end of the previous task, respectively.” The corresponding TWTL formula
is φsimple = [A][0,2] · [B][0,3] · [C][0,4] . The dynamics are given by xk+1 = xk+uk,
with the state space equal to the workspace, ||uk|| ≤ 0.75, and x0 = (1, 3).

4 Solution

We first present an overview of our approach to solve Prob. 1. Consider the algo-
rithm in [35], which requires a discretization of W . First, a finite TS associated
with the system Σ and the discretization of W is computed. Then, the formula φ
is translated into an annotated DFA and the product automaton of the TS and

the DFA is constructed. Finally, a path with minimum temporal relaxation is
found in the product automaton using a shortest path algorithm. If φ is satisfied
by this path, the associated control sequence is a solution to the problem.

In our approach, we assume that it is not possible to obtain a discretiza-
tion of W . Instead, we incrementally construct a finite transition system, T =
(V, x0, E,Π, h), where V ⊂Wfree, h = L and (V,E) is a tree, using a sampling-
based algorithm similar to RRT. Specifically, at each iteration a random sample
x ∈ Wfree is added to V . Then, a feasible transition (according to Σ) from a
state in V to x is included in E. The transition is selected so that a cost function
for the path from x0 to x is minimized. At the same time, the product automaton
P = T × A∞ is also computed incrementally, where A∞ is the annotated DFA
obtained from φ. The path with minimum temporal relaxation in P is updated
at each iteration by comparing the current best with the (single) path added.

In the following, we assume the following about φ: (1) negation operators
appear only in front of atomic propositions; (2) all sub-formulae of φ correspond
to unambiguous languages (no proper subset of the language is a prefix language
of the difference). Both are required to translate the formula into a DFA, but are
not overly restrictive (see [35] for details). Additionally, we require (3) φ to be in
concatenation form. This last assumption allows us to divide the specification in
tasks and induces a measure of progress towards an objective. It forms the basis
of the language-guided sampling that is presented in detail in Sec. 4.3. The main
limitation imposed by (3) is, intuitively, to constrain the specification to only
describe “tasks” without “subtasks”. For example, φ = [H3A][0,10] · [H2B][0,5]

(two high level hold tasks) satisfies (3), but φ = [[H3A][0,10] · [H2B][0,5]][0,20] (a
high level task with two hold substasks) does not.
Example (cont). The DFA corresponding to the specification φsimple is shown
in the upper left corner of Fig. 1. In the center of the figure, we show the grown
TS (represented by the dots and arrows) as well as the product with the DFA.

4.1 Algorithm description

In Alg. 1 we present the procedure to incrementally generate a TS from a de-
scription of the workspace and a specification. The algorithm takes as inputs
the TWTL formula φ, and the initial state x0 ∈ Wfree. The description of the
workspace is implicit in the functions that use it.

The procedure starts by initializing the needed data structures in line 1: the
formula is translated to the DFA A∞ and the TS T is constructed with just the
initial state. The TS is then grown for a number of iterations (line 2).

A sample pair of a state to expand in the TS and a state in the workspace
is generated in line 3. The state that will be considered to be added to the TS,
xnew, is computed by the steering function Steer in line 4. If the path to the new
state is feasible (line 5), it is added to the TS (line 8). In order to select the best
node to connect xnew to, we look at the set of nodes within steering distance in
the same state of the DFA as the node to expand (line 6). Then, a node with best
cost and a feasible path to xnew is chosen from that set (line 7). After adding the
new node, other nodes within sterring distance that can be reached from xnew

Algorithm 1: Algorithm

Input: φ – TWTL formula in concatenation form, x0 – initial point
Output: T – transition system

1 A∞ ← Translate(φ) ; T = (V, x0, E,Π, h)← ({x0}, x0, ∅, Π,L)
2 for i = 1, ..., n do
3 xexp, xran ← Sample()
4 xnew ← Steer(xexp, xran)
5 if ColFree(xexp, xnew) then
6 Vnear ← {x ∈ V : δ∗A∞(#»o) = δ∗A∞(#»o exp)), ‖x− xnew‖ ≤ dsteer}
7 xmin ← argmin{x∈Vnear :ColFree(x,xnew)}{CostA∞(#»x)}
8 V ← V ∪ {xnew} ; E ← E ∪ {(xmin, xnew)}
9 Vnext ← {x ∈ V : δ∗A∞(#»o) ∈ δA(δ∗A(#»o exp), onew), ‖x− xnew‖ ≤ dsteer}

10 foreach xnext ∈ Vnext do
11 if CostA∞(#»xnext) > CostA∞(#»xnew ⊕ xnext) ∧ColFree(xnew, xnext)

then
12 E ← (E \ {(Parent(xnext), xnext}) ∪ {(xnew, xnext)}

13 return T

(regarding both state consistency in the DFA and path feasibility) are considered
for rewiring. If the path through xnew has better cost than their current one,
the tree is rewired (lines 9-12, see more details on rewiring in Sec. 4.2).

Some primitive functions are assumed to be available in Alg. 1. Sample will
be discussed in Sec. 4.3. Steer computes a state close to xran within steering
distance of xexp and ColFree checks if the path between two points is free of
obstacles; a more in depth discussion of both can be found in [22]. Let x ∈ V
be a state in T . We denote by #»x and #»o the (unique) path in T from the initial
state x0 to x and its corresponding output word, respectively. The function
Parent : V → V ∪{./} returns the parent of x in the TS, with ./ = Parent(x0).
We denote by #»x ⊕ xnew the path resulting from appending the node xnew to #»x .
The cost associated with #»x is given by CostA∞(#»x). See Sec. 4.2 for details.

Note that even though we describe the algorithm as building the incremental
TS T , it is easy to see that the product automaton P is also being incrementally
built: it is only necessary to consider each state x of the TS as augmented with
the corresponding DFA state, δ∗A∞

(#»o). From an implementation point of view,
computing the product automaton does not incur in a performance penalty, since
the number of states is equal to that of the TS. In fact, the function δ∗A∞

is now
immediately available for all states of T and only the transition function δA∞

needs to be computed for each new sample. In the following, we assume the
algorithm incrementally builds the product automaton P explicitly.

4.2 Cost function

Each path #»xL−1 = {xi}L−1i=0 in the TS has a cost represented by the function
CostA∞ . We first look for the largest j such that #»xL−1 |= φj(τ), for some τ .

Let τ∗ be the tightest τ -relaxation of φj that #»xL−1 satisfies, i.e., the one that
minimizes

∣∣φj(τ)
∣∣
LRTR

. Then, we obtain the shortest subpath of #»xL−1 that

satisfies φj(τ∗), #»xS−1 = {xi}S−1i=0 . Finally, we can define the cost as follows:

CostA∞(#»xL−1) = L− S +
∣∣φj(τ∗)∣∣

LRTR
. (5)

It is immediate to see that finding a path that satisfies φ(τ) with minimum
cost provides a solution for Prob. 2. Note that the cost increases by 1 with each
node added to the path that does not render a longer subformula φj+1 true.
Moreover, when a node is added such that φj+1 is satisfied, we only need to
consider the subpath associated with φj+1 in order to obtain the new τ∗. This
leads to the following definition of CostA∞ , equivalent to the previous one:

CostA∞(#»xL−1) ={
CostA∞(#»xS−1) + max{CostA∞(#»xL−2)− CostA∞(#»xS−1) + 1− bj , 0}, if P(#»x)

CostA∞(#»xL−2) + 1, otherwise

P(#»x) = #»xL−1 |= φj(τ) ∧ #»xL−2 6|= φj(τ) ∧ #»xS−1 |= φj−1(τ) ∧ #»xS−2 6|= φj−1(τ)

(6)

In the equation above, bj is the upper bound of the time window for subfor-
mula φj . This cost function is easy to implement by storing the cost of #»x in the
node x and obtaining the cost of new nodes recursively using Eq. (6).

Alg. 1 tries to keep minimum cost paths between the nodes of the tree.
In lines 9-12, a rewiring process is executed after the tree has been extended.
This rewiring is structurally very similar to the one performed by the RRT*
algorithm [16]. However, while RRT* considers nodes nearby the last added node
for rewiring, we add a consistency condition so that only nodes corresponding to
a successor state in the product automaton will be considered for rewiring (see
line 9). Moreover, the cost function deviates from the usual continuous additive
cost functions considered in RRT*. In Sec. 4.4, we discuss the implications of
rewiring from a (probabilistic) completeness and optimality point of view.

4.3 Sampling

The Sample function generates a random state to add to the TS and selects the
candidate node to connect it to. The usual sampling function for RRT-type of
algorithms requires the samples to be from the free space, Wfree. However, as
was pointed out when describing the algorithm, not only the TS T , which has
states in Wfree, is constructed, but also the product automaton P = T × A∞.
Therefore, we also need to sample a state from the DFA’s set of states SA∞ . In
Fig. 1 we explicitly show the product automaton in layers corresponding to the
different states of the DFA to illustrate this idea.

The straightforward approach to sampling would proceed as follows: obtain
a random sample pran = (xran, sran) from Wfree×SA∞ . Then, find the nearest
state pexp in P that can be connected to the sample pran (see below). However,
in order to simplify the computation, first we sample from SA∞ a DFA state

A

B

C
A

B

C
A

B

C
A

B

C

s0

s1

s2

s3

A

B

C

¬A

¬B

¬C

x0

Fig. 1. A schematic representation of Alg. 1 applied to the example problem. Regions
A, B and C are green, obstacles are red and the initial point x0 is blue. The DFA
corresponding to φsimple is plotted in the upper left part. In each layer we plot in black
the nodes of the product automaton that correspond to the accompanying DFA state.
Black arrows represent transitions that do not change the DFA state, while magenta
arrows indicate that the next node is in a new DFA state.

sexp that restricts the product states we need to consider for extension. Then,
a sample xran from Wfree is obtained. Finally, pexp is selected as before (with
the DFA part now fixed) and sran is determined by δA∞(δ∗A∞

(#»o exp), oran). This
procedure is sound in the sense that it does not generate “naive” random trees
(i.e., biased towards the initial state, see [22]), since the DFA states are finite.

Algorithm 2: Sample

Input: T = (V, x0, E,Π, h) – Current TS, φ – TWTL formula in concatenation
form, τ – Best temporal relaxation found so far, A∞ – The DFA
associated with φ

Output: A state in T to extend from, and a random state to extend to

1 if Unif([0, 1]) < pbias then
2 k ← argmaxi∈IA∞ (φ(τ)){τi}
3 sran ← Unif(StatesA∞(φk))

4 else
5 sran ← Unif(StatesA∞(φ))

6 xran ← Unif(Wfree)
7 xexp ← Nearest({x ∈ V : δ∗A∞(#»o) = sran}, xran)
8 return (xexp, xran)

Intuitively, sampling the DFA state has the effect of choosing which layer, as
shown in Fig. 1, we are exploring next. This observation allows us to develop
heuristics that bias the sampling towards states that need to be better explored.
In particular, we propose a sampling method in which the states associated with
the subformula φi with largest τi are sampled with greater probability.

Our sampling procedure is presented in Alg. 2. The biased sampling described
above is performed over a uniform sampling with probability pbias. The StatesA∞

function returns the states in the DFA associated with a subformula; the Unif
function chooses uniformly from a given set; and the Nearest function returns
the nearest point from a set to another point. The input parameter τ represents
the best temporal relaxation (LRTR) for a path satisfying φ(τ) so far, and it
is important to keep it stored and updated throughout the execution of the
algorithm in order to avoid unnecessary computation.

4.4 Completeness and optimality

We assume for our analysis an additional constraint for Prob. 1: the set U is
discrete. Furthermore, the steering function is modified such that Steer(x, y)
returns the result of applying a random control input from U for one timestep
from x. We start with an observation about the rewiring process:

Theorem 1. Consider the graph G = (VG, EG) obtained by running Alg. 1
for some number of iterations with line 12 deleted, as well as the tree T =
(VT , ET) obtained by running the unmodified algorithm. Then, VG = VT and
∀v ∈ VG, CostA∞(#»v G) ≥ CostA∞(#»v T), where #»v T is the path from x0 to v in T
and #»v G is any path from x0 to v in G.

Proof. Since the rewiring process only modifies the set of edges, the set of nodes
remains the same. For the second property, note that line 11 ensures that the
edges resulting in paths with a worse cost are removed.

Theorem 2 (Probabilistic Completeness). If Prob. 1 with the discrete con-
trol input assumption has a solution, then Alg. 1 finds it with probability 1 as
the number of iterations go to infinity.

Proof. We sketch a proof closely following that in [22]. First, consider the algo-
rithm without line 12. Suppose a solution path is x = {xk}Lk=0. By induction
on k, assume the graph contains a path until xk for some k. Since the states of
A∞ are finite, with non-zero probability the state associated with the path from
x0 to xk, δ∗A∞

(#»o k), will be selected for extension. Consider now the Voronoi
diagram associated with the nodes in the selected state. With non-zero proba-
bility, a sample in the Voronoi cell associated with xk will be obtained. Finally,
with non-zero probability the correct control input that steers the system to-
wards xk+1 will be selected. Therefore, the next point in the solution path will
be constructed with probability tending to one. This process continues until the
solution path is constructed in G. Since the path has cost 0, the path to its last
node in the tree resulting from enabling rewiring has cost less than or equal to
0 by Theorem 1. Therefore, it is a solution path.

We now turn our attention to the behavior of the algorithm when faced with
a scenario in which only a relaxation of the specification can be satisfied:

Theorem 3. Suppose Prob. 1 has a solution for a τ -relaxation of the specifica-
tion φ, φ(τ), with |φ(τ)|LRTR = c, and no τ -relaxation φ(τ ′), with |φ(τ ′)|LRTR =
c′ < c, yields a satisfiable specification. Then, if Alg. 1 is run for the original
specification φ, it will find a path satisfying φ(τ ′′), with |φ(τ ′′)|LRTR = c, for
some τ -relaxation φ(τ ′′), with probability 1.

Proof. Suppose the algorithm is run for the specification ψ = φ(τ) and the
rewiring process is disabled. The resulting graph has the same nodes as it would
have if run for the specification φ. Moreover, a path with cost 0 with respect to
ψ, or, equivalently, c with respect to φ, exists in the graph with probability 1, by
Theorem 2. When rewiring is applied, the path to the final node will have less or
equal cost by Theorem 1. However, by hypothesis, no path satisfying a relaxed
formula exists with cost less than c. Therefore, a path with cost c is found with
probability 1.

4.5 Complexity

Given the similarity of Alg. 1 with RRT*, it is not surprising that the compu-
tational complexity is similar. We analyze the number of calls to ColFree per
iteration as well as the cost of some of the operations described in Sec. 4.1.

Consider an arbitrary φ, which gets translated into a DFA with set of states
{si}Si=1. Note that ColFree is restricted to nodes in particular DFA states, given
by the construction of the Vnear and Vnext sets, which is related to the sampled
DFA state, sran. The number of considered states depends on certain features of
the formula (such as the number of disjunction operands) that are not necessarily
related to S, so we assume it fixed. Let pi be the probability of a node being in
one of those DFA states when si is sampled (which in general decreases when S
increases, although its distribution depends on the structure of the formula and
the workspace) and let PS be its expected value. Then, the number of calls to
ColFree in iteration n is O(PSn).

We can proceed in a similar way in order to analyze the primitive procedures.
Regarding the ColFree function itself, it can be executed in O(logdm), where d
is the dimension of the space and m is the number of obstacles . The sets Vnear
and Vnext computed in line 6 and line 9 respectively are also referred to as range
search problems and can be approximately solved inO(logPSn+(1/ε)d−1), where
ε is a parameter controlling the precision. Finally, the optimization problem
solved in line 7 to find xmin is an instance of the nearest neighbor search problem,
which can be approximately solved in O(cd,ε logPSn), where cd,ε ≤ dd1+6d/εed.
See [16] for a discussion on these results.

5 Case Studies

We implemented the algorithm in Python2.7 and we ran all examples on an
Intel(R) Core(TM) i5-4690K CPU @ 3.50GHz with 8GB RAM. We compared

(a) TS after a few iterations (b) Path with τ∗ = (0, 3, 0) (c) Satisfying path

Fig. 2. Evolution of Alg. 1 for case study 1. The regions of interest are colored in green
and obstacles in red. The color of each node in the TS represents its associated DFA
state. The current best path satisfying the relaxed formula is highlighted in bold black.

execution times with [35] using a grid with 20 divisions per dimension for the
state space partition and skipping the computation of transitions between cells.

5.1 Case Study 1: Example revisited

We consider the following more complicated specification for the example: “Per-
form tasks at A, B, and C, in this order, of duration 2, 3, and 2 time units, within
time intervals [3, 10], [0, 15], and [0, 15] from the end of the previous task, re-
spectively.” The corresponding TWTL formula is φ = [H2A][3,10] · [H3B][0,15] ·
[H2C][0,15]. The parameters of the algorithm are dsteer = 0.75 and pbias = 0.5.

We show in Fig. 2 several snapshots of the state of the algorithm after some
iterations. Note that the layers associated with each state in the DFA shown
schematically in Fig. 1 can be identified in the figure by the different colors in
nodes and edges. In Fig. 2a, we show the state of the algorithm when it has yet
to find a path that satisfies any τ -relaxation of φ. At this point, the algorithm
is exploring the state space in search of a candidate path. The cluster of nodes
near x0 is due to the sampling of states associated with delaying until the lower
bound of the first time interval. The next snapshot, Fig. 2b, highlights a candi-
date path. After this iteration, the exploitation phase starts and the algorithm
biases the sampling towards the subpath with worst deadline deviation (in this
case, the subpath from A to B). If the algorithm is stopped at this iteration, it
would return the highlighted path, which is a partial solution that violates the
specification. We quantify the violation with the temporal relaxation. In Fig. 2c
the candidate path was refined enough to finally satisfy φ. The two predomi-
nant colors in the figure, cyan and light magenta, correspond to the initial states
of the second and third subformula respectively. The maximum, minimum and
average times it took to solve the problem over 20 executions were 250, 7 and
61 seconds, respectively. We repeated the simulation with pbias = 0 obtaining
maximum, minimum and average times of 1766, 17 and 289 seconds respec-
tively, which shows a performance decrease when language-guided sampling is

Fig. 3. Final path returned by the algorithm for the
second case study, as seen when projected onto its
first two components.

disabled. In comparison, the algorithm proposed in [35] is able to obtain a path
in an average of 1 second.

5.2 Case Study 2

We consider a workspace in R10 with five obstacles and three regions of interest,
A, B and C. The system dynamics are the same as in the previous example, with
||uk|| ≤ 2 and initial point x0 = (5, 7, 3, . . . , 3). The specification in this case is
φ = [H1A][0,25] ·

(
[H1B][0,15] ∨ [H1C][0,15]

)
· [H1D][0,35] , and we set dsteer = 2

and pbias = 0.5. We show in Fig. 3 the satisfying path found by the algorithm.
The execution time needed to solve an instance of the problem was 3834 seconds.
In this case, the algorithm in [35] required too much memory to run.

6 Conclusion

In this paper, we introduced a sampling-based algorithm for solving motion
planning problems under temporal logic specifications given as TWTL formulae.
The algorithm initially finds a path that satisfies a temporally relaxed version
of the specification. Then, sampling is biased towards the subpath that needs
more improvement in order to satisfy the time bounds of the specification.

Our algorithm relies on the translation of TWTL formulae to annotated
Deterministic Finite State Automata, a process recently developed in [35]. The
design of the algorithm is inspired from RRT∗, but differs in two major aspects.
First, we incrementally construct the product between a Transition System, with
states in the workspace, and the DFA. This allows us to not only grow a random
tree in a similar way as RRT∗, but to also keep track of our progress towards
satisfying the specification. Second, we make use of a cost function related to the
satisfaction of the formula that deviates from the usual metrics used by RRT∗,
like path length. We showed that for this cost function, not only our algorithm
is probabilistically complete, but it can also obtain a “minimally violating” path
in those cases were only a temporally relaxed version of the specification can be
satisfied, again in a probabilistically complete way.

We implemented the algorithm in Python and we tested it for high dimen-
sional problems. We obtained correct results at a moderately high computa-
tional cost, partially due to our naive implementation lacking the best known
algorithms for solving nearest neighbors and range search problems.

As future work, we plan to extend the fragment of TWTL that we accept in
order to allow specifications with “subtasks”, which could be solved by recursive
calls to the proposed algorithm. We also want to assess the performance when
better algorithms for primitive operations are used.

Acknowledgments. This work was partially supported by the NSF under grant
NRI-1426907 at Boston University.

References

[1] Aksaray, D., Vasile, C.I., Belta, C.: Dynamic Routing of Energy-Aware Vehicles
with Temporal Logic Constraints. In: IEEE International Conference on Robotics
and Automation. pp. 3141–3146. Stockholm, Sweden (May 2016)

[2] Aydin Gol, E., Lazar, M., Belta, C.: Language-Guided Controller Synthesis for
Linear Systems. IEEE Trans. on Automatic Control 59(5), 1163–1176 (2014)

[3] Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Annals of
Mathematics and Artificial Intelligence 22(1-2), 5–27

[4] Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
[5] Belta, C., Isler, V., Pappas, G.J.: Discrete abstractions for robot planning and

control in polygonal environments. IEEE Trans. on Robotics 21(5), 864–874 (2005)
[6] Bhatia, A., Kavraki, L., Vardi, M.: Sampling-based motion planning with tempo-

ral goals. In: IEEE International Conference on Robotics and Automation (2010)
[7] Canny, J.F.: The Complexity of Robot Motion Planning. MIT Press, USA (1988)
[8] Chen, Y., Tumova, J., Belta, C.: LTL Robot Motion Control based on Au-

tomata Learning of Environmental Dynamics. In: IEEE International Conference
on Robotics and Automation. Saint Paul, MN, USA (2012)

[9] Choset, H., Lynch, K., et al.: Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, Boston, MA (2005)

[10] Ding, X.C., Kloetzer, M., et al.: Formal Methods for Automatic Deployment of
Robotic Teams. IEEE Robotics and Automation Magazine 18, 75–86 (2011)

[11] Doherty, P., Kvarnström, J., Heintz, F.: A temporal logic-based planning and exe-
cution monitoring framework for unmanned aircraft systems. Autonomous Agents
and Multi-Agent Systems 19(3), 332–377 (Feb 2009)

[12] Gol, E.A., Belta, C.: Time-Constrained Temporal Logic Control of Multi-Affine
Systems. Nonlinear Analysis: Hybrid Systems 10, 21–23 (2013)

[13] Guo, M., Dimarogonas, D.V.: Multi-agent plan reconfiguration under local LTL
specifications. International Journal of Robotics Research 34(2), 218–235 (2015)

[14] Jha, S.K., Clarke, E.M., et al.: A bayesian approach to model checking biological
systems. In: Computational Methods in Systems Biology. Springer-Verlag (2009)

[15] Karaman, S., Frazzoli, E.: Sampling-based Motion Planning with Deterministic
µ-Calculus Specifications. In: IEEE Conference on Decision and Control (2009)

[16] Karaman, S., Frazzoli, E.: Sampling-based Algorithms for Optimal Motion Plan-
ning. International Journal of Robotics Research 30(7), 846–894 (June 2011)

[17] Karaman, S., Frazzoli, E.: Sampling-based Optimal Motion Planning with Deter-
ministic µ-Calculus Specifications. In: American Control Conference (2012)

[18] Kavraki, L., Svestka, P., et al.: Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on Robotics and Automa-
tion 12(4), 566–580 (1996)

[19] Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
time systems 2(4), 255–299 (1990)

[20] Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Where’s Waldo? Sensor-based tem-
poral logic motion planning. In: IEEE International Conference on Robotics and
Automation. pp. 3116–3121 (2007)

[21] Lahijanian, M., Almagor, S., et al.: This Time the Robot Settles for a Cost: A
Quantitative Approach to Temporal Logic Planning with Partial Satisfaction. In:
AAAI Conference on Artificial Intelligence. pp. 3664–3671. Austin, Texas (2015)

[22] LaValle, S.M., Kuffner, J.J.: Randomized Kinodynamic Planning. International
Journal of Robotics Research 20(5), 378–400

[23] Luo, R., Valenzano, R.A., et al.: Using Metric Temporal Logic to Specify Schedul-
ing Problems. In: Principles of Knowledge Representation and Reasoning (2016)

[24] Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
pp. 152–166. Springer (2004)

[25] Maly, M., Lahijanian, M., et al.: Iterative Temporal Motion Planning for Hy-
brid Systems in Partially Unknown Environments. In: Int. Conference on Hybrid
Systems: Computation and Control (2013)

[26] Nakagawa, S., Hasuo, I.: Near-Optimal Scheduling for LTL with Future Discount-
ing. In: Ganty, P., Loreti, M. (eds.) Trustworthy Global Computing, pp. 112–130.
No. 9533 in Lecture Notes in Computer Science, Springer (2015)

[27] Pavone, M., Bisnik, N., et al.: A stochastic and dynamic vehicle routing problem
with time windows and customer impatience. Mobile Networks and Applications
14(3), 350–364 (2009)

[28] Plaku, E., Kavraki, L.E., Vardi, M.Y.: Motion Planning with Dynamics by a
Synergistic Combination of Layers of Planning. IEEE Trans. on Robotics 26(3),
469–482 (2010)

[29] Reyes Castro, L., Chaudhari, P., et al.: Incremental sampling-based algorithm
for minimum-violation motion planning. In: IEEE Conference on Decision and
Control. pp. 3217–3224 (2013)

[30] Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations research 35(2), 254–265 (1987)

[31] Tkachev, I., Abate, A.: Formula-free Finite Abstractions for Linear Temporal
Verification of Stochastic Hybrid Systems. In: Int. Conference on Hybrid Systems:
Computation and Control. Philadelphia, PA (2013)

[32] Tumova, J., Marzinotto, A., et al.: Maximally satisfying LTL action planning. In:
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. pp. 1503–1510 (2014)

[33] Tumova, J., Hall, G.C., et al.: Least-violating Control Strategy Synthesis with
Safety Rules. In: Hybrid Systems: Computation and Control. pp. 1–10 (2013)

[34] Vasile, C., Belta, C.: Sampling-Based Temporal Logic Path Planning. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)

[35] Vasile, C.I., Aksaray, D., Belta, C.: Time Window Temporal Logic. Theoretical
Computer Science p. (submitted), http://arxiv.org/abs/1602.04294

[36] Vasile, C.I., Belta, C.: An Automata-Theoretic Approach to the Vehicle Routing
Problem. In: Robotics: Science and Systems Conference. USA (2014)

[37] Wolff, E.M., Topcu, U., Murray, R.M.: Automaton-guided controller synthesis for
nonlinear systems with temporal logic. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems. pp. 4332–4339 (2013)

[38] Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding Horizon Temporal Logic
Planning for Dynamical Systems. In: Conference on Decision and Control (2009)

[39] Yoo, C., Fitch, R., Sukkarieh, S.: Probabilistic temporal logic for motion planning
with resource threshold constraints (2012)

http://arxiv.org/abs/1602.04294

	Language-Guided Sampling-based Planning using Temporal Relaxation

