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Abstract. This paper introduces a partial satisfaction (PS) notion for
Signal Temporal Logic (STL), finding solutions for specifications that
might contain unfeasible or conflicting subformulae. We formulate the
planning problem for teams of agents with robust PS of STL missions as
a bi-level optimization problem. The goal is to maximize the number of
subformulae satisfied with preference to larger ones that have lower depth
in the syntax tree of the overall specification. The second objective is to
maximize the smallest STL robustness of the feasible subformulae. First,
we propose three Mixed Integer Linear Programming (MILP) methods
to solve the inner level of the optimization problem, two exact and a
relaxation. Then, the MILP solutions are used to find approximate so-
lutions to the outer level optimization using a linear program. Finally,
we show the performance of our methods in two multi-robot case stud-
ies: motion planning in continuous spaces, and routing for heterogeneous
teams over finite graph abstractions.

Keywords: Formal Methods · Signal Temporal Logic · Partial Satisfac-
tion · Multi-robot Systems.

1 Introduction

In recent years, multi-robot systems have been widely studied due to their re-
siliency and robustness. Their application domains span from search-and-rescue
missions and exploration of bio-hazard zones to cargo delivery and planetary
exploration [3]. Solving these types of missions requires optimal task allocation
over teams of robots satisfying a set of task specifications [24, 5]. Additionally,
suitability, robustness, and scalability are an extension of the problem that is
frequently tackled in the literature [10, 11]. However, in case of conflicting speci-
fications or lack of robots, the planning problem becomes infeasible, whereas, in
practice, at least partial execution of the task may be desired.

Our work focuses on partial satisfaction (PS) of a mission over a team of
robots with conflicting or competing specifications. For example, let us consider
having four robots with a camera in an environment and a task specification
requiring three robots with a camera at location A and, at the same time, two
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robots of the same type at location B. Although both tasks cannot be satisfied
due to a lack of robots, our framework tackles this by fully satisfying one of the
tasks and partially satisfying the other. Furthermore, for efficient handling and
scheduling of complex tasks, we use Signal Temporal Logic (STL) specifications
to enrich the specification with logical and temporal operators that allow us to
describe not only where but also when and for how long robots are needed to
satisfy tasks [28, 27].

There exist some methods in the literature that tackle these temporal spec-
ifications while considering PS, such as automata-based approaches [2, 1] and
robustness as Mixed Integer Linear Programming (MILP) formulations [26]. In
[20, 21], authors compute policies that minimize the distance to satisfaction as
given by the paths in the specification automaton. On the other hand, [18] pro-
poses a general relaxation framework for automata-based planning for various
relaxation instances by using a weighted finite-state edit system. Even though
these approaches take into account the partially feasible nature of specifications,
they are computationally expensive as they involve computing product automata
that scale poorly.

In a different direction, MILP encoding scales better, making it suitable for
multi-robot setups. In [25], a limited violation in the specifications is allowed by
adding more binary variables in each Boolean operation, increasing the compu-
tational cost dramatically. Authors in [4] consider PS due to time uncertainties,
penalizing the model when a task is not satisfied. Modeling PS with a bilevel op-
timization formulation, where the lower level decides whether or not a task can
be satisfied, and the higher level solves the overlapping conflicts. Although mini-
mum violation, robustness, and completion uncertainty have been solved, the PS
concept has not been tackled. Our work aims at addressing PS by maximizing
the subformulae in a specification that can be satisfied. Also, our approach has
a percentage metric of specification satisfaction and indicates subformulae that
were partially or not satisfied.

This paper presents a robust PS problem for STL specifications with pos-
sible contradicting, competing, or infeasible subformulae. We formulate the PS
planning problem as a bi-level optimization formulation where the inner level
identifies satisfied subformulae. We prioritize lower-depth nodes in an Abstract
Syntax Tree (AST) of the specification. We propose three MILP methods that
use a novel encoding for STL based on satisfaction fractions, number of satisfied
subformulae weighted according to depth. Our MILP encodings do not lose the
qualitative semantics of STL. We use a Linear Program (LP) to maximize the
robustness of all subformulae satisfied by a solution of the MILPs. The LP ap-
proximates the outer level of the robust PS problem. We show the performance
of the methods in two case studies involving multi-robot teams. We consider
motion planning in continuous spaces and routing for heterogeneous teams over
finite graphs representing abstractions of the environment.

The main contributions of this paper are threefold. First, we introduce a PS
of STL specifications that satisfies as much as possible even in the presence of
conflicting or unfeasible subformulae. Second, we propose three MILP encodings
for PS, describing each method’s advantages and runtime performance, and an
LP for approximating robust PS. We also compare PS encodings performance
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with CaTL specifications [16], showing that our encoding not only can work
under unfeasible specifications but also improves the runtime performance under
feasible specifications. Finally, we show the versatility and performance of PS
methods in two case studies, continuous state planning for robots navigating
in planar environments and routing over finite graph abstractions for teams of
robots with varying capabilities tasked with rich temporal logic tasks [17].

2 Preliminaries and Notation

Let Z, R, denote the sets of integer and real numbers. The set of integers greater
than a is Z≥a. For a set S, 2S and ∣S∣ represent its power set and cardinality. For
S ⊆ R and α ∈ R, we have α + S = {α + x ∣ x ∈ S}. The integer interval (range)
from a to b is [a .. b]. Let x ∈ Rd be a d-dimensional vector. The i-th component
of x is given by xi, i ∈ [1 .. d].

2.1 Signal Temporal Logic

Let s ∶ Z≥0 →M be a discrete-time signal with values in the compact space M ⊆
RN . Signal Temporal Logic (STL), introduced in [23], is a specification language
expressing real-time properties. The syntax of STL over linear predicates is given
by

φ∶= ⊺ ∣ si ≥ µ ∣ φ1 ∧ φ2 ∣ φ1 ∨ φ2 ∣ ¬φ ∣ ◊Iφ ∣ ◻Iφ ∣ φ1 UI φ2, (1)

where φ, φ1, and φ2 are STL formulae, ⊺ is the logical True value, si ≥ µ is a linear
predicate with threshold value µ ∈ R over the i-th component of signal s. The
logical False value is � = ¬⊺. Predicates s ∼ µ, ∼ ∈ {>,≤,<}, follow via negation
and sign change. Boolean operators negation ¬, disjunction ∨ and conjunction
∧. Timed temporal operators eventually ◊I , always ◻I and until UI with I =
[k1 .. k2] a discrete-time interval, k2 ≥ k1 ≥ 0, define as in [23].

The (qualitative) semantics of STL formulae over signals s at time k is re-
cursively defined in [23] as

(s, k) ⊧ (si ≥ µ) ≡ si(k) ≥ µ,
(s, k) ⊧ ¬φ ≡ (s, k) ⊭ φ,

(s, k) ⊧ φ1 ∧ φ2 ≡ ((s, k) ⊧ φ1) ∧ ((s, k) ⊧ φ2),
(s, k) ⊧ φ1 ∨ φ2 ≡ ((s, k) ⊧ φ1) ∨ ((s, k) ⊧ φ2),

(s, k) ⊧ ◊Iφ ≡ ∃k′ ∈ I s.t. (s, k′) ⊧ φ,
(s, k) ⊧ ◻Iφ ≡ ∀k′ ∈ I s.t. (s, k′) ⊧ φ,

(s, k) ⊧ φ1 UI φ2 ≡ ∃k′ ∈ k + I s.t. (s, k′) ⊧ φ2 ∧ ∀k′′ ∈ [k .. k′] (s, k′′) ⊧ φ1,

(2)

where ⊧ and ⊭ denote satisfaction and violation, respectively. A signal s satis-
fying φ, denoted as s ⊧ φ, is true if (s,0) ⊧ φ. In addition to Boolean semantics,
STL admits quantitative semantics, called robustness, that indicates how much
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a signal satisfies or violates a specification [12, 9]. The robustness score ρ(s, φ, k)
is recursively defined as

ρ(s,⊺, k) =ρ⊺,
ρ(s, si ≥ µ, k) =si(k) − µ,
ρ(s,¬φ, k) = − ρ(s, φ, k),

ρ(s, φ1 ∧ φ2, k) =min(ρ(s, φ1, k), ρ(s, φ2, k)),
ρ(s, φ1 ∨ φ2, k) =max(ρ(s, φ1, k), ρ(s, φ2, k)),

ρ(s,◻Iφ, k) = min
k′∈k+I

ρ(s, φ, k′),

ρ(s,◊Iφ, k) = max
k′∈k+I

ρ(s, φ, k′),

ρ(s, φ1 UI φ2, k) = max
k′∈k+I

{min{ρ(s, φ2, k′), min
k′′∈[k..k′]

ρ(s, φ1, k′′)}},

(3)

where ρ⊺ = sups,µ{si − µ} is the maximum robustness.

Theorem 1 (Soundness [9]). Let s be a signal and φ an STL formula. It
holds ρ(s, φ, k) > 0 ⇒ (s, k) ⊧ φ for satisfaction and ρ(s, φ, k) < 0 ⇒ (s, k) ⊭ φ
for violation.

The time horizon of an STL formula [8] is defined as

∥φ∥ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if φ = s ≥ µ,
∥φ1∥, if φ = ¬φ1,
max{∥φ1∥, ∥φ2∥}, if φ = φ1 ∧ φ2,
b +max{∥φ1∥, ∥φ2∥}, if φ = φ1 UI φ2.

An STL formula is said to be in positive normal form (PNF) if it satisfies
two conditions. First, all its predicates are of the si ≥ µ form. Second, it does not
contain the negation operator. Any STL formula can be put in PNF form [26].

3 Problem Formulation

In this work, we consider planning for teams of robots tasked with performing
missions specified as STL formulae. We focus on the case where not all of the
mission specification can be satisfied due to a lack of agents or competing sub-
formulae. We define the PS problem that requires the computation of motion
plans for all robots such that as much of the formula is satisfied with larger
subformulae preferred over smaller ones. To this end, we introduce a partial or-
der over subformulae that captures the preference structure. Although we focus
on multi-robot problems in this paper, the PS problem and proposed approach
can be used with any robot system with linear dynamics or mixed-logical linear
dynamics, e.g., piecewise-affine systems, max-min-plus scaling systems [14, 26].
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3.1 Team Dynamics

We consider two multi-robot planning problems. The first is planning for hetero-
geneous teams of robots with various capabilities over graphs and finite abstrac-
tions of the environment in which they are deployed [16]. The second is joint
planning for homogeneous teams in the continuous state spaces of the robots.
We assume that the robots’ motion is governed by linear dynamics enforced by
low-level controllers, e.g., using differential flatness [6, 31] and feedback lineariza-
tion [29, 19].

The robot team dynamics is captured in both the discrete and continuous
state space cases using linear difference equations

s(k + 1) = As(k) +Bu(k) +D, (4)

where s(k) ∈ S is the team state at time k ∈ Z≥0, S is the state space of the
team, and A, B, and D are the state transition, input, and drift matrices of
appropriate sizes. The difference between the two cases is in the state space
definition. For the heterogeneous team case over finite abstraction graphs, the
team states represent the number of agents of each class at each location (node
of the graph). For the homogeneous team case over continuous state spaces, the
team states are composed of the states of all agents. See Sec. 5 for details and
formal definitions.

3.2 Partial Satisfaction Control Synthesis Problem

This paper defines missions as STL formulae with predicates over team states
that capture the temporal and logical sequencing of tasks and their timing con-
straints. Informally, we desire PS to: (a) prefer subformulae with lower-depth 1

(see Fig. 1), and (b) consider subformulae satisfaction at only required time
points modulated by the time intevals of temporal operators ◊, ◻, and U , see
example 1. We capture these requirements formally using a partial order [7].

Partial order over an AST Any STL formula can be represented using an
Abstract Syntax Tree (AST) in which intermediate nodes correspond to logical
and temporal operators, and leaves to predicates [15]. The depth of a formula
ϕ with respect to a formula φ is the path distance between the root of φ’s AST
and the node associated with ϕ. If ϕ is not a subformula of φ, the depth is by
convention ∞. We denote the depth by depthφ(ϕ). We use ϕ ⊏ φ to denote that
ϕ is a proper subformula of φ, and ϕ ⊑ φ when they can also be equal. Let s be a
state trajectory, and φ an STL mission specification. The set of subformulae of
φ and depth d ∈ Z≥0 satisfied by s is Φdφ(s) = {(ϕ, k) ∣ depthφ(ϕ) = d, (s, k) ⊧ ϕ}.

We say that state trajectory s is less than s′ with respect to φ, denoted s ≺φ s′,
if there is d ∈ Z≥0 such that (a) ∣Φdφ(s)∣ < ∣Φdφ(s′)∣, and (b) ∣Φd′φ (s)∣ = ∣Φd′φ (s′)∣ for

1 Lower-depth node satisfaction implies a higher percentage of specification satisfac-
tion since every all node underneath are guaranteed to be satisfied when their parent
nodes are satisfied.
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all d′ ∈ [0 .. d′ − 1]. Equality, s =φ s′, holds iff ∣Φdφ(s)∣ = ∣Φdφ(s′)∣ for all d ∈ Z≥0.

The trajectory s generated by some robotic system (linear or otherwise) is said
to satisfy φ as much as possible if s is maximal under the partial order ≺φ.

Partial Satisfaction Robustness we define the PS robustness as follows

%(s, φ) = min
(ϕ,k)∈Fφ(s)

ρ(s,ϕ, k), (5)

where Fφ(s) = {(ϕ, k) ∣ ∄(ϕ′, k′) s.t. ϕ ⊏ ϕ′, (s, k) ⊧ ϕ, (s, k′) ⊧ ϕ′} is the set of
lowest-depth subformulae satisfied by s.

Problem 1. Given a multi-robot system with linear team dynamics (4), and an
STL specification φ, find team input signal u such that the generated state
trajectory s satisfies φ as much as possible and maximizes the PS robustness (5).
Formally, we have the bi-level optimization problem

max
u

%(s, φ)

s. t. u induces s

s ∈ maxφ
u′

{s′} s. t. u′ induces s′
, (6)

where maxφ denotes maximization with respect partial order ≺φ defined above
and meaning it finds the maximal elements in the induce lattice [7].

Problem 1, takes a specification formula φ, and finds a team trajectory s
that satisfies the maximum number subformulae of lowest depth, and has the
largest minimum robustness among them. The inner optimization guarantees
that the number of low-depth formulae is maximum. Since u′ induces multiple
trajectories s′ in which maxφ looks for the one that satisfies as much as possible
according to the partial order ≺φ . While the outer optimization accounts for
their robustness.

Let us remark on the differences between PS and the canonical robustness
in (3). The latter represents the margin of satisfaction or violation of an STL
formula in the signal value space. In other words, the largest deviation to a
signal changes the satisfaction with respect to the specification formula. In case
of violation, it does not express which subformulae are satisfied or violated.
Thus, it cannot be used to enforce satisfying as many subformulae as possible.
In contrast, PS can guarantee that the specification will be satisfied as much
as possible with preference to lower-depth subformulae. PS also captures the
fraction of satisfaction for unsatisfied subformulae.

Example 1. Consider the following STL specification

φex = ◻I ((s1 ≥ 0) ∧ (s2 ≥ 0)) ∧ φ′ex
φ′ex =◊I′((s3 ≤ 0) ∨ (s1 ≥ 2) ∨ ((s1 ≥ 3) ∧ (s2 > 1))), (7)

where I = [0,1] and I ′ = [0,2]. The AST of φex and depth of each of its subformu-
lae are shown in Fig. 1. Consider a signal s such that s(0) = −13, s(1) = 13, and
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s(2) = 2⋅13, where 1n is the vector of all ones of dimension n ∈ Z≥1. The canonical
robustness of s is ρ(s, φex,0) = −1 due to the violation of predicates µ1 = s1 ≥ 0
and µ2 = s2 ≥ 0 at time k = 0 in the left subformula containing the always opera-
tor. However, the predicates are satisfied at time k = 1 within the interval I of the
always operator. Moreover, the right subformula φ′ex corresponding to the even-
tually operator is satisfied (as well as all of its subformulae). PS captures their
satisfaction with %(s, φex) = min{ρ(s, φ′ex,0), ρ(s, µ1 ∧ µ2,1)} = min{1,1} = 1,
where Fφ(s) = {(φ′ex,0), (µ1 ∧ µ2,1)}.

Remark 1. Note that PS depends explicitly on the AST of a formula2 and is
not associative by design, meaning that the order of operators matters (e.g.,
(φ1 ∧ φ2) ∧ φ3 gives priority to φ3, whereas in φ1 ∧ (φ2 ∧ φ3) priority is in φ1).
This work considers that AST is always given. Thus, an operator has the freedom
to specify the priorities and importance of subformulae using parenthesis that
determines the ASTs. Another way to indicate the preferences over subformulae
could be by adding intermediate virtual (no operation) nodes to increase the size
of subformulae and prefer to satisfy those subformulae over others at the same
depth but on a different branch.

Fig. 1: Abstract syntax tree of formula φex in (7). The depth of each subformula
associated with the AST’s nodes are shown. Moreover, for each subformula the
time points that are involved in the satisfaction of φex are given. The numbers
of satisfied subformulae ∣Φdφ(s)∣ of each depth d ∈ [0 .. 4] are shown in the middle
column. The maximum numbers of subformulae-time pairs for each depth that
are required to satisfy φ are in the right column.

4 Partial Satisfaction Encoding

In this section, we propose to solve Problem 1 in two steps that decouple the
bi-level optimization problem. First, we propose two Mixed Integer Linear Pro-
gramming (MILP) formulations to find the maximum number of subformulae

2 A formula can have many equivalent ASTs [15] determined by the parsing methods
used.



8 G. Cardona and C. Vasile

of lowest depth that can be satisfied. The MILP corresponds to the inner opti-
mization in (6). Furthermore, we consider a relaxation of the MILP formulations
that reduces the number of required binary variables, and has better runtime
performance. Second, we introduce a Linear Program (LP) that approximates
the solution to the outer level of (6) using the solution of the inner level. The
two-step approach trades off optimality with runtime performance.

4.1 MILP Encoding of Satisfaction Fractions

The foundation of our encoding of STL formulae is based on the fraction of
subformulae-time pairs that signals satisfy. Instead of encoding margins that are
propagated towards a formula’s root to compute robustness [26, 25], we keep
track of how many subformulae are satisfied weighted according to their depth.

Let φ be an STL formula. We represent by ξϕ,k ∈ [0,1] the satisfaction
fraction of subformula ϕ of φ at time k ∈ [0 .. ∥φ∥]. We define the following
MILP to capture the satisfaction fractions generated by a signal s generated by
the team dynamics (4). The recursive definition is

ξϕ,k = {si(k) − µ +M(1 − ξµ,k) ≥ 0

si(k) − µ −Mξµ,k ≤ 0
, ϕ = si ≥ µ,

m ⋅ ξϕ,k =
m

∑
`=1

ξϕ`,k, ϕ =
m

⋀
`=1

ϕ`,

ξϕ,k = max
`=1∶m

{ξϕ`,k}, ϕ =
m

⋁
`=1

ϕ`,

∣I ∣ ⋅ ξϕ,k = ∑
k′∈k+I

ξϕ′,k′ , ϕ = ◻Iϕ′,

ξϕ,k = max
k′∈k+I

{ξϕ′,k′}, ϕ = ◊Iϕ′,

ξϕ,k = max
k′∈k+I

{ξϕ2,k′ + ∑
k′′∈[k..k′]

ξϕ1,k′′}, ϕ = ϕ1 UI ϕ2,

(8)

where M > ρ⊺, ξµ,k ∈ {0,1} (since satisfaction of predicates needs to be enforced)
for all predicates µ and times k ∈ [0 .. ∥φ∥]. We have ξµ,k = 1 when si,k ≥ µ is true,
and ξµ,k = 0 when it is false. For all other logical and temporal operators ξϕ,k, ∈
[0,1] at all times k ∈ [0 .. ∥φ∥]. A subformula ϕ (associated with a temporal
or logical operator node) is fully satisfied when ξϕ,k = 1, and it is fully violated
when ξϕ,k = 0. In all other cases, ϕ is partially satisfied at time k.

Next, we capture the satisfaction of subformulae time pairs (ϕ, k) in Fφ(s)
using the binary variables ηϕ,k ∈ {0,1}. We enforce satisfaction and lowest depth
with constraints

ηϕ,k ≤ ξϕ,k, (9)

ηϕ,k ≤ 1 − ηϕ′,k′ ,∀ϕ ⊏ ϕ′ ⊑ φ, k′ ∈ K′, (10)

where K′ = {k′ ∈ [0 .. ∥φ∥] ∣ (s, k′) ⊧ ϕ′ ⇒ (s, k) ⊧ ϕ,∀s} is the finite set of all
times where ϕ′ supersedes ϕ at k (see Sec.3.2) which is constructed in polynomial
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time since the time horizon ∥φ∥ and the number of subformulae in φ are finite.
Note that ηϕ,k can take value one only when ϕ is fully satisfy i.e., ξϕ,k = 1, due
to constraint (9). All ancestors must not be fully satisfied, i.e., ηϕ′,k′ = 0, for ϕ
to be lowest depth as captured in (10).

4.2 Objective Functions for Partial Satisfaction

In this section, we formulate three MILP problems that solve the inner level
of (6). The first two are exact solutions, while the third is a relaxation.

Let γφ,d = ∑(ϕ,k)∈Υd(φ) ηϕ,k, for all d ∈ [0 .. dmax], where dmax is the maximum

depth of φ, and Υ dφ = {(ϕ, k) ∣ depthφ(ϕ) = d, (s,0) ⊧ φ ⇒ (s, k) ⊧ ϕ,∀s} is the
set of all pairs of subformulae ϕ of depth d and time points k required for
satisfaction of formula φ.

Hierarchical Optimization (HO) In this approach, we define the multi-
objective function RHO = (γφ,0, γφ,1, . . . , γφ,dmax), and require optimization of
the objectives in order [30], also known as lexicographical optimization [13].
This leads to the hierarchical MILP problem

max
s,u,ξ,η

RHO (optimized in order) s.t. (4), (8), (9), (10). (11)

Lowest Depth First (LDF) We convert the multi-objective function RHO
into a scalar function RLDF using a method similar to the big-M trick. The
objective is

RLDF = ∑
(ϕ,k)

ηϕ,kP
−depthφ(ϕ) =

dmax

∑
d=0

γφ,dP
−d,

that leads to the MILP problem

max
s,u,ξ,η

RLDF s.t. (4), (8), (9), (10), (12)

where P is a large constant, greater than ∥φ∥ ⋅ ∣φ∣, and ∣φ∣ is the length of φ, i.e.,
the number of Boolean and temporal operators and predicates.

Weighted Largest Number (WLN) In this approach, we relax the strict
requirement of finding lowest depth formulae, and instead maximize the satisfac-
tion fraction of φ. Taking RWLN = ξφ,0 is a sensible choice, because subformulae
are still weighted according to their depth due to the recursive constraints (8).
Consequently, we obtain the MILP

max
s,u,ξ

RWLN s.t. (4), (8), (13)

that does not require the additional binary variables ηϕ,k and associated con-
straints.
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Remark 2. It is important to note that HO (11) approach can be solved directly
using Gurobi [13]. However, any MILP solver can be used via iterative meth-
ods [30]. Formulation (12) avoids defining multiple objectives, but can lead to
numerical issues and slower convergence for large depth formulae due to the
exponentially decreasing weights. Finally, WLN (13) leads to better runtime
performance at the expense of minimal depth of satisfied subformulae.

4.3 Partial Satisfaction Robustness LP

In this section, we propose to approximate the robust solution of Problem 1 using
an LP based on solutions to one of the MILPs from Sec. 4.2. Let {ξϕ,k}ϕ⊑φ,k∈[0..∥φ∥
be the set of decision variables for satisfaction fractions obtained from solv-
ing (11), (12), or (13). The following LP,

max
s,u

ρ s.t. (4), ρ ≤ si(k) − µ,∀µ with ξµ,k = 1 (14)

computes the signal s and control u that maximize the robustness of all pred-
icates µ at all times k that are satisfied in the reference solution encoded by
ξϕ,k.

4.4 Analysis

First, show that all three MILP formulations find trajectories satisfying φ if
they exist. Let φ be an STL formula, and {ξϕ,k}ϕ⊑φ,k∈[0..∥φ∥ generated by solv-
ing (11), (12), or (13).

Theorem 2. There exists a control u that generates trajectory s according to (4)
that satisfies φ if and only if ξφ,0 = 1.

Proof (Sketch). First, if ξφ,0 = 1, it follows by structural induction that all re-
quired subformulae, including φ, are satisfied by the computed trajectory s.
Conversely, if there exists s that satisfies φ, then it follows that s satisfies all
required subformulae. Thus, the satisfaction fractions ξϕ,k must be 1, including
ξφ,0.

Let s∗ and {ηϕ,k}ϕ⊑φ,k∈[0..∥φ∥ be the optimal solutions of (11) or (12). The
following intermediate result is given without proof due to brevity.

Proposition 1. If ηϕ,k = 1, then (ϕ, k) ∈ Fφ(s∗).

Next, we show that (11) and (12) satisfy the PS requirement of lowest-depth
formulae.

Theorem 3. There exists no signal s such that s∗ ≺φ s.

Proof (Sketch). The proof follows from Prop. 1, which states that the ηϕ,k cor-
rectly encode lowest-depth subformulae, and the objectives RHO and RLDF . For
HO, the optimization considers solutions that maximize the number of formulae
of lower-depth first by construction. For LDF, it is easy to show that any solu-
tion that satisfies a lower-depth formula leads to a larger objective value than
any other solution with any number of higher-depth satisfied subformulae.
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We give the result on the correctness of LP without proof.

Theorem 4. The solution of LP (14) has maximum PS robustness %(s, φ) over
all trajectories that satisfy the same set of subformulae (ϕ, k) as s∗.

Note that an optimal solution to Problem 3 might satisfy other subformulae
than s∗ even if both achieve the same number at each depth. As such, the LP (14)
may lead to suboptimal solutions.

5 Case Studies

We describe two different study cases that show how PS works and its perfor-
mance over the three encodings. First, we consider a multi-robot motion planning
problem in a planar, continuous environment. Second, we show routing for het-
erogeneous teams of robots with sets of capabilities over graphs that represent
discrete finite abstractions. More details can be found in [17]. All computation
was performed on a PC with 20 cores at 3.7GHz with 64 GB of RAM. We
used Gurobi [13] as MILP solver, which ensures that as long as the encoding is
correctly defined, corner cases such as fully satisfiable and non-satisfiable speci-
fications are cover

5.1 Continuous Space Multi-robot Planning

Let us consider first a single robot navigating in a planar environment M ⊂ R2.
Thus, s(k) = [sx, sy]⊺ ∈ R2. We define regions of interest A = [−9.5,−5.5]2,
B = [5.5,9.5] × [−9.5,−5.5], C = [5.5,9.5]2, D = [−9.5,−5.5] × [5.5,9.5] in M,
and region E = [−2.5,2.5]2 ⊆M that robot s(k) needs to avoid. We arbitrarily
choose A = B = I2×2, and D = 02×2 in (4). Throughout this case study, we consider
methods discussed in Sec. 4. All three methods HO, LDF, and WLN, are able to
find trajectories that satisfy the given specification when they exist. For example,
consider the following STL formula φFS = ((◻[0,3]A)∧(◊[7,14]B)∧(◻[15,20]D)∧(∼
◻[0,20]E)). In plain English, it required that “within time interval [0,3] stay at
region A, eventually within [0,14] visit B, stay at D within [15,20] and always
avoid region E”. In Fig. 2 red lines show the solution for this specification using
the three methods. All of three solution trajectories start at the blue star in A,
then they visit B and end at D, where squares denote the final position of the
robot.

Next, consider the STL formula φPS = (◻[0,3]A)∧(◻[10,21]B)∧(◻[10,21]D)∧(∼
◻[0,20]E) that can not be fully satisfied due to the competing subformulae that
require staying at B and D in the same time interval [10,21]. The solutions
trajectories are shown in Fig. 2 with blue lines. Methods HO and LDF par-
tially satisfy the specification by choosing to visit region D, and, thus, satisfying
the lowest-depth subformulae of φPS . In contrast, WLN splits the satisfaction
between the predicates defining the two regions B and D. In other words, the
specification requires either (sx ≥ 5.5) ∧ (sx ≤ 9.5) ∧ (sy ≥ −9.5) ∧ (sy ≤ −5.5)
or (sx ≥ −9.5) ∧ (sx ≤ −5.5) ∧ (sy ≥ 5.5) ∧ (sy ≤ 9.5) to hold, and WLN is sat-
isfying half from the former, (sx ≥ −9.5) ∧ (sx ≤ −5.5), and half of the latter,
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Fig. 2: State space and timeline in x-position and y-position of φFS in red and
φPS in blue using HO, LDF, and WLN encoding methods.

(sy ≥ −9.5) ∧ (sy ≤ −5.5), in the time window [10,21]. The WLN trajectory
satisfies the same maximum satisfaction fraction as HO and LDF, but does not
fully satisfy any of the two tasks. However, the case was hand-crafted to show
that WLN does not always return the optimal solution. In particular, we made
the tasks symmetric. If the time intervals for visiting B and D are different, then
the weight of their associated predicates differs and leads to a preference for one
of the two regions.

In a multi-robot setting, unsatisfiability can result due to robot dropout as
opposed to competing tasks. For instance, in Fig. 3 we consider two scenarios
satisfying the following specification φmr = ((◻[15,30]s1 ∈ C) ∧ (◻[15,30]s2 ∈ D) ∧
(◻[15,30]s3 ∈ C) ∧ (◻[15,30]s4 ∈ B) ∧ (◻[15,30]s5 ∈ C) ∧ (◻[15,30]s6 ∈ C)) with six
robots. First, we solve the problem with HO approach shown in Fig. 3 with
dashed lines. Then, we consider the same specification, but we make robot s1
remain stuck in region E . Even though it is just one agent specification φmr is
only partially satisfied. The PS solution computed using LDF is shown in solid
lines.

Fig. 3: State space and timeline in x-position and y-position of φmr fully satisfied
with HO approach in dashed lines. Then, solution using LDF for robot one
getting stuck in solid.
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Finally, we compare the runtime performance between methods HO, LDF,
and WLN by increasing the number of robots from one to six. In Fig. 4, we
see that when there are one or two robots, LDF and WLN are faster than HO.
Nevertheless, when the number of robots increases, so does the depth in the
specification, and LDF becomes the worst performing method. The specification
we used for this comparison is φn = ⋀nj=1(⋀3

`=1(◻I`,j(sn ∈ X`,j))), with n ∈ [1 .. 6]
the number of robots, X`,j any arbitrary region in {A,B,C,D,E}, and I`,j arbi-
trary time interval, respectively. It is also relevant to highlight that even when
WLN is the fastest, it can drive to undesired PS if the specification contains
symmetric competing subformulae.

Fig. 4: Runtime performance comparison between HO, LDF, and WLN varying
the number of robots from one to six, satisfying specification φn.

5.2 Route Planning with Capability Temporal Logic (CaTL)

We consider the precision agriculture application shown in Fig. 5. The en-
vironment is abstracted as a set of states Q = {q1, q2, ..., q9} corresponding
to regions of interest. Edges E , shown as black lines, between states repre-
sent feasibility of transition between regions with positive integer durations W.
Self-loops (not shown) capture staying at states and have duration 1. States
are labeled with atomic propositions from a set AP . Agents have capabilities
Cap = {V is, IR,UV,Mo}. The capability set of an agent determines its class.
Fig. 5 shows the initial states of each agent and their class.

We use CaTL, a fragment of STL, to specify the mission for the multi-robot
team. The core units of CaTL are tasks T = (d, π, cp) defined by a duration d, a
label π of regions where it takes place, and the required capabilities cp. The map
cp ∶ Cap → Z≥0 indicates the minimum number of agents with each capability;
zero means that capability is not needed. Tasks are combined using Boolean and
temporal operators the same as STL (excluding negation). We use the encoding
of team dynamics in [17], where robots are bundled together based on class.
Thus, the team state is the number of robots of each class at each state of the
environment. The team dynamics are encoded as flows on the environment graph
which gives rise to a time-delayed linear system (slightly more involved than (4)).
The MILP constraints and further details can be found in [17]. Consider tasks
T1 = (3, q2, (c2,3)), T2 = (3, q4, (c1,4)), T3 = (6, q9, (c3,3)), T4 = (5, q1, (c4,4)),
T5 = (3, q6, (c2,1), (c4,1)), and T6 = (2, q8, (c4,4)), and three CaTL specifications
φ1, φ2 = ⋀i ◻[0,20]Ti, with i ∈ {1,3,5} and i ∈ {2,4,6} respectively, and φ3 =
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Fig. 5: Schematic of the precision agriculture problem. Regions correspond to
crop types. Symbols represent robots with their associated capabilities. Capa-
bilities include ultraviolet sensing (UV), moisture sensing (Mo), infrared sensing
(IR), and vision (Vis). Black lines denote transition system between regions.

⋀6
i=1 ◊[0,20]Ti. Partial satisfaction of φ` can arise due to lack of robots with

required capabilities, transition system constraints, and competing subformulae.
The following table shows the performance of the three methods for the three
specifications.

Table 1: Comparison on time performance and satisfaction percentage of speci-
fications φ1, φ2, and φ3 by methods HO, LDF, WLN, and baseline CaTL [22].

spec
HO LDF WLN CaTL

Satisfaction t(s) Satisfaction t(s) Satisfaction t(s) ρ t(s)
φ1 0.929 1.884 0.943 1.732 0.972 1.498 -6 2.075
φ2 0.982 1.617 0.990 1.859 0.991 1.635 -4 2.341
φ3 1 1.773 1 2.009 1 1.940 1 2.32

Remark 3. For the baseline CaTL encoding [22], negative robustness indicates
that φ1 and φ2 are violated. However, it does not indicate specification violation
percentage, i.e., which and how many subformulae are satisfied.

Table 1 shows that all of the partial satisfaction approaches outperform the
baseline encoding for CaTL [22]. Due to partial satisfaction, transform the spec-
ification’s robustness as a linear problem approach of all predicates and time
instances known to be satisfiable. We avoid adding binary variables for disjunc-
tions and eventually operators since the inner optimization level indicates what
needs to be satisfied. Furthermore, for small problems, WLN is faster than other
two. However, as the number of variables of the problem increases, the HO
method using Gurobi becomes faster and suitable to use.
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6 Conclusions

In this paper, we introduced the partial satisfaction problem for STL specifica-
tions that requires the satisfaction of as many large formulae as possible. We for-
malize the partial satisfaction synthesis problem as a bi-level optimization that
maximizes the robustness of lowest-depth formulae. We propose three MILP-
based methods to solve the inner level of the optimization that find trajectories
satisfying the maximum number of subformulae with preference to lower-depth
ones. We used their solutions in a LP formulation that also maximizes the sub-
formulae’ robustness as an approximation for the solution to the outer level of
the robust PS problem. We show the performance of the proposed methods in
two multi-robot case studies involving motion planning in continuous spaces and
routing over finite abstractions.
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