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Abstract—Many existing approaches for coordinating heteroge-
neous teams of robots either consider small numbers of agents, are
application-specific, or do not adequately address common real-
world requirements, e.g., strict deadlines or intertask dependen-
cies. We introduce scalable and robust algorithms for task-based
coordination from high-level specifications (ScRATCHeS) to coor-
dinate such teams. We define a specification language, capability
temporal logic, to describe rich, temporal properties involving
tasks requiring the participation of multiple agents with multi-
ple capabilities, e.g., sensors or end effectors. Arbitrary missions
and team dynamics are jointly encoded as constraints in a mixed
integer linear program, and solved efficiently using commercial
off-the-shelf solvers. ScRATCHeS optionally allows optimization
for maximal robustness to agent attrition at the penalty of increased
computation time. We include an online replanning algorithm that
adjusts the plan after an agent has dropped out. The flexible
specification language, fast solution time, and optional robustness
of ScRATCHeS provide a first step toward a multipurpose on-the-
fly planning tool for tasking large teams of agents with multiple
capabilities enacting missions with multiple tasks. We present
randomized computational experiments to characterize scalability
and hardware demonstrations to illustrate the applicability of our
methods.

Index Terms—Formal methods, multiagent systems, planning,
robotics.

I. INTRODUCTION

ONE of the main challenges of multiagent systems is the
deployment of teams of heterogeneous agents that must
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work together to complete a task that can be performed by neither
a single agent nor a team of homogeneous agents. An example
is coordination between airborne robots with downward-facing
visual and infrared cameras and ground robots with manipu-
lators capable of moving rubble to find survivors in an urban
environment after a natural disaster. The problems of plan-
ning and coordination for these kinds of teams can be very
complex, as heterogeneity prohibits the arbitrary exchange of
one agent for another. This makes it challenging to develop
scalable algorithms for these teams, as more distinct possibilities
must be searched when generating a team plan. If agents are
not interchangeable, then it is difficult to develop algorithms
for robust “self-reorganizing” teams that can account for agent
failure.

Most work in general planning and coordination algorithms
for multiagent systems has assumed homogeneity of agent ca-
pabilities in order to avoid these complications [1], [2]. Typ-
ically, planning and coordination algorithms for teams with
heterogeneous agents are ad hoc solutions that are heavily
dependent on domain expertise, and are specialized to a single
family of capabilities/platforms and a single, unique mission [3],
[4], or do not consider temporal deployment requirements
[5], [6].

In this work, we propose a framework called scalable and
robust algorithms for task-based coordination from high-level
specifications (ScRATCHeS) in which a human supervisor can
task a team of heterogeneous agents on the fly by specifying a
high-level mission, illustrated in Fig. 1. Specifically, we consider
the problem of coordinating a large team of heterogeneous
agents from a global high-level specification. The agents’ capa-
bilities, e.g., sensors or end effectors, are known a priori, and the
agents work in a known shared environment that is partitioned
into regions. Each region is labeled with the tasks that may be
completed in that region. A task description consists of the labels
of the regions where the task must be performed, the required
number of agents with each type of capability that are required to
perform the task, and the amount of time required for the agents
to complete the task. From these tasks, an operator uses our
specification language, called capability temporal logic (CaTL)
to generate a specification that gives absolute or relative timing
of task completion, repetition frequencies, and task interdepen-
dencies such as sequencing or synchronization. Our algorithm
then encodes the dynamics of the agents moving throughout
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Fig. 1. Schematic overview of ScRATCHeS.

the environment, the specification, and the selected measure of
robustness into a mixed integer linear program (MILP). The
resulting plan from the MILP is handed to a motion planner to
generate a collision-free motion plan for the team. Our frame-
work can be applied to arbitrary distributions of capabilities
among agents and to arbitrary missions expressed in CaTL.
ScRATCHeS removes the need to design custom high-level
planners for every new possible combination of robot platforms
that can work in a team and allows a supervisor flexibility to
accomplish new missions with the team of robots they have
available.

We use tools from formal methods to develop planning and
coordination algorithms that are scalable with the number of
agents and robust to agent attrition or performance. We achieve
scalability by defining and solving an MILP that is equivalent to
the defined planning and coordination problem. Advances in so-
lution techniques and heuristics make it possible to solve MILPs
with hundreds of thousands of variables and constraints with
limited computation resources [7]–[9]. We achieve robustness
by defining and directly optimizing a measure of robustness to
attrition that can be computed by mixed integer linear constraints
derived from the temporal logic specifications. This approach is
complete (at the level of a discrete-time abstraction, up to the
precision of the numerical solver), meaning that if a solution
exists, it will be found. Furthermore, modern MILP solvers can
determine infeasibility very quickly [10]. In our experiments
infeasibility was typically detected in under one second.

The main contribution of this work is an end-to-end
framework for deploying a team of robots that 1) includes
heterogeneous agents; 2) has strict timing requirements (i.e.,
concrete time); 3) is agent agnostic in that it specifies the
capability that is required for completing tasks, but not which
specific robot should accomplish the task; 4) is robust to agent
attrition. The combined ability to reason about strict timing
requirements, the number of agents, and the robustness of our
solution come from the use of CaTL, a fragment of signal
temporal logic (STL). Additionally, we provide extensions to
our algorithm that address practical implementation concerns,
namely: 1) regularizing travel time to avoid spurious motion;
2) an upper bound on our objective function to improve the
speed of the optimization; 3) online replanning in the event of
agent attrition. A preliminary version of this work appeared
at the 2019 International Symposium of Robotics Research
([11]). The preliminary work introduced the CaTL specification
language, an initial framework for deploying a team of robots
from symbolic level specifications to low-level motion plans,

and a robustness measure that can be used to optimize a plan’s
tolerance to agent attrition. This article expands upon that work
by providing the following:

1) an on-line replanning algorithm in response to agent
dropout;

2) an upper bound on robustness measure to speed up the
MILP optimization;

3) a method for minimizing overall agent travel time;
4) updated randomized computational experiments and hard-

ware demonstration;
5) expanded proofs;
6) additional information on the motion planning algorithms

used.
The rest of the article is organized as follows. We give a

short review of related literature in Section II. In Section III,
we introduce a running example that illustrates the kinds of
problems addressed in this article, and we introduce the models
and definitions that are used throughout the article. We introduce
our specification language in Section IV, and formulate our
problem in Section V. Next, we describe our planning solution
framework in Section VI. Finally, we present computational
experiments and a hardware demonstration in Sections VIII
and IX, respectively. Proofs of propositions and descriptions
of motion planning algorithms are found in the appendix.

II. LITERATURE REVIEW

In our approach, we formulate tasks as high-level specifica-
tions using temporal logic (TL) formulas. Temporal logics, such
as linear temporal logic (LTL), have seen success as specification
languages for single agents systems [12], [13] and, increasingly,
for multiagent systems [14]–[17], including for heterogeneous
teams of agents [18].

Much of the work on planning from high-level specifications
uses automata to model these specifications. While automata
provide a useful framework for reasoning about specifications,
they can lead to issues of computational complexity and scala-
bility. In [19], [20], the authors use automata-based methods to
determine independent subspecifications that can be assigned to
individual agents, whose interleaved behavior is guaranteed to
satisfy the global specification. Similarly, [18] uses an automa-
ton representation of a specification to decompose tasks into
“essential sequences” to reason about, allocate, and plan for
tasks. Because we consider specifications with both counting
and strict timing requirements, in our case the scalability of
automata-based approaches limits their utility. We avoid the
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computational complexity of automata-based methods by de-
scribing the joint state of the team as a vector of counts of agents
with each capability in each region at a given time rather than as a
product of automata. Sampling-based techniques show promise
over the complexity of automata-based methods. In [21], [22],
the authors use sampling to construct abstractions on-the-fly for
large scale multiagent planning. While these methods incorpo-
rate heterogeneous teams, they are based upon LTL. LTL reasons
over untimed sequences, so abstract timing requirements can be
expressed (e.g., “perform task A before task B”), while concrete
timing requirements cannot be expressed (e.g., “perform task
A within 5 minutes of task B”). Further, implementing agent
counting in LTL is also nontrivial, and cannot be easily included
in the cost function of the sampling method used by the authors.
In this work, we reason explicitly over counts of agents and
concrete timing.

We use an MILP to encode the mission constraints and plan-
ning problem in order to mitigate the computational complexity
associated with other multiagent planning approaches. This
allows us to include counting and strict timing requirements in
our framework. Such approaches have been used to solve similar
planning problems. For example, [23] uses an MILP to solve
the vehicle routing problem with abstract timing requirements.
Likewise, the authors of [24] demonstrate an efficient MILP
encoding for large teams of homogeneous agents. In contrast to
these works, we use concrete timing requirements and consider
heterogeneous teams.

The most closely related works to ours are [25], [26]. The
authors propose a method for encoding a planning problem for
large heterogeneous teams, including counting requirements, as
an MILP. They adapt a logic called censusSTL [27], which
was designed for inference over teams of agents, into a new
logic called counting linear temporal logic (cLTL+). cLTL+ can
specify the number of required capabilities for a team of agents
to accomplish its task. Their solution is optimized for tolerance
to asynchrony among the agents, so that it is robust to the late or
early arrival of agents, as well as the number of agents that drop
out. In this work, we define capability temporal logic (CaTL),
a fragment of signal temporal logic (STL) [28]. Like cLTL+,
CaTL can specify the number of required capabilities for a task,
and can be optimized for robustness to attrition. Unlike cLTL+,
we present a method that allows us to present concrete timing
requirements on when agents should accomplish a task (e.g.,
“perform this task within 5 minutes”).

III. MODELS

In this section, we define models for the kinds of teams
we want to coordinate. We are motivated by the following
hypothetical example from precision agriculture.

Example 1: Consider a large farm that grows diverse crops in
spatially separated locations as illustrated in Fig. 2. Each colored
region corresponds to a different type of crop, with the exception
of the red regions that correspond to areas which the robots can-
not traverse, e.g., areas where heavy equipment are in operation
or where the terrain is too rough for the robots to traverse. To aid
in monitoring these crops, a fleet of ground based robots with

Fig. 2. (a) Schematic of the precision agriculture motion coordination prob-
lem. Colors of regions correspond to obstacles (red) or crop types (other colors).
Discs are robots with their associated capabilities listed. The set of capabilities
includes ultraviolet sensing (UV), moisture sensing (Mo), infrared sensing (IR),
and vision (Vis). The team of robots is used for crop monitoring tasks, such
as “Within 3 hours of deployment, two visual and two IR sensors must remain
within each green crop region at the same time for at least 1 h.” (b) Associated
environment.

different sensing modalities has been deployed to keep track
of plant health. The fleet as a whole has ultraviolet (UV), soil
moisture (Mo), infrared (IR) and visual (Vis) sensors. Every
robot in the fleet has at most two sensors and the assignment of
sensors to robot is fixed a priori. Each of the crops in the field
has distinct monitoring requirements. The tasks that the team
of robots must perform during a 24 h deployment are listed in
Table I.

A. Environment

Definition 1: The Environment is given by a tuple Env =
(Q,E,W,AP,L) where:

1) Q is a finite set of states that correspond to regions of a
workspace;

2) E ⊆ Q×Q is a set of edges such that (q, q′) ∈ E iff an
agent in the environment can traverse from the region
associated with q to the region associated with q′ without
passing through any other region;
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TABLE I
LIST OF PRECISION AGRICULTURE TASKS

3) W : E → R is an edge weight such that W (q, q′) is the
maximum amount of time required for an agent to traverse
q before entering q′;

4) AP is a set of atomic propositions that define what types
of tasks may be performed in the environment;

5) L : Q→ 2AP is a mapping that labels each state in the
environment according to which tasks may be performed
in that region.

When constructing an environment from a partitioned
workspace, forbidden regions are omitted fromQ and transitions
to/from those regions are omitted from E. We note that the
choice of edge weight W as the worst-case travel time for an
agent is conservative. This conservative formulation ensures that
agents can plan to avoid collisions and react to noise and other
disturbances without causing the plan to fail. For simplicity,
we assume such times are given a priori, but less conservative
bounds could be achieved through sampling trajectories from
a motion planner that takes the agents’ dynamics into account.
We assume that agents are small relative to the regions in their
environment, to avoid the need for limiting the number of agents
in a region or edge at the same time, which might cause agents to
interfere with each others’ travel times. Additional constraints
on the number of agents in a region or edge at any given time
can easily be added to our MILP encodings to avoid such issues
in dense environments.

Example 1 (Continued): The set of crops shown in Fig. 2(a)
leads to the environment model shown in Fig. 2(b). This envi-
ronment has eight regions {q1, . . . q8}. An edge exists between
regions if the two regions share a facet, i.e., if they are connected
geographically. The weight between regions corresponds to the
transit time required to travel from the point farthest away from
the shared facet to the shared facet. The set of propositions
{πgreen, πblue, πorange . . .} in the model corresponds to the types
of regions (colored crops/obstacles) and the labeling function
applies the labels to the appropriate regions.

B. Agents

Let Cap be a finite set of capabilities that an agent can have
and let J be a finite index set representing all agents.

Definition 2: An Agent j ∈ J is given by a tuple Aj =
(q0,j , Capj) where q0,j ∈ Q is the initial location of the agent
in the shared environment and Capj ⊆ Cap is a finite set of
capabilities.

Example 1 (Continued): The set of capabilities is given by
Cap = {V is, UV, IR,Mo}. AgentA1 located in the upper left
hand corner of Fig. 2 is described by A1 = (q1, {UV,Mo})

Definition 3: An input signal for an agent j is a mapping
uj : R→ E ∪ {∅}where uj(t) = e indicates that agent j starts
traversing edge e at time t. Each input signal has the properties
uj(t) = e where e = (q, q′) ⇒ Aj is in state q at time t and
uj(t) = e⇒ uj(τ) = ∅, ∀τ ∈ (t, t+W (e)). The input signal
uj induces a piece-wise constant trajectory of agentAj , denoted
sj : R→ Q ∪ E, such that sj(0) = q0,j and uj(t) = (q, q′)⇒
sj(τ) = (q, q′), ∀τ ∈ (t, t+W (e)) ∧ sj(t+W (e)) = q′.

Definition 4: Given a team of agents {Aj}j∈J , letG ⊆ 2Cap

be the set of unique combinations of capabilities present in
the collection {Capj}j∈J . The team trajectory is a mapping
from each time t to the team state sJ(t) = [nQ,G(t), nE,G(t)] ∈
Z|G|×(|Q|+|E|)≥0 . The matrix nQ,G = [nq,g(t)]q∈Q,g∈G ∈ ZG×|Q|

≥0
is defined such that

nq,g(t) =
∑
j∈J

I(sj(t) = q)I(Capj = g) (1)

where I is the indicator function. That is, nq,g is the number of
agents with capability set g in state q. The matrix nE,G(t) =

[ne,g]e∈E,g∈G ∈ ZG×|E|
≥0 is defined such that

ne,g(t) =
∑
j∈J

I(sj(t) = e)I(Capj = g) (2)

i.e., ne,g is the number of agents with capability set g that are
traversing edge e.

That is, the team trajectory corresponds to how many agents
with each type of capability are present in each region and
traversing along each edge at each time.

IV. CAPABILITY TEMPORAL LOGIC

Here, we define the syntax and semantics of CaTL, a specifi-
cation language for teams of heterogeneous agents. The atomic
unit of a CaTL formula is a task. Note that CaTL differs from
full STL [28] in that the core unit is a task rather than an arbitrary
predicate.

Definition 5: A counting proposition cpi = (ci,mi) ∈
Cap×N is true if at least mi agents with capability ci are
present and false otherwise [26].

Definition 6: A task is a tuple T = (d, π, {cpi}i∈IT ) where
d ∈ R is a duration of time, π ∈ AP is an atomic proposition,
each cpi ∈ Cap×N is a counting proposition corresponding
to how many agents with each capability should be in each
region labeledπ, and IT is the index set of counting propositions
associated with task T .

In plain English, a task T = (d, π, {(ci,mi)}i∈IT ) is satisfied
if for d time units, each of the regions labeled as π contains at
least mi agents with capability ci for all {ci}i∈IT .
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Definition 7: The syntax of CaTL is given in the Backus–Naur
form [29] as

φ := T |φ1 ∧ φ2|φ1 ∨ φ2|φ1U[a,b)φ|♦[a,b)φ|�[a,b)φ (3)

where φ is a CaTL formula, T is a task, ∧ is conjunction, ∨ is
disjunction, U[a,b) is time-bounded until,♦[a,b) is time-bounded
eventually, �[a,b) is time-bounded always, and a, b ∈ R.

Definition 8: The qualitative semantics of CaTL are defined
over pairs (sJ , t) where t is a time index. The semantics are
defined recursively as

(sJ , t) |= T ⇔ ∀τ ∈ [t, t+ d), ∀q ∈ L−1(π)
∀{cpi = (ci,mi)}i ∈ IT∑
g:ci∈g

nq,g(τ) ≥ mi

(sJ , t) |= φ1 ∧ φ2 ⇔ (sJ , t) |= φ1 and (sJ , t) |= φ2
(sJ , t) |= φ1 ∨ φ2 ⇔ (sJ , t) |= φ1 or (sJ , t) |= φ2
(sJ , t) |= φ1U[a,b)φ2 ⇔ ∃t′ ∈ [t+ a, t+ b)(s, t′) |= φ2

and ∀t′′ ∈ [t, t′)s(t′′) |= φ1
(sJ , t) |= ♦[a,b)φ ⇔ ∃t′ ∈ [t+ a, t+ b)(s, t′) |= φ
(sJ , t) |= �[a,b)φ ⇔ ∀t′ ∈ [t+ a, t+ b)(s, t′) |= φ.

(4)

A team trajectory satisfies a CaTL formulaφ, denotedsJ |= φ,
if (sJ , 0) |= φ.

Example 1 (Continued): Each of the tasks from Table I may
be expressed in CaTL as follows:

1) ψ2 = ♦[0,10)(0.5, πgreen, {(IR, 2), (V is, 2)});
2) ψ3 = �[10,20)♦[0,5)(0.5, πblue, {(Mo, 1)});
3) ψ4 = ♦[4,12)(1, πyellow, {(UV, 2), (V is, 2)});
4) ψ5 = ♦[1,9)(1, πorange, {(V is, 2)}) ∧
♦[10,15)(2, πorange, {(V is, 2)}).

Note that Task 1 is accomplished by omitting the red regions
and transitions from our construction of Env.

Our definition of CaTL is designed to take advantage of the
quantitative semantics (i.e., robustness degree) of STL [30].
Because our predicates encode the counting propositions for
each task, our robustness naturally expresses how well we are
meeting the requirements of each task in our formula. Since
CaTL is a proper fragment of STL by Proposition 1, we can use
the existing tools from STL to track the availability of agents.

Proposition 1: CaTL is a proper fragment of STL.
Proof: See Appendix A-A.
To formalize the notion of robustness for CaTL, we define

availability robustness, which measures the minimum number
of agents JR that can be removed from (added to) a given team
in order to invalidate (satisfy) the given measure. Optimizing
this quantity results in a plan that is robust to agent attrition.
Formally, we have the following.

Definition 9: The availability robustness ρ of a trajectory is
defined

ρ(sJ , t, φ) ={
min |JR| s.t. (sJ\JR

, t) �|= φ ρ(sJ , t, φ) ≥ 0
−min |JR| s.t. sJ∪JR

, t) |= φ ρ(sJ , t, φ) < 0
.

(5)

The availability robustness for a given team trajectory sJ and
formulaφ can be computed recursively using a set of quantitative
semantics.

Definition 10 (Quantitative semantics (availability robust-
ness)): The availability robustness of a formula is computed
recursively according to the following rules:

ρ(sJ , t, T ) = min
i∈IT

min
t′∈[t,t+d)

min
q∈L−1(π)∑

g:ci∈g
nq,g(t

′)−mi

ρ(sJ , t, φ1 ∧ φ2) = min(ρ(sJ , t, φ1), ρ(sJ , t, φ2))
ρ(sJ , t, φ1 ∨ φ2) = max(ρ(sJ , t, φ1), ρ(sJ , t, φ2))
ρ(sJ , t, φ1U[a,b)φ2) = max

t′∈[t+a,t+b)
min{ρ(sJ , t,′ φ2)

min
t′′∈[t,t′)

ρ(sJ , t,
′′ φ1)}

ρ(sJ , t,♦[a,b)φ) = max
t′∈[t+a,t+b)

ρ(sJ , t,
′ φ)

ρ(sJ , t,�[a,b)φ) = min
t′∈[t+a,t+b)

ρ(sJ , t,
′ φ).

(6)

Proposition 2: Applying the recursive quantitative semantics
listed in Definition 10 yields ρ as defined in Definition 9. Proof
See Appendix A-B.

We note that in general for STL the recursive quantitative
semantics are an estimate of the actual robustness (defined as the
signed distance between a signal and the language of a formula;
[31, Th. 13]). For CaTL, Proposition 2 states that these two
Definitions 9 and 10 are equivalent. In other words, the robust-
ness as computed via Definition 10 is an exact computation of
availability robustness, which is not true for STL in general.

V. PROBLEM FORMULATION AND APPROACH

Here, we formalize the problem considered in this article. A
list of the symbols used in the problem formulation is provided
in Table II.

Problem 1 (Maximize availability): Given a team of
agents {Aj}j∈J operating in a shared environment Env =
(Q,E,W,AP,L) and a CaTL specification φ, find a set of input
signals {uj}j∈J such that ρ(sJ , 0, φ) is maximized.

Problem 1 corresponds to finding a plan for the team of agents
that tolerates the largest number of agents that drop out. This
problem formulation is useful in situations where agent attrition
is likely, or in which an agent’s ability to complete its part of a
task is uncertain.

We solve Problem 1 by formulating and solving an equivalent
MILP. Tools from the multivehicle routing problem can be used
to translate the environment model to a discrete-time linear
system. The qualitative semantics of STL (and thus, CaTL) can
be encoded as mixed integer linear constraints on trajectories of
this linear system. In the next section we provide mixed integer
linear formulations for the availability robustnesses as well as
for the environment models. Formulating Problem 1 as an MILP
allows us to use commercial off-the-shelf optimization software
with optimized heuristics and solvers to find solutions faster
than we could by using standard automata-theoretic graph search
techniques.

In addition to preplanning to be robust to attrition, we would
like to be able to replan on-line when agents drop out. That is,
for cases in which the robustness of a plan with the surviving
agents is negative, reallocation of the remaining agents may
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TABLE II
TABLE OF SYMBOLS. THE TWO SECTIONS CORRESPOND TO PROBLEM

VARIABLES AND MILP VARIABLES, RESPECTIVELY. SYMBOLS ARE LISTED IN

ALPHABETICAL ORDER IN EACH SECTION

be able to generate a plan in which the robustness is nonneg-
ative, i.e., the mission will be satisfied. To this end, we define
Problem 2.

Problem 2 (On-line replanning): Given {Aj}j∈J , Env =
(Q,E,W,AP,L), φ, and a set of input signals {uj}j∈J . Let
{Aj}j∈J execute the plan until time tkatt at which point some set
of agents {Ap}p∈P such that |Ap| ≥ ρ(sJ , 0, φ) drop out. Find
a new set of signals {uj}j∈J\P such that beginning at time tkatt

the concatenated signal

s′J =

{
sJ(t) t < tkatt

sJ\P (t) t ≥ tkatt

(7)

satisfies φ.

VI. INTEGER LINEAR PROGRAMMING ENCODING

In this section, we formulate Problem 1 as an MILP. For
this purpose, we make the following assumption about the
environment.

Assumption 1: The edge weight functions (transition times)
are defined such that W (q, q′) = kδt, k ∈ N where δt is a time
step no larger than the minimum value of W . Further, uj(t) =
∅∀t �∈ {kδt}k∈N , i.e., transitions can only happen at a set of
discrete times. That is, the transition times can all be specified
by integers.

To enable MILP encodings under Assumption 1, we define
a mapping W : Q×Q→ N such that W (q, q′) =W(q, q′)δt
for q �= q′. To enable agents waiting at a state q, we define the
weights for “self-loops”W(q, q) = 1.

We denote the planning horizon for the team asK, represent-
ing the total number of time steps δt that we plan for our agents.
We note that the planning horizon K must be longer than the
horizon of our formula as defined in [28] in order to determine
satisfiability of the formula.

A. Team Dynamics

Let zq,g(k) := nq,g(kδt) be the number of agents with capa-
bility set g in the region associated with state q at time index
k. Define ue,g(k) as the number of agents with capability set
g entering e at time kδt. The initial positions of the agents are
encoded in the equality constraints

zq,g(0) =
∑
j∈J

I(q0,j = q)I(Capj = g)∀q ∈ Q, g ∈ G. (8)

We use node and edge balance equations

zq,g(k) =
∑

(q,′q)∈E
u(q,′q),g(k −W(q,′ q)) (9a)

∑
(q,q′)∈E

u(q,q′),g,(k) =
∑
(q,′q)

u(q,′q),g(k −W(q,′ q))

∀q ∈ Q, g ∈ G, k = 0, . . . ,K (9b)

where ue,g(k) = 0 ∀e ∈ E, q ∈ Q, k < 0. These equations
together form a linear system with O((|Q|+ |E|)|G|Λ) di-
mensions where Λ := maxe∈EW(e). The inputs to the system
(ue,g(k)) as well as the states are all integer.

Proposition 3: Under Assumption 1, a team input signal
u = [uj ]j∈J and the induced team trajectory sJ conform to
Definitions 3–4 if and only if a set of variables

{zq,g(k)}q∈Q,g∈G,k=0,...K ∪ {ue,g(k)}e∈E,g∈G,k=0,...K

satisfy constraints (8), (9).
Proof: See Appendix A-C.

B. Task Satisfaction

Here, we give the encodings for the satisfaction of tasks as
functions of the variables {zq,g,k}q∈Q,g∈G,k=0,...,K defined in
Section VI-A above. Satisfaction of a task depends on counting
propositions being satisfied in the appropriate regions for the
appropriate amount of time. Therefore, we need variables that
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capture the following: 1) the counting propositions cpi being
satisfied in a given region q; 2) satisfaction of those counting
propositions in all regions q with the same label π; 3) satisfac-
tion for all counting propositions in IT ; 4) satisfaction for an
appropriate duration d. Thus, for a given region of a given task
T = (d, π, {cpi}i∈IT ), we define a variable zq,cpi

(k) ∈ {0, 1}
that we wish to be valued to 1 if at leastmi agents with capability
ci are in region q at time k. This variable captures the satisfaction
of cpi in region q at time k, using the constraints

−Mzq,cpi
(k) +

∑
{g|ci∈g}

zq,g(k) ≥ mi −M (10)

where M is a sufficiently large number, e.g., M ≥ 1 +
max{maxi{mi}, |J |}. Under a simple assumption of feasibility
of the CaTL formula, ∀i mi ≤ |J |, M can be taken larger than
1 + |J |.

Next, we must determine satisfaction across each region q that
is labeled π. We define integer variables zπ,cpi

(k) ∈ {0, 1} that
we wish to be valued 1 if at leastmi agents with capability ci are
in each region q ∈ L−1(π) at time k. This can be accomplished
with the set of constraints

zπ,cpi
(k) ≥

∑
q∈L−1(π)

zq,cpi
(k)− |L−1(π)|+ 1

zπ,cpi
(k) ≤ zq,cpi

(k)∀q ∈ L−1(π). (11)

Next, we define integer variables zπ,IT (k) ∈ {0, 1} that we
wish to be valued 1 if at least mi agents with capability ci are
in each region q ∈ L−1(π) ∀i ∈ IT . This can be accomplished
with the set of constraints

zπ,IT (k) ≥
∑
i∈IT

zπ,cpi
(k)− |IT |+ 1

zπ,IT (k) ≤ zπ,cpi
(k)∀i ∈ IT . (12)

Finally, we define integer variables zT (k) ∈ {0, 1} that we
wish to be valued 1 if the task will be completed at timek + d and
0 otherwise. This can be accomplished with the set of constraints

zT (k) ≥
k+d∑
�=k

zπ,IT (�)− d+ 1

zT (k) ≤ zπ,IT (�)∀� = k, . . . , k + d. (13)

C. Formula Satisfaction

The satisfaction of a CaTL formula φ can be converted to a set
of mixed integer linear constraints using encodings derived from
STL encodings as given in [32], [33], and summarized in [34].
These encodings consist of binary variables {zφ,k}k∈K such that
zφ,k = 1⇔ (sJ , kδt) |= T . CaTL formulae can be built from
applying recursive encodings to the constraints {zT,k} defined
in Section VI-B above.

D. Objective Function

Here, we present equivalent MILP encodings for the avail-
ability robustness.

1) Availability Robustness: The encodings recursively de-
fine intermediate variables rk,ϕ whose values are equivalent to
ρ(sJ , kδt, ϕ) where ϕ is a subformula of a given CaTL formula
φ. Whenϕ is nonatomic, the encodings for rk,ϕ are equivalent to
standard recursive encodings of STL [24], [33]. Note that these
encodings require the given formula to be in positive normal
form (PNF), i.e., contain no negations (¬).

Proposition 4: Every CaTL formula in PNF is equivalent to
an STL formula in PNF.

Proof: See Appendix A-D.
In what follows, we give the encodings at the atomic task level

T , i.e., rk,T . Following the conventions of [33], we replace (10)
with ∑

{g|ci∈g}
zq,g(k)−mi +M(1− zq,cpi

(k)) ≥ r0,φ (14a)

∑
{g|ci∈g}

zq,g(k)−mi −Mzq,cpi
(k) ≤ r0,φ

∀k = 0, . . . ,K ∀(cpi) appearing in φ. (14b)

As pointed out in [34], applying the recursive quantitative
semantics of any STL formula in PNF leads to compositions of
minimum and maximum operators applied to predicate values
over time. Thus, the value of ρ(sJ , 0, φ) must be equal to some
value of the margin of a predicate at a certain time, i.e., by
how much a function of the value of that signal exceeds (or
falls below) the constant bound of a predicate. In our case, this
corresponds to how many agents of a certain capability ci exceed
the required threshold mi (

∑
{g|ci∈g} −mi) or how many more

would need to be added to meet mi (mi −
∑
{g|ci∈g}).

E. Optimization

Finally, we present the optimization performed to solve
Problem 1

max
{ue,g(k)}

r0,φ

subject to
team dynamics (8), (9),

task satisfaction (11)–(13),
availability robustness (14).

(15)

This optimization can be solved using any existing solver and
software tool for MILPs.

VII. ALGORITHMIC EXTENSIONS

In this section, we expand our algorithm to address several
practical implementation concerns. We consider the following:
1) regularizing by travel time to avoid spurious motion; 2) an
upper bound on our objective function to improve the speed
of the optimization; 3) online replanning in the event of agent
attrition.

A. Total Travel Time Regularization

An optimal solution to Problem 1 does not explicitly consider
agent travel time. Therefore, agents may take unnecessarily long
paths to their goals, or may wander the environment when they
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are not required to accomplish a task. An operator may wish
to avoid these types of extraneous motion. In order to limit this
spurious travel, we propose to regularize the optimization by the
total travel time of the agents, defined as

τ =
K∑

k=0

∑
g∈G

∑
(q,q′)∈E,q �=q′

u(q,q′),g(k). (16)

Note that τ is linear in the decision variables. The scale of τ ,
however, may be much larger than the scale of r0,φ. In order to
prevent optimization of τ from overriding the optimization of
r0,φ, we introduce the relative weighting term

γ =
α

|J |K (17)

where α ∈ (0, 1).
In plain English, the following proposition states that mini-

mizing the weighted total travel time with weighting γ will never
come at the expense of maximizing robustness.

Proposition 5: Let f(u, z) = r0,φ(u, z)− γτ(u, z). If
r0,φ(u1, z1) > r0,φ(u2, z2), then f(u1, z1) > f(u2, z2).

Proof: See Appendix A-E
Proposition 6: Problem 1 is equivalent to solving the integer

linear program

max
{ue,g(k)}

r0,φ − γτ
subject to

(8)–(9), (11)–(13), (14),

(18)

Proof: This follows directly from Propositions 3, 4, Theorem
1 from [34], and Proposition 5.

B. Initial Upper Bound

In practical settings, it may be desirable to obtain solutions to
Problem 1 as quickly as possible. We consider an upper bound
to the availability robustness that is efficient to compute. This
allows the optimization software to consider a smaller set of
possible solutions, which greatly reduces computation times.

The upper bound is given in terms of capability excess (Def-
inition 11 below). Capability excess is similar to availability
robustness, in that it has a recursive formulation for determining
the excess number of agents for a formula. Unlike availability
robustness, capability excess can be computed without finding
a candidate solution for satisfying a CaTL specification.

We briefly explain the intuition behind capability excess here.
Consider a task T = (d, π, {(ci,mi)}i∈IT ) and a team of agents
{Aj}j∈J . If the system were totally unconstrained, then all of the
agents could service T simultaneously. Then the agents would
be spread evenly over the regions labeled π. The difference
between the number of agents in a region with capability ci
and the required number mi provides an estimate of how well
the team can satisfy the requirement on capability ci. By finding
the minimum across all capabilities ci for a task, we can estimate
an upper bound on robustness for that task. In Definition 11, the
first row defines the robustness of a task.

Starting with the capability excess for each task in a CaTL
formula, the capability excess is recursively computed. The

resulting capability excess for the entire formula is an upper
bound on the availability robustness of the MILP, as given in
Proposition 7 below.

Definition 11: The capability excess of a CaTL formula φ
with respect to set of agents {Aj}j∈J , denoted ce({Aj}j∈J , φ),
is given as

ce({Aj}j∈J , T ) = min
i∈IT
�
∑

j∈J I(ci∈gj)
|L−1(π)| � −mi

ce({Aj}j∈J , φ1 ∧ φ2) = min(ce({Aj}j∈J , φ1)
ce({Aj}j∈J , φ2))

ce({Aj}j∈Jφ1 ∨ φ2) = max(ce({Aj}j∈J , φ1)
ce({Aj}j∈J , φ2))

ce({Aj}j∈J , φ1U[a,b)φ2) = min(ce({Aj}j∈J , φ1)
ce({Aj}j∈J , φ2))

ce({Aj}j∈J ,♦[a,b)φ) = ce({Aj}j∈J , φ)
ce({Aj}j∈J ,�[a,b)φ) = ce({Aj}j∈J , φ).

(19)

Proposition 7: The capability excess ce({Aj}j∈J , φ) is an
upper bound for max

{u′e,g(k)}
r0,φ.

Proof: See Appendix A-F.
Capability excess is specific to CaTL, in that it is a seman-

tically meaningful measure of robustness. For STL in general,
bounds on robustness can be computed based on bounds on
signals, if they are available. For CaTL, we use the set of agents
to determine the upper bound, which is provided in terms of the
number of agents. Indeed, because the capability excess of a task
can be computed on a per-class basis, it is possible to compute
a vector of capability excess to bound the z variables in the
encoding that correspond to agent classes, task satisfaction, and
formula satisfaction, leading to additional computational gains.

C. Online Replanning

During deployment, agents may become disabled, and the
system needs to be able to replan accordingly. Here, we discuss
the case of how to replan in the event of agent attrition, although
a similar process could be used for agents deviating from their
nominal plan (i.e., being late or going off-course). To address
agent attrition, we consider replanning at time tatt using only a
subset of the original team {Aj}j∈J\P , where P is the set of
agents that attrit.

The satisfaction of CaTL constraints depends on trajectory
history, and therefore replanning from the middle of a deploy-
ment requires the history to be encoded in the constraints of
the problem as follows. Prior to tatt, the MILP variables are
fixed to be equal to the output of the original solution to the
MILP. This encodes the history of the agents up to time tatt. The
optimizer then finds the first feasible solution of the updated
system. The first feasible solution is taken due to the inherent
time constraints of online planning. Depending on the time scale
of the problem, the robust solution could be used if time permits
for the computation.

In this section, the ˆ (hat) symbol indicates variables and
constraints after replanning. We denote the discrete time index
corresponding to tatt as katt, i.e., tatt = δtkatt.
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Proposition 8: Let ae,g,katt be the number of agents of class g
that drop out along edge e ∈ E at time tatt. Problem 2 is equiv-
alent to solving the following mixed integer linear program:

max
{ûe,g(k)}

r0,φ − γτ

subject to

(11)–(13), (14) using {ẑq,g(k)}
(20a)

ûe,g(k) = ue,g(k), ∀e ∈ E, g ∈ G, k < katt (20b)

ûe,g(katt) = ue,g(katt)− ae,g,katt , ∀e ∈ E, g ∈ G (20c)

ẑq,g(k) = zq,g(k), ∀q ∈ Q, g ∈ G, k < katt (20d)

ẑq,g(k) =
∑

(q,′q)∈E
û(q,′q),g(k −W(q,′ q))

∀q ∈ Q, g ∈ G, k ≥ katt

(20e)∑
(q,q′)∈E

û(q,q′),g(k) =
∑
(q,′q)

û(q,′q),g(k −W(q,′ q))

∀q ∈ Q, g ∈ G, k ≥ katt.

(20f)

Proof: By diverting the a(q,q′),g,katt
agents at time katt (20c),

the updated edge and node balance equations enforce that the
agents that drop out are not counted toward the solution. Setting
the equality constraints for edge variables for times k < katt

enforces that what has happened before attrition is accurately
accounted in the optimization (20b), (20d). Because we have
set the values of the edge and node variables via equality
constraints, we do not need to check for motion consistency
before katt.

Remark 1: Because checking the satisfaction of a CaTL for-
mula is trace-dependent rather than state dependent, we need to
keep some state history in order to determine the best future set
of actions. The desire for overall computational efficiency, how-
ever, suggests performing an additional procedure to truncate
how far in the past the optimization should consider, and which
parts of the CaTL formula are currently relevant (i.e., which
part of the formula was not satisfied before attrition). Modern
presolve methods for mixed integer solvers eliminate redundant
constraints from the optimization [35]. In other words, these
presolve routines already in effect truncate the history, removing
motion constraints and the parts of CaTL satisfaction checking
that are made redundant by setting the equality constraints of
edge variables.

VIII. COMPUTATIONAL EXPERIMENTS

In this section, we characterize the computational require-
ments of our methodology via an extension of the precision
agriculture case study used as a running example throughout
this article. We consider a fixed specification φpa =

∧5
i=2 ψi for

all of the experiments (see Section IV). All computation times,

number of variables, and number of constraints in this section
are presented as the mean and maximum values. All robustness
values are given as means. For the purpose of these experiments,
we focus on the problem of region planning, and ignore low-level
motion planning. All experiments were performed on a PC
with 32 cores with 2.10 GHz processors and 64 GB of RAM.
The off-the-shelf commercial MILP solver used was Gurobi
Optimizer 8.1.1 [36].

A. Experiment 1—Effect of Algorithm Variants

The first experiment is used to quantify the performance
changes incurred due to two of the contributions to this article,
namely, augmenting the cost in the optimization with a total
travel time regularization and by adding upper bounds to the
optimization. We therefore consider four variants of the algo-
rithm as summarized in Table III. The preliminary work of [11]
corresponds to column 1 and rows 1 and 2 in Table III.

Characterization: We generate 50 random 3× 3 grid transi-
tion systems. Edge weights are chosen uniformly from W =
{1, 3}. The probability of a region being labeled was 0.2, and
the label of each labeled region in the graph is drawn uniformly
from AP = {πblue, πorange, πyellow, πgreen}.

For each randomly generated environment, we consider teams
of 20 agents from four classes each with two capabilities drawn
from {V is, UV, IR,Mo}. We ensure all individual capabilities
are covered in the classes. The initial states of each of the agents
are selected uniformly at random.

We solve Problem 1 for each of these instances. We record the
time to achieve the solution, the number of variables, number
of constraints, and availability robustness ρ. Results from these
experiments are shown in Table IV.

Results: These results indicate that although the encoded
MILP for this problem can be quite large, the computation time
is reasonably short. We note that there is a large difference in
time between the time to find an optimal solution and the time to
find the first feasible solution. Because there are excess agents
available to perform this task, there are many satisfying solu-
tions. However, finding the most robust solution requires more
time to search through these solutions. Additionally, adding
regularization increases the computation time by almost two
orders of magnitude due to the fact that we need to search the
entire set of possible solutions. In Table IV, the mean value for
run time for robust regularized bounded (182 s) appears to be
higher than the mean run time for robust regularized (158 s).
However, a two-sided t-test suggests that the population means
do not differ (p = 0.76), suggesting that the slow down due
to regularization dominates any improvement provided by the
upper bound. In future work, we may look for ways to add
(approximate) regularization in postprocessing. For this set of
experiments, the mean value of ρ was 1.2, whereas the mean
value of ce was 1.3, indicating the ce upper bound on the
optimization is fairly tight.

B. Experiment 2—Effect of Problem Dimensions

In our second computational experiment, we vary the size of
the environment, the number of agents, and the number of agent
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TABLE III
ALGORITHM VARIANTS TESTED IN CASE STUDY. VARIANTS INCLUDING ROBUSTNESS RETURN A SOLUTION WITH MAXIMUM AVAILABILITY ROBUSTNESS

(SECTION VI-D1), WHILE VARIANTS THAT DO NOT INCLUDE ROBUSTNESS RETURN THE FIRST FEASIBLE SOLUTION. VARIANTS THAT INCLUDE TRAVEL TIME

REGULARIZATION MINIMIZE EXTRANEOUS MOTION (SECTION VII-A). VARIANTS THAT INCLUDE OBJECTIVE BOUNDS PROVIDE AN

UPPER BOUND TO THE OPTIMIZER (SECTION VII-B)

TABLE IV
SUMMARY STATISTICS (MEAN / MAX) FOR EXPERIMENT 1. FOR EACH VARIANT, THE MEAN (MAX) NUMBER OF VARIABLES WAS 10585.4 (11604), AND THE

MEAN (MAX) NUMBER OF CONSTRAINTS WAS 7480.3 (8074), EXCLUDING THE CONSTRAINT ADDED BY THE UPPER BOUND. THE MEAN (MAX) CAPABILITY

EXCESS ce FOR EACH VARIANT WAS 1.3 (4.0)

TABLE V
LIST OF TASKS USED IN (21)

TABLE VI
DIFFERENCES BETWEEN REGION-LEVEL TRAJECTORY AND STATE SPACE

TRAJECTORY TIMING AND TRAJECTORIES. NOTE THAT TWO AGENTS DID NOT

ENTER ANY EXTRA REGIONS AND ARE NOT INCLUDED IN THE MEAN TIME IN

EXTRA REGIONS. OVERALL TIME IN REGIONS IS PROVIDED FOR COMPARISON

AND INCLUDES NOMINAL (CORRECT) REGIONS AS WELL AS EXTRA REGIONS

classes. We wish to determine how the effects of the parameters
of the problem affect our algorithm’s quality and speed. For
simplicity of presentation, we present only the feasible and
robust versions of our algorithm. We expect the effects of travel
time regularization and upper bounds to be similar to the results
seen in Experiment 1 above.

Scalability with environment size: For this experiment, we
maintain the team size at 20 and vary the number of states in
the environment. The results of this experiment are visualized in
Fig. 3(a), (d), and (g) and summarized in Table IX in Appendix B.

TABLE VII
OBSTACLES ENTERED BY AGENTS DURING EXECUTION. DIFFERENCES

BETWEEN THE REGION-LEVEL AND STATE SPACE TRAJECTORY PLANNERS CAN

RESULT IN SMALL INCURSIONS INTO OBSTACLE REGIONS

These experiments indicate that the size of the environment (and
thus, the number of tasks that are required to be performed) can
have a large effect on the computation time required to achieve a
solution. This is due to an increase in the number of variables that
must be tracked, the number of constraints used to describe the
environment, and an increase in the length of the expected paths
of the agents. In future work, this effect may be mitigated during
the process of abstracting the workspace to the environment
model by grouping together adjacent regions in which no service
is required.

Scalability with number of agents: For this experiment, we
maintain the environment size at 25 and vary the number of

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 16,2022 at 19:47:53 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEAHY et al.: SCALABLE AND ROBUST ALGORITHMS FOR TASK-BASED COORDINATION FROM HIGH-LEVEL SPECIFICATIONS 11

Fig. 3. Results for Experiment 2 varying the number of states, agents, and capabilities per class of agent. The solid line indicates the mean, and shaded regions
indicate interquartile range (for run time) or standard deviation (for robustness and normalized travel time). Top row: Overall computational time to find the first
feasible solution and maximally robust solutions compared to the number of states (3a), agents (3b), and capabilities per class (3c). Note that the presence of
timeouts for the robust solution skews the statistics, so interquartile range is presented in the shaded area. Middle row: Availability robustness for both the maximally
robust and first feasible solutions compared to the number of states (3b), agents (3e), and capabilities per class (3f). Bottom row: Normalized travel time for the
first feasible solution and for the maximally robust solution compared to the number of states (3g), agents (3h), and capabilities per class (3i).

agents. The results of this experiment are visualized in Fig. 3(b),
(e), and (h) and summarized in Table X in Appendix B. These
results suggest that the number of agents has a relatively small
effect on run time, but increasing the number of agents increases
the robustness of the maximally robust solution. This is expected
since our approach does not keep track of individual agents, but
only of their number.

Scalability with number of capabilities per class: For this
experiment, we maintain the team size at 20 and the environment
size at 25. We vary the number of capabilities of each class
of agent, as well as the number of classes (while holding the
total number of agents constant). We held the number of agents
fixed to control for the effects of varying the team size. Since
our specification includes four capabilities, we were able to
assess for 4 and 5 classes. The results of this experiment are
visualized in Fig. 3(c), (f), and (i) and summarized in Table XI
in Appendix B.

Results: In aggregate, these results suggest that the time
to compute a feasible solution remains relatively flat across
changes in environment size, number of agents, and capabilities
and classes. The time to find a robust solution is most sensitive to
the environment size and the number of capabilities per class. We
observe that robust solutions tend to have a higher normalized
travel time, indicating that more agents are being dispatched to
the same task.

IX. HARDWARE DEMONSTRATION

To assess the real-world feasibility of ScRATCHeS, we per-
formed two hardware demonstrations of the above algorithms
using first, 10 heterogeneous robots with three unique platforms
and four unique sensing capabilities, and second, 7 heteroge-
neous robots with agent dropout. All experiments are performed
in an indoor 6 m by 9 m motion capture environment shown
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TABLE VIII
LIST OF TASKS USED IN (21)

TABLE IX
SUMMARY STATISTICS (MEAN / MAX) FOR EXPERIMENT 2 WHILE VARYING THE ENVIRONMENT SIZE FOR 20 AGENTS. WHILE THE COMPUTATION TIME

INCREASES FOR BOTH FEASIBLE AND ROBUST SOLUTIONS, THE ROBUST SOLUTION SCALES MORE POORLY, WITH THE MEAN COMPUTATION TIME ON THE ORDER

OF 10X LONGER THAN THE FEASIBLE SOLUTION FOR 36 STATES

TABLE X
SUMMARY STATISTICS (MEAN / MAX) FOR EXPERIMENT 2 WHILE VARYING THE NUMBER OF AGENTS. THE ENVIRONMENT SIZE WAS FIXED AT 25. WE OBSERVE

A DECREASE IN COMPUTATION TIME FOR A FEASIBLE SOLUTION AS THE NUMBER OF AGENTS INCREASES. LIKEWISE, THERE IS AN INCREASE IN ROBUSTNESS IN

THE PRESENCE OF MORE AGENTS. THE AVERAGE COMPUTATION TIME REMAINS APPROXIMATELY THE SAME FOR THE ROBUST SOLUTION, BUT THE WORST-CASE

COMPUTATION TIME APPEARS TO INCREASE AS THE NUMBER OF AGENTS INCREASES

TABLE XI
SUMMARY STATISTICS (MEAN / MAX) FOR EXPERIMENT 2 WHILE VARYING THE NUMBER OF CLASSES AND THE NUMBER OF CAPABILITIES PER CLASS.

ENVIRONMENT SIZE WAS FIXED AT 25 AND THE NUMBER OF AGENTS AT 20. THE TIME TO FIND A FEASIBLE SOLUTION APPEARS TO DECREASE WITH THE

NUMBER OF CAPABILITIES PER CLASS, WHILE IT INCREASES IN THE ROBUST CASE

in Fig. 5. The robots operate simultaneously, and the position
of each robot is tracked with an Optitrack motion capture
system.1 All of the planning is done on a Intel i7-7800X CPU
running Ubuntu 16.04 and the MILP solver is Gurobi 9.0 [36]
using either the robust, regularized, bounded optimization for
offline computation, and first feasible optimization for online
replanning.

The robots used in the demonstrations include CrazyFlie 2.0
nano-UAVs, a large 220 mm custom drone, and iRobot Create2
Ground Robots. Each of these platforms communicates using
the robot operating system (ROS) kinetic architecture [37].

1Natural Point Optitrack. [Online]. Available: https://www.optitrack.com

A. Motion Planning

Until this point, we have considered discrete, region-level
trajectories. These trajectories need to be translated into individ-
ual robot motion plans, considering agent geometry, dynamic
constraints, and inter-agent collisions. The state space motion
planning for the team of robots is performed according to a
sequential, timed, multiagent rapidly exploring random trees
(RRT) algorithm ([38]) where an agent plans its entire trajectory,
and is then considered an obstacle (at specific time instants) to
future planning agents. This planning is also stratified based on
operation height (i.e., drones do not consider ground robots as
obstacles). The motion plans are calculated over then planning
units for each CaTL time step. This allows for the trajectories
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Fig. 4. Snapshots of solution to (21) in the demonstration environment. Times
8, 20, and 25 show where specific components of the specification are satisfied
and these areas are highlighted in (b)–(d).

Fig. 5. Demonstration flight arena with motion capture system, colored re-
gions representation simulation regions, and the three platform types performing
the specification task. Note there is one large UAV, six ground robots, and 3
nano-UAVs deployed simultaneously.

to both have flexibility in avoiding obstacles and other agents,
as well as better fitting the execution time to the size of the
experimental space. More information about this approach may
be found in Appendix C

Each robot follows a set of waypoints given by the multiagent
RRT algorithm. The iRobot Create2 robots employ a pure pur-
suit controller to follow these points by controlling linear and
angular velocity of the robots. The Crazyflie UAVs employ a PID
controller to stabilize their flight given their current position and
orientation using the CrazySwarm [39] software package. The
custom UAV uses the PX4 flight stack [40] to control its flight
in the space given its position from the motion capture system.
Fig. 5 shows the robots operating in the experimental space.

B. Demonstration 1

A precision agriculture scenario is demonstrated, where a
team of robots must inspect crops, harvest crops, survey for
pests, deter pests, and estimate water reservoir levels simultane-
ously. To accomplish these tasks, agents must either take pictures
of the prescribed region (inspect crops, survey for pests, and
estimate water reserves), or simply be present in the prescribed
region for the prescribed time (harvest crops and deter pests).
The task definitions for this demonstration are shown in Table V
and the specification for this demonstration is shown in (21).

The demonstration consists of three CrazyFlie 2.0 nano-
UAV (CF), a Large 220 mm custom Drone (LD), and six
iRobot Create2 Ground Robots (GR). Each platform carries
a camera that can be oriented either forward (F) or down-
ward (D). The set of capabilities for this demonstration is
Capexp = {CFD,LDF,GRF,GRD}. The GRD capability
is performed using a downward RGBC color sensor (consid-
ered as a single pixel camera), and coexists on four of the
iRobot Create2 platforms with a forward facing camera. The
optimization is run at time window of 12 seconds per time unit,
and the transition weights in the optimization are 1/12 meters
the largest distance between any two points between connected
regions. This is an over approximation for transition time. The
motion planning algorithms expand this 1/12 time scaling to
consider actual travel times. This abstraction allows for faster
optimization computation times because fewer time steps need
to be considered.

The robots are divided among three altitudes to augment their
sensor modalities and to separate them aerodynamically. The
Crazyflie nano-UAVs fly at a higher altitude than the custom
UAV to avoid its considerable down-wash

φdemo1 = ♦[0,20)(Tblue)

∧ ♦[0,25)(TH1 ∨ TH2)

∧�[0,30)♦[0,15)(TI1)

∧ ♦[0,30)(TI2)

∧ ♦[0,30)(Tred1U[0,15)(Tred2 ∨ Tred3)). (21)

This demonstration does not include any replanning and is
run in an open loop fashion. ScRATCHS was able to develop an
initial motion plan to satisfy φdemo1 in a total of 10.25 s (9.16 s
to solve the MILP and 1.09 s to generate the motion plans). Note
that this is substantially faster than most teams of humans can
solve moderately sized planning and coordination problems by
hand [41]. Snapshots of the solution to (21) are shown in Fig. 4.

When the trajectories of the agents are examined, some dis-
crepancies between the discrete region-level plan and the state
space trajectories followed by the agents. First, agents tend to
arrive to regions much earlier than expected by their discrete
region-level plan. This suggest that there is room to improve the
abstraction and estimation of travel time, perhaps via sampling
RRT examples between regions a priori. Agents also tend to
clip regions and briefly enter them, due to properties of the
edge checker in the RRT algorithm. If this impacts satisfaction
(e.g., in the case of needing to avoid regions), the environment
abstraction may require refinement, or other solutions could be
employed to mitigate these effects. These results are summarized
in Table VI. Likewise, we see that some agents have clipped the
obstacle regions during run time (see Table VII). Again, the
motion planner or abstraction of the environment can be refined
to reduce the likelihood of such incursions.

C. Demonstration 2

A precision agriculture scenario is again demonstrated, where
a team of robots must now survey crops, harvest crops, drop off
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Fig. 6. Solution trajectories before and after replanning for φdemo2 . Blue
trajectories are before replanning, and red trajectories are postreplanning. The
black trajectory is for the drone that drops out. The emphasized trajectory is of
the agent that fills in for the lost agent.

their harvest, and estimate water reservoir levels simultaneously.
A smaller team of seven robots, comprised of two platforms (the
large custom drone and six iRobot Create2 ground robots) and
three capabilities (camera, large harvester, and small harvester)
are used for this demonstration. The task definitions are shown
in Table VIII and the specification for this demonstration is
shown in (22). The set of capabilities for this demonstration
is Capexp2 = {C1, C2, C3}. C1 corresponds to the small har-
vester capability,C2 corresponds to the large harvester capabil-
ity, and C3 corresponds to the camera capability

φdemo2 = �[0,75)♦[0,25)(T1)

∧�[0,75)♦[0,25)(T2)

∧�[25,75)♦[0,20)(T3 ∨ T4)
∧ ♦[0,50)(T5)U[0,25)(T6 ∨ T7)
∧ ♦[0,40)(T8)

∧ ♦[30,60)(T9)

∧ ♦[15,45)(T10). (22)

At time t = 16, we simulate the drone dropping out. This
robot ceases its motion (flies to a safe waypoint outside the envi-
ronment boundary) and online replanning [see (21)] is triggered,
enabling the remaining platforms to continue the mission. After
replanning, the drone is replaced by a ground robot with a camera
capability. In the experimental demonstration, that robot then
goes on to fulfill a different set of propositions than originally
planned. This sequence of events is shown in Fig. 6, where the
drone trajectory is shown in black, and the ground robot that
replaces it is shown in bold. Fig. 7 shows a snapshot of the
second hardware demonstration.

This demonstration includes replanning due to agent dropout.
ScRATCHeS was able to develop an initial motion plan to satisfy
φdemo2 in a total of 159.28 s (145 s to solve the MILP and
14.28 s to generate the motion plans) using the travel regularized

Fig. 7. Overhead view of Demonstration 2. Note 6 ground robots and 1 aerial
robot. Two ground robots have camera and small harvester capabilities (one in
H and one in M), the 4 other ground robots have the large harvester and small
harvester capabilities, and the drone has only the camera capability.

robustness and returned the robust solution (ρ = 0.076). The
replanning phase is triggered at t=16, and the replanning took
47.09 s (41 s to solve the MILP and 6.09 s to generate the
motion plans) to find the first feasible solution using the travel
regularized robustness (ρ = 0.00051).

X. CONCLUSION

In this article, we had developed a framework for scal-
able and robust deployment of teams of heterogeneous agents.
ScRATCHeS was able to build plans based on rich, temporal
logic specifications involving tasks that require the participation
of multiple capabilities, e.g., sensing modalities, distributed
across the team of agents. This framework encoded the planning
problem as a large mixed integer linear program, which could
be efficiently solved using modern commercial off-the-shelf
solvers. We validated this method using a series of randomized
computational experiments, which showed the potential scala-
bility of the method, and via a hardware demonstration, which
illustrated the potential implementability and applicability of
our approach.

Our initial results indicated the possibility to develop real-time
planning tools to allow supervisors in charge of large teams of
heterogeneous robots to task them by giving intent rather than by
manually planning paths or scheduling tasks. The gap between
the time to compute first feasible solutions and the time to com-
pute optimal solutions for this case indicated that an “any-time”
planner in which iteratively improved solutions were presented
to the supervisor may be useful. This also indicated that there
was potential for improving the performance by smoothing the
availability robustness measure, i.e., by including “partial credit”
for cases in which some but not all tasks have excess agents
available.

In the future, we will work to extend this approach to be
more reactive so as to reduce the load on the supervisor. That
is, in addition to generating plans that are robust to attrition, we
will equip the team with a monitor to keep track of progress
to plans and reactive synthesis techniques to alter the plan
on-the-fly when attrition or delays occur. Finally, we will also
investigate parallelization by breaking the team into subteams
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and equipping each subteam with its own monitor and plan, thus
allowing subteams to operate quasi-independently and reduce
the amount of communication required to execute and alter the
plan.

APPENDIX A
PROOFS OF PROPOSITIONS

A. Proof of Proposition 1

Proposition: CaTL is a proper fragment of signal temporal
logic (STL) [28].

Proof: (CaTL ⊆ STL) CaTL is a fragment of STL that
requires all predicates be part of a task T . For any given task
T = (d, π, {cpi}i∈IT )), define an STL formula

φ(T ) =
∧
i∈IT

�[0,d)

⎛
⎝ ∧

q∈L−1(π)
nq,ci(t) ≥ mi

⎞
⎠ .

By applying the recursive semantics of STL, we have that

(sJ , t) |= φ(T ) ⇔ ∀τ ∈ [t, t+ d)
∀q ∈ L−1(π)
∀{cpi = (ci,mi)}i ∈ IT
nq,ci(τ) ≥ mi

which is exactly the same condition for (sJ , t) |= T .
Therefore,(sJ , t) |= T ⇔ (sJ , t) |= φ(T ) where φ(T ) is the
STL formula defined above. The remainder of syntax and se-
mantics for CaTL is included in STL. Thus, any CaTL formula
has an equivalent STL formula.

(STL �⊆ CaTL) The formula φs = ♦[a,b)(s ≤ 0) is an STL
formula but not a CaTL formula.

B. Proof of Proposition 2

Proposition: Applying the recursive quantitative semantics
listed in Definition 10 yields ρ as defined in Definition 9.

Proof: We reason about the robustness ρ in terms of subtract-
ing and adding agents to a team. By showing how the addition
or subtraction of agents affects the satisfaction of one or more
formulas, we can prove the proposition. To prove the proposition
for each task and operator in CaTL, we consider the case in which
ρ(sJ , t, T ) ≥ 0 and the case in which ρ(sJ , t, T ) < 0.

We prove the proposition by structural induction. First, we
demonstrate the base case corresponding the atomic unit of
CaTL, i.e., we show that ρ is equivalent to Definition 9 for tasks.
Then, using the induction hypothesis, we prove the equivalence
between the definitions for each of the operators in the language.
Specifically, we show that if ρ is equivalent to Definition 9
for the operands, then ρ of the overall formula is equivalent
to Definition 9.

Task (T ): Here, we demonstrate that ρ is equivalent to Defi-
nition 9 for a CaTL task T . Let

δi,sJ ,t,T := min
t′∈[t,t+d)

min
q∈L−1(π)

∑
{g|ci∈g}

nq,g(t
′)−mi

denote the excess agents with capability ci at time t for com-
pleting task T from the team trajectory sJ . The excess δi,sJ ,t,T

may be negative, in which case it denotes the number of missing
agents with capability ci needed at time t to satisfy task T . Then

(sJ , t) |= φ⇔ δi,sJ ,t,T ≥ 0, ∀i ∈ IT .

By definition, ρ(sJ , t, T ) = min
i∈IT

δi,sJ ,t,T is the least number

of agents in excess with any capability involved in task T . Let
i∗ = argmin

i∈IT
δi,sJ ,t,T be the index of the minimizing capability.

We begin with the case that (sJ , t) |= T , or equivalently
ρ(sJ , t, T ) ≥ 0 and δi∗,sJ ,t,T ≥ 0. Removing an agent j from J
decrements all excess values {δi,sJ ,t,T }ci∈gj associated with the
capabilities gj of agent j. Thus, in the worst case, removing any
agent with all capabilities ci ∈ C decrements all{δi,SJ ,t,T }i∈IT .
Let JR contain ρ(sJ , t, T ) agents with all capabilities
ci ∈ Cap, and let JR′ contain ρ(sJ , t, T ) + 1 such agents.
Then, δi∗,sJ\JR

,t,T = 0⇒ (sJ\JR
, t) |= T and δi∗,sJ\J

R′ ,t,T
=

−1⇒ (sJ\JR′ , t) �|= T . Thus, ρ(sJ , t, T ) = min |JR| such that
(sJ\JR

, t) |= T.
To prove the case in which (sJ , t) �|= T , or equivalently

ρ(sJ , t, T ) < and δi∗,sJ ,t,T < 0, the same procedure as above
is followed. Instead of decrementing {δi,SJ ,t,T }i∈IT , we incre-
ment it instead.

Now we consider the remaining quantitative semantics out-
lined in (6).

Conjunction (∧):: Here, we demonstrate that subtracting
(adding) ρ agents from the less robust of two formulas does
not affect satisfaction (nonsatisfaction) of the conjunction of the
two formulas. Without loss of generality, let

ρ(sJ , t, φ1) ≤ ρ(sJ , t, φ2)
i.e.,

ρ(sJ , t, φ1) = min(ρ(sJ , t, φ1), ρ(sJ , t, φ2)) .

If ρ(sJ , t, φ1) ≥ 0, then we can remove any ρ(sJ , t, φ1)
agents and both (sJ , t) |= φ1 and (sJ , t) |= φ2. If ρ(sJ , t, φ1) <
0, then at least ρ(sJ , t, φ1) agents must be added in order for
sJ |= φ1. If ρ(sJ , t, φ2) ≥ 0, adding ρ(sJ , t, φ1) will maintain
(sJ , t) |= φ2. If ρ(sJ , t, φ2) < 0, then by adding ρ(sJ , t, φ1)
agents with all capabilities, (sJ , t) |= φ2.

Disjunction (∨): Here, we demonstrate that subtracting
(adding) ρ agents from the more robust of two formulas does
not affect satisfaction (nonsatisfaction) of the disjunction of the
two formulas. Without loss of generality, let

ρ(sJ , t, φ1) ≥ ρ(sJ , t, φ2)
i.e.,

ρ(sJ , t, φ1) = max(ρ(sJ , t, φ1), ρ(sJ , t, φ2)) .

If ρ(sJ , t, φ1) > 0 and ρ(sJ , t, φ1) agents are removed, then
(sJ , t) |= φ1 ⇒ (sJ , t) |= φ1 ∨ φ2. If ρ(sJ , t, φ1) ≤ 0, then if
ρ(sJ , t, φ1) agents are added, again, (sJ , t) |= φ1 ⇒ (sJ , t) |=
φ1 ∨ φ2.

Until (U[a,b)): For the until operator, φ1 and φ2 are ordered.
Therefore, we must examine four cases. In the first two cases, φ1
is more robust than φ2, for both the satisfying on nonsatisfying
condition. The next two cases are those in which φ2 is more
robust than φ1, for both the satisfying and nonsatisfying cases.
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For φ1U[a,b)φ2 to be true, φ2 must be true at some time t′ ∈
[t+ a, t+ b), and φ1 must be true for all t′′ ∈ [t, t′). Our proof
therefore relies on defining robustness in terms of t′ and t′′,
depending on whether satisfaction of φ1 or φ2 is more robust.

We begin with the two cases in which φ1 is more robust than
φ2. Let

t∗ = argmax
t′∈[t+a,t+b)

min{ρ(sJ , t,′ φ2), min
t′′∈[t,t′)

ρ(sJ , t,
′′ φ1)}

and let

0 ≤ ρ(sJ , t∗, φ2) < min
t′′∈[t,t∗)

ρ(sJ , t,
′′ φ1) .

Then, we can remove any ρ(sJ , t∗, φ2) agents at time t and
(sJ , t

∗) |= φ2. Since

ρ(sJ , t
∗, φ2) < min

t′′∈[t,t∗)
ρ(sJ , t,

′′ φ1)

removing ρ(sJ , t
∗, φ2) means that s(J , t′′) |= φ1∀t′′ ∈ [t, t∗),

and thus, (sJ , t) |= φ1U[a,b)φ2. If ρ(sJ , t∗, φ2) < 0, then adding
−ρ(sJ , t∗, φ2) at time t will ensure (sJ , t

∗) |= φ2 and, since

ρ(sJ , t
∗, φ2) < min

t′′∈[t,t∗)
ρ(sJ , t,

′′ φ1)

also ensures s(J , t
′′) |= φ1∀t′′ ∈ [t, t∗) and thus (sJ , t) |=

φ1U[a,b)φ2.
Now, we examine the cases in which φ2 is more robust than

φ1. Let

t∗∗ = argmin
t′′∈[t,t∗)

ρ(sJ , t,
′′ φ1)

and let

0 ≤ min
t′′∈[t,t∗)

ρ(sJ , t,
′′ φ1) < ρ(sJ , t

∗, φ2) .

If we remove ρ(sJ , t∗∗, φ1) agents at time t, then (sj , t
′′) |=

φ1∀t′′ ∈ t, t∗ and (sJ , t
∗) |= φ2, as ρ(sJ , t∗∗, φ) > 0 and thus

(sJ , t) |= φ1U[a,b,)φ2. Finally, if

min
t′′∈[t,t∗)

ρ(sJ , t,
′′ φ1) < 0

then if we add −ρ(sJ , t∗∗, φ1) agents at time t means that
ρ(sJ , t

∗∗, φ1) ≥ 0∀t′′ ∈ [t, t∗), i.e., (sJ , t) |= φ1∀t′′ ∈ [t, t∗).
Further, this impliesρ(sJ , t∗, φ2) ≥ 0, i.e., (sJ , t∗) |= φ2. Again
in this final case, (sJ , t) |= φ1U[a,b)φ2.

Eventually (♦[a,b)): For the eventually operator, a trajectory
must satisfy the formula for at least one time step in the interval
[a, b). Therefore, we may determine the maximally satisfying
time step in order to compute robustness. Let

t∗ = argmax
t′∈[t+a,t+b)

ρ(sJ , t,
′ φ) .

If ρ(sJ , t∗, φ) > 0, then we can remove any ρ(sJ , t
∗, φ)

agents and still (sJ , t∗) |= φ, and therefore (sJ , t) |= ♦[a,b)φ. If
ρ(sJ , t

∗, φ) ≤ 0, then we must addρ(sJ , t∗, φ) so that (sJ , t∗) |=
φ, and therefore (sJ , t) |= ♦[a,b)φ.

Always (�[a,b)): For the always operator, a trajectory must
satisfy the formula for all time steps in the interval [a, b).
Therefore, we must determine the least satisfying time step in

order to compute robustness. Let

t∗ = argmin
t′∈[t+a,t+b)

ρ(sJ , t,
′ φ) .

If ρ(sJ , t
∗, φ) > 0, then we can remove any ρ(sJ , t

∗, φ)
agents and still (sJ , t′) |= φ ∀t′ ∈ [t+ a, t+ b), and therefore
(sJ , t) |= �[a,b)φ. Likewise, if ρ(sJ , t∗, φ) ≤ 0, then we must
add ρ(sJ , t

∗, φ) agents such that (sJ , t
∗) |= φ⇒ (sJ , t) |=

�[a,b)φ.

C. Proof of Proposition 3

Proposition: Under Assumption 1, a team input signal u =
[uj ]j∈J and the induced team trajectory sJ are valid, i.e., con-
form to Definitions 3 and 4, only if a set of variables a set of
variables

{zq,g(k)}q∈Q,g∈G,k=0,...K ∪ {ue,g(k)}e∈E,g∈G,k=0,...K

satisfy constraints (8), (9).
Proof: Under Assumption 1

nq,g(t) = nq,g(� t
δt
�δt)∀t �= kδt, k ∈ N

nq,e(t) = nq,e(� t
δt
�δt)∀t �= kδt, k ∈ N. (23)

Thus, a trajectory sJ such that sJ(t) =
[nq,g(t), ne,g(t)]q∈Q,e∈E is uniquely specified by the sequences
{[nq,g(kδt), ne,g(kδt)]q∈Q,e∈E}Kk=0.

Substituting zq,g(k) into the requirements

sj(t) = q0,j

ng,q(0) =
∑
j∈J

I(sj(0) = q)I(Capj = g) (24)

from Definitions 3 and 4 yield (8).
The requirements from Definitions 3 and 4 that

uj(t) = (q, q′)⇒ sj(t) = q ∧ sj(t′) = (q1, q2)∀t′ ∈ (t, t+
W (e)) ∧ sj(t+W (q, q′)) = q′ can be stated as

nq,g(kδt) = nq,g((k − 1)δt)

+
∑
(q,′q)

I(uj((k −W(q,′ q))δt)

= (q,′ q))I(g = Capj)

−
∑
(q,q′′)

I(uj(kδt) = (q,′ q))I(g = Capj)

ne,g(kδt) = − I(uj((k − �)δt) = (q,′ q))I(g = Capj)

+

0∑
�=−W(e)+1

I(uj((k − �)δt)

= (q,′ q))I(g = Capj). (25)

Substituting in zq,g(k) and ue,g(k) yields

zq,g(k) = zq,g(k − 1) +
∑
(q,′q)

u(q,′q),g(k −W)
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−
∑
(q,q′′)

u(q,q′),g(k) (26a)

ne,g(kδt) = − ue,q(k) +
0∑

�=−W(e)+1

ue,q(�). (26b)

Now, if we add into our formulation a set of artificial edges
(q, q) ∀q ∈ Q with weight W ((q, q)) = δt ∀q ∈ Q, then

zq,g(k − 1)−
∑
(q,q′′)

u(q,q′),g(k) =
∑
(q,q)

u(q,q),g(k −W(q, q)).

(27)
Substituting this expression into (27) yields (9a). Further, the

addition of the artificial weights means that at every time kδt,
every agent j in a node q ∈ Q has to choose an edge to traverse
along. In order to reflect the fact that the set of agents in the
environment remains constant, we require that the number of
agents flowing into a region must be the same as the number
of agents flowing out of the region. Thus, we can replace (26b)
with the equivalent flow conservation condition (9a).

Therefore, all valid state trajectories can be recov-
ered from a set of variables {zq,g(k)}q∈Q,g∈G,k=0,...K ∪
{ue,g(k)}e∈E,g∈G,k=0,...K that satisfy (8) and (9).

D. Proof of Proposition 4

Proposition: Every CaTL formula in PNF is equivalent to an
STL formula in PNF.

Proof: If a CaTL formula φ is in PNF, then the only pos-
sibility for the equivalent STL formula not to be in PNF is if
any task in the formula contains a negation when translated
to STL. Since the equivalent STL formula for any task T ,
φ(T ) =

∧
i∈IT �[0,d)(

∧
q∈L−1(π) nq,ci(t) ≥ mi), does not con-

tain a negation, the equivalent STL formula for a CaTL formula
in PNF is in PNF.

E. Proof of Proposition 5

Proposition: Let f(u, z) = r0,φ(u, z)− γτ(u, z). If
r0,φ(u1, z1) > r0,φ(u2, z2), then f(u1, z1) > f(u2, z2).

Proof: r0,φ is integer-valued, so r0,φ(u1, z1) >
r0,φ(u2, z2)⇒ r0,φ(u1, z1)− r0,φ(u2, z2) ≥ 1. The value
τ(u, z) is maximized at τmax = |J |K, i.e., every agent is always
traveling and minimized when τmin = 0, i.e., all agents are
always idle. Therefore

γτ(u1, z1)− γτ(u2, z2) ≤ γ(τmax − τmin)

= α |J |K|J |K
= α.

Thus

f(u1, z1)− f(u2, z2) = (r0,a,φ − r0,a,φ)
+(γτ(u2, z2)− γτ(u1, z1)

≥ 1− α
> 0

since α < 1. Equivalently, f(u1, z1) > f(u2, z2), thus, estab-
lishing the proposition.

F. Proof of Proposition 7

Proposition: The capability excess ce({Aj}j∈J , φ) is an up-
per bound for max

{u′e,g,k}
r0,φ.

Proof: The robustness max
{u′e,g,k}

r0,φ would reach its theo-

retical maximum if there were no motion constraints and
all agents are available to service tasks at any time, i.e., if
W(q, q′) = 0∀(q, q′) ∈ E. Denote the team signal resulting
from these conditions as s0,J . We now prove by induction that
ce({Aj}j∈J , φ) ≥ ρ(s0,J , t, φ)

Base case: As ρ(s0,J , t, T ) is defined as a minimum over
capabilities and over regions, it would reach its maximum
if all of the agents with required capabilities {ci}i∈IT were
equally divided among the regions q ∈ L−1(π) at the appropriate
time. This maximum value is given by ce({Aj}j∈J , T ), i.e.,
ce({Aj}j∈J , T ) ≥ ρ(s0,J , t, T )∀t.

Recursion: For ∧ and ∨, we apply the same re-
cursive relationships to ce as we do to ρ. There-
fore, if ce({Aj}j∈J , φd), d ∈ {1, 2} are upper bounds, then
ce({Aj}j∈J , φ1 · φ2) ≥ ρ(s0,J , t, φ1 · φ2)∀t, · ∈ {∨,∧}.

For the temporal operators, since s0,J considers the case
when we are not motion or time-constrained, we can ignore
the maximization and minimization with respect to temporal
arguments in the recursive semantics. This yields the form of the
recursive relations in (19). Therefore, if ce({Aj}j∈J , φd), d ∈
{1, 2} is an upper bound, then ce({Aj}j∈J , φ1U[a,b)φ2) >
ρ(s0,J , t, φ1U[a,b)φ2), ∀t and ce({Aj}j∈J ,∼ φ) > ρ(s0,J , t,∼
φ), ∀t,∼∈ {♦[a,b),�[a,b)}.

Therefore, ce({Aj}j∈J , φ) ≥ ρ(s0,J , 0, φ)∀φ ∈ CaTL.

APPENDIX B
DETAILED TABLES OF RESULTS

Tables IX–XI present the results of Experiment 2, varying the
size of the environment, number of agents, and classes of agents,
respectively.

APPENDIX C
MOTION PLANNING

Individual motion plans are initially generated for each agent
as region level trajectories from the output of the mixed integer
linear program. These trajectories are found using an assignment
algorithm shown in Algorithm 1. Once the region level trajecto-
ries are determined from the MILP solution (see Section XIII-
A), a local planner can be used for each agent to determine
trajectories between and within regions. Specific points within
a region are determined a priori or chosen at random from
the free workspace (see Section XIII-B). Agents are assigned
to these locations based first on sensor requirements for the
task, and then greedily based on distance for agents within each
region (if applicable). Once goal locations are determined in
the workspace, a multiagent RRT planner that uses a sequential
planning method determines continuous space agent trajectories
(see Section XIII-C). These trajectories are designed to not be
in collision with other agents or objects in the environment.
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A. Region Level Agent Trajectory Generation

The output of the MILP encoding does not specify individual
trajectories, but instead numbers of agents of each type required
in a region (or transitioning between regions) at each time. We
denote the set of these outputs from the MILP as ZQ,G,K and
UE,G,K , respectively. The set of time steps appearing in the
MILP solution is denotedK. An assignment matching algorithm
(see Algorithm 1) is employed to take these agent requirements
at each time, the transition system of the environment, the current
agent positions, and required capabilities and generate a region
level trajectory for each agent.

We begin by introducing a region-level agent trajectory as a
sequence of states or edges σj = {q0,j} . . . {q, q′} . . . {qtend},
where j ∈ J is the agent index and [k] represents the discrete
time index in the trajectory. Each trajectory is initialized to
q0 from Aj and indicates if an agent is in a region or tran-
sitioning between two regions (line 1). We introduce a func-
tion occupied(σj , k) that returns whether agent j is already
assigned to a state/transition at time [k]. The function returns
False if it is unassigned at that time. For each time step [k],
we take the state and transition decision variables zq,g(k) and
u(q,q′),g(k) from the MILP solution (lines 4 and 12). For each
state variable greater than zero (zq,g(k) > 0), we find agents
that are currently in region q, have capability g, and who are
unoccupied (line 8). There are always sufficient agents j ∈ J ,
because the MILP solves for this condition. Therefore, we assign
the agent(s) of lowest index (i.e. min(j)) to that region at that
time (i.e., σj [k] = q) in the quantity of zq,g(k) (line 9). For
each edge variable greater than zero (u(q,q′),g(k) > 0), we again
find agents that are currently in region q, have capability g, and
who are unoccupied (line 16). This condition can always be
satisfied, because it is satisfied in the MILP solution. We assign
the agent(s) of lowest index (i.e., min(j)) to that transition at
that time (i.e.σj [k] = {q, q′}) in the quantity of zq,g(k) (line 17).
Unlike state assignments however, we assign this transition value
from time k to k +W (e) and at time k +W (e) we assign the
agent(s) to region q′. This is run for each time step, generating the
discrete, region-level, trajectory of each agent. This trajectory is
then used to generate a continuous space trajectory.

B. Region Level Task Allocation

Before generating a continuous space trajectory, agent posi-
tions for each task must be allocated from discrete trajectories.
The assignment algorithm finds the discrete region level trajec-
tories, however these must be related to specific points in space
depending on the requirements of the task. These points are
defined as a tuple of capability and position. From the individual
agent region level trajectories, the first agent to enter a region
where its capability can be employed will be assigned to that
capability’s predetermined position. If another agent enters the
region with the same capability set, and is not needed for the
task, that agent is diverted to a random location in the region
that also does not obstruct other agents. This process occurs at
each time step.

Algorithm 1: MILP Solution Region-Level Assignment.
Input: ZQ,G,K ; UE,G,K ; W ; AJ ; K; G; Q
Output: σj∀j ∈ J
1: σj [0]← q0,j ∀j ∈ J
2: for k = 1 to K do
3: for (g, q) ∈ G×Q do
4: if zq,g(k) > 0 then
5: count← 0
6: while count < zq,g(k) do
7: for j ∈ J do
8: if σj [k − 1] = q and ¬ occupied(σj , k)

and g ∈ Aj and count < zq,g(k) then
9: σj [k]← {q}

10: count++
11: for q′ ∈ Q do
12: if u(q,q′),g(k) > 0 then
13: count← 0
14: while count < u(q,q′),g(k) do
15: for j ∈ J do
16: if σj [k − 1] = q

and ¬ occupied(σj , k) and g ∈ Aj

and count < u(q,q′),g(k) then
17: σj [k : k +W (q, q′)]← {q, q′}
18: count++
19: return σj∀j ∈ J

C. Ranked Multiagent RRT

To generate continuous trajectories for each agent, a variant
of the rapidly-exploring random trees (RRT) algorithm is used.
This variant considers both obstacles and previously planned
agents in planning trajectories. To do this, it ranks the robots
randomly and plans each trajectory sequentially by decreasing
rank. As each node is created, it inherits a time step value from
its parent node that is incremented. This time step value is used
to determine if a node is in collision with another trajectory at a
given time. When checking for such collisions, the distance to
each prior computed trajectory node at that time is determined,
and the node is discarded if it is within a safety distance to any
of these prior nodes. Beyond this, a randomization structure is
used to get samples from the configuration space that create more
efficient trajectories (the sample distribution is a hybrid between
a Gaussian around the goal and a uniform distribution). If the
number of consecutively failed nodes exceeds a threshold, the
algorithm continues but then uses only a uniform sampling dis-
tribution. This protects against the Gaussian distribution trying
to exploit rather than explore the workspace. See Fig. 8 for an
example with 10 agents in a cluttered environment.

Remark 2: The RRT algorithm we use will converge for point
robots. It is possible that the physical extent of the robots can
cause the RRT to fail to converge. Such a case would occur
if robots are large relative to the size of the regions in the
environment. In that case, the abstraction can be refined, or limits
can be placed on the number of agents that may simultaneously
occupy a region in the MILP. In practice, we did not encounter
the need for such modifications.
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Fig. 8. Sample trajectories from ranked multiagent RRT algorithm—start
location is on one side, and the goal region is in the opposite quadrant. Circles
are obstacle regions, and each agent considers the trajectories off all agents
calculated before it as moving obstacles.
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