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This paper introduces time window temporal logic (TWTL), a rich expressive language for 
describing various time bounded specifications. In particular, the syntax and semantics of 
TWTL enable the compact representation of serial tasks, which are prevalent in various 
applications including robotics, sensor systems, and manufacturing systems. This paper 
also discusses the relaxation of TWTL formulae with respect to the deadlines of the 
tasks. Efficient automata-based frameworks are presented to solve synthesis, verification 
and learning problems. The key ingredient to the presented solution is an algorithm to 
translate a TWTL formula to an annotated finite state automaton that encodes all possible 
temporal relaxations of the given formula. Some case studies are presented to illustrate the 
expressivity of the logic and the proposed algorithms.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Temporal logics provide mathematical formalisms to reason about (concurrent) events in terms of time. Due to their rich 
expressivity, they have been widely used as specification languages to describe properties related to correctness, termination, 
mutual exclusion, reachability, or liveness [34]. Recently, there has been great interest in using temporal logic formulae in 
the analysis and control of dynamical systems. For example, linear temporal logic (LTL) [5] has been extensively used in 
motion planning and control of robotic systems, e.g., [42,20,1,45,6,44,22,11,27,30].

In some real-world applications, the tasks may involve some time constraints (e.g., [38,36]). For example, consider a 
robot that is required to achieve the following tasks: every visit to A needs to be immediately followed by visiting B within 
5 time units; two consecutive visits to A need to be at least 10 time units apart; or visiting A and visiting B need to 
be completed within 15 time units. Such tasks cannot be described by LTL formulae since LTL cannot deal with temporal 
properties with explicit time constraints. Therefore, bounded temporal logics are used to capture the time constraints over 
the tasks. Examples are bounded linear temporal logic (BLTL) [39,18], metric temporal logic (MTL) [26], and signal temporal 
logic (STL) [33].
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In this paper, we propose a specification language called time window temporal logic (TWTL). The semantics of TWTL is 
rich enough to express a wide variety of time-bounded specifications, e.g., “monitor A for 3 time units within the time 
interval [0, 5] and after that monitor B for 2 time units within [4, 9]. This logic was defined in our previous conference 
papers [43,2], and used to specify persistent surveillance tasks for multi-robot systems. Moreover, we define a notion of 
temporal relaxation of a TWTL formula, which is a quantity computed over the time intervals of a given TWTL formula. In 
this respect, if the temporal relaxation is: negative, then the tasks expressed in the formula should be completed before 
their designated time deadlines (i.e., satisfying the relaxed formula implies the satisfaction of a more strict formula than 
the original formula); zero, then the relaxed formula is exactly the same as the original formula; positive, then some tasks 
expressed in the formula are allowed to be completed after their original time deadlines (i.e., satisfying the relaxed formula 
may imply the violation of the original formula or the satisfaction of a less strict formula).

In this paper, we present an automata-based framework to solve verification, synthesis, and learning problems that 
involve TWTL specifications. One property of TWTL specifications we exploit in the proposed solutions is that the associated 
languages are finite. In the theoretical computer science literature, finite languages and the complexity of constructing their 
corresponding automata have been extensively studied [32,16,7,12,9]. One of the main benefits of the proposed framework 
is its capability to efficiently construct the annotated automata that can encode not only the original formula but also all 
temporal relaxations of the given formula. Such an efficient construction mainly stems from the proposed algorithms that 
are specifically developed for TWTL formulae.

The proposed language TWTL has several advantages over existing temporal logics. First, in many robotics missions, a 
desired specification can be represented in a more compact and comprehensible way in TWTL than BLTL, MTL, or STL. 
For example, deadlines expressed in a TWTL formula indicate the exact time bounds as opposed to an STL formula where 
the time bounds can be shifted. Consider a specification as “stay at A for 4 time steps within the time window [0, 10]”, 
which can be expressed in TWTL as [H4 A][0,10] . The same specification can be expressed in STL as F [0,10−4]G[0,4] A where 
the outermost time window needs to be modified with respect to the inner time window. Furthermore, compared to BLTL 
and MTL, the existence of an explicit concatenation operator results in a more compact representation for serial tasks 
that are prevalent in various applications including robotics, sensor systems, and manufacturing systems. Under some mild 
assumptions, we provide a very efficient (linear-time) algorithm to handle concatenation of tasks. In general, the complexity 
associated with the concatenation operation is exponential in the worst case, even for finite languages [32].

Second, the notion of temporal relaxation enables a generic framework to construct the automaton of all possible re-
laxations of a TWTL formula. In literature, there are some studies investigating the control synthesis problems for minimal 
violations of LTL fragments [37,40,41,31,14]. In contrast to existing works, the annotated automaton proposed in this paper 
can encode all possible temporal relaxations of a given formula. Accordingly, such an automaton can be used in a variety 
of problems related to synthesis, verification, and learning to satisfy minimally relaxed formulae. Third, we show that the 
complexity of constructing the automata for a given TWTL formula is independent of the corresponding time bounds. To 
achieve this property, we exploit the structure of finite languages encoded by TWTL formulae.

We present a set of provably-correct algorithms to construct the automaton of a given TWTL formula (both for the 
relaxed and unrelaxed cases). We formulate a generic problem in terms of temporal relaxation of a TWTL formula, which 
can be specialized into problems such as verification, synthesis, and learning. We developed a Python package to solve these 
three problems, which is available for download from hyness.bu.edu/twtl.

2. Preliminaries

In this section, we introduce the notation and briefly review the main concepts from formal languages, automata theory, 
and formal verification. For a detailed exposition of these topics, the reader is refereed to [5,17] and the references therein.

Given x, x′ ∈ R
n , n ≥ 2, the relationship x ∼ x′ , where ∼∈ {<, ≤, >, ≥}, is true if it holds pairwise for all components. 

x ∼ a denotes x ∼ a1n , where a ∈ R and 1n is the n-dimensional vector of all ones. The extended set of real numbers is 
denoted by R = R ∪ {±∞}.

Let � be a finite set. We denote the cardinality and the power set of � by |�| and 2� , respectively. A word over �
is a finite or infinite sequence of elements from �. In this context, � is also called an alphabet. The length of a word w
is denoted by |w| (e.g., |w| = ∞ if w is an infinite word). Let k, i ≤ j be non-negative integers. The k-th element of w is 
denoted by wk , and the sub-word wi, . . . , w j is denoted by wi, j . A set of words over an alphabet � is called a language
over �. The languages of all finite and infinite words over � are denoted by �∗ and �ω , respectively.

Definition 2.1 (Prefix language). Let L1 and L2 be two languages. We say that L1 is a prefix language of L2 if and only if 
every word in L1 is a prefix of some word in L2, i.e., for each word w ∈L1 there exists w ′ ∈L2 such that w = w ′

0,i , where 
0 ≤ i <

∣∣w ′∣∣. The maximal prefix language of a language L is denoted by P (L) = {w0,i | w ∈L, i ∈ {0, . . . , |w| − 1}}.

Definition 2.2 (Unambiguous language). A language L is called unambiguous language if no proper subset L of L is a prefix 
language of L \ L.

The above definition immediately implies that a word in an unambiguous language can not be the prefix of another 
word. Moreover, it is easy to show that the converse is also true.

http://hyness.bu.edu/twtl
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Definition 2.3 (Language concatenation). Let L1 be a language over finite words, and let L2 be a language over finite or 
infinite words. The concatenation language L1 ·L2 is defined as the set of all words w w ′ , where w ∈L1 and w ′ ∈L2.

Definition 2.4 (Deterministic finite state automaton). A deterministic finite state automaton (DFA) is a tuple A = (SA, s0,

�, δA, FA), where:

• SA is a finite set of states;
• s0 ∈ SA is the initial state;
• � is the input alphabet;
• δA : SA × � → SA is the transition function;
• FA ⊆ SA is the set of accepting states.

A transition s′ = δA(s, σ) is also denoted by s σ−→A s′ . A trajectory of the DFA s = s0s1 . . . sn+1 is generated by a finite 
sequence of symbols σ = σ0σ1 . . . σn if s0 ∈ SA is the initial state of A and sk

σk−−→A sk+1 for all k ≥ 0. The trajectory 
generated by σ is also denoted by s0

σ−→A sn+1. A finite input word σ over � is said to be accepted by a finite state 
automaton A if the trajectory of A generated by σ ends in a state belonging to the set of accepting states, i.e., FA . A DFA is 
called blocking if the δA(s, σ) is a partial function, i.e., the value of the function is not defined for all values in the domain. 
A blocking automaton rejects words σ if there exists k ≥ 0 such that sk

σk−−→A sk+1 is not defined. The (accepted) language
corresponding to a DFA A is the set of accepted input words, which we denote by L(A).

Definition 2.5 (Transition system). A transition system (TS) is a tuple T = (X, x0, �, A P , h), where:

• X is a finite set of states;
• x0 ∈ X is the initial state;
• � ⊆ X × X is a set of transitions;
• A P is a set of properties (atomic propositions);
• h : X → 2A P is a labeling function.

We also denote a transition (x, x′) ∈ � by x →T x′ . A trajectory (or run) of the system is an infinite sequence of states 
x = x0x1 . . . such that xk →T xk+1 for all k ≥ 0. A state trajectory x generates an output trajectory o = o0o1 . . ., where 
ok = h(xk) for all k ≥ 0. The (generated) language corresponding to a TS T is the set of all generated output words, which 
we denote by L(T ).

3. Time window temporal logic

Time window temporal logic (TWTL) was first introduced in the conference paper [43] as a rich specification language 
for robotics applications. Besides robotics, TWTL can be used in various domains (e.g., manufacturing, control, software 
development) that involve specifications with explicit time bounds. In particular, TWTL formulae can express tasks, their 
durations, and their time windows. TWTL is a linear-time logic encoding sets of discrete-time sequences with values in a 
finite alphabet.

A TWTL formula is defined over a set of atomic propositions A P and has the following syntax:

φ ::= Hds | Hd¬s |φ1 ∧ φ2 |φ1 ∨ φ2 |¬φ1 |φ1 · φ2 | [φ1][a,b]

where s is either the “true” constant � or an atomic proposition in A P ; ∧, ∨, and ¬ are the conjunction, disjunction, and 
negation Boolean operators, respectively; · is the concatenation operator; Hd with d ∈ Z≥0 is the hold operator; and [ ][a,b]
is the within operator, a, b ∈ Z≥0 and a ≤ b.

The semantics of the operators is defined with respect to the finite subsequences of a (possibly infinite) word o over 2A P . 
Let ot1,t2 be the subsequence of o, which starts at time t1 ≥ 0 and ends at time t2 ≥ t1. The hold operator Hds specifies that 
s ∈ A P should be repeated for d time units. The semantics of Hd¬s is defined similarly, but for d time units only symbols 
from A P \ {s} should appear. For convenience, if d = 0 we simply write s and ¬s instead of H0s and H0¬s, respectively. 
The word ot1,t2 satisfies φ1 ∧ φ2, φ1 ∨ φ2, or ¬φ if ot1,t2 satisfies both formulae, at least one formula, or does not satisfy the 
formula, respectively. The within operator [φ][a,b] bounds the satisfaction of φ to the time window [a, b]. The concatenation 
operator φ1 · φ2 specifies that first φ1 must be satisfied, and then immediately φ2 must be satisfied.

Formally, the semantics of TWTL formulae is defined recursively as follows:

ot1,t2 |= Hds iff s ∈ ot,∀t ∈ {t1, . . . , t1 + d} ∧ (t2 − t1 ≥ d)

ot1,t2 |= Hd¬s iff s /∈ ot,∀t ∈ {t1, . . . , t1 + d} ∧ (t2 − t1 ≥ d)

ot1,t2 |= φ1 ∧ φ2 iff (ot1,t2 |= φ1) ∧ (ot1,t2 |= φ2)

ot1,t2 |= φ1 ∨ φ2 iff (ot1,t2 |= φ1) ∨ (ot1,t2 |= φ2)
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ot1,t2 |= ¬φ iff ¬(ot1,t2 |= φ)

ot1,t2 |= φ1 · φ2 iff (∃t = arg mint1≤t<t2
{ot1,t |= φ1})∧(

ot+1,t2 |= φ2
)

ot1,t2 |= [φ][a,b] iff ∃t ≥ t1 + a s.t. ot,t1+b |= φ ∧ (t2 − t1 ≥ b)

A word o is said to satisfy a formula φ if and only if there exists T ∈ {0, . . . , |o|} such that o0,T |= φ.
A TWTL formula φ can be verified with respect to a bounded word. Accordingly, we define the time bound of φ, i.e., ‖φ‖, 

as the maximum time needed to satisfy φ, which can be recursively computed as follows:

‖φ‖ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max(‖φ1‖ ,‖φ2‖) if φ ∈ {φ1 ∧ φ2, φ1 ∨ φ2}
‖φ1‖ if φ = ¬φ1

‖φ1‖ + ‖φ2‖ + 1 if φ = φ1 · φ2

d if φ ∈ {Hds, Hd¬s}
b if φ = [φ1][a,b]

(1)

We denote the language of all words satisfying φ by L(φ). Note that TWTL formulae are used to specify prefix languages 
of either �∗ or �ω , where � = 2A P . Moreover, the number of operators in a TWTL formula φ is denoted by |φ|.

Note that the semantics of the concatenation operation requires that the right operand formula starts one time unit after 
the left formula is done, i.e., its satisfaction has been established. The semantics of the sequential satisfaction is captured in 
the semantics by the arg min constraint in the definition above. The importance of the constraint becomes apparent when 
time widows (within operators) are considered, where the moment of switching between tasks is not a priori fixed in the 
formula. To illustrate this, consider the simple formula [A][0,1] · B over the set of atomic propositions {A, B}. The language 
of the formula is{

({A})({B}), ({A, B})({B}), ({A})({A, B}), ({A, B})({A, B}), (∅, {A})({B}), (∅, {A, B})({B}), (∅, {A})({A, B}),
(∅, {A, B})({A, B}), ({B}, {A})({B}), ({B}, {A, B})({B}), ({B}, {A})({A, B}), ({B}, {A, B})({A, B})},

where the parentheses delimit the parts of the words satisfying the left and right formulae of the concatenation.
Some examples of TWTL formulae for a robot servicing at some regions can be as follows:

– servicing within a deadline: “service A for 2 time units before 10”,

φ1 = [H2 A][0,10] and ‖φ1‖ = 10. (2)

– servicing within time windows: “service A for 4 time units within [3, 8] and B for 2 time units within [4, 7]”,

φ2 = [H4 A][3,8] ∧ [H2 B][4,7] and ‖φ2‖ = 8. (3)

– servicing in sequence: “service A for 3 time units within [0, 5] and after this service B for 2 time units within [4, 9]”,

φ3 = [H3 A][0,5] · [H2 B][4,9] and ‖φ3‖ = 15. (4)

– servicing in strict sequence: “service A for 3 time units within [0, 5] and after this service B for 2 time units within [0, 3]
and then C for 4 time units within [0, 6] and do not service B and C before A, and C before B within [0, 16]”,

φ4 = [H3 A][0,5] · [H2 B][0,3] · [H4C][0,6] ∧ ¬[B · [A][0,15] ∨ C · [A ∨ B][0,15]][0,16] and ‖φ4‖ = 16. (5)

– enabling conditions: “if A is serviced for 2 time units within 9 time units, then B should be serviced for 3 time units 
within the same time interval (i.e., within 9 time units)”,

φ5 = [H2 A ⇒ [H3 B][2,5]][0,9] and ‖φ5‖ = 9, (6)

where ⇒ denotes implication.
In order to describe rich specifications, a temporal logic can be selected based on the expressivity of the logic and 

the complexity of the corresponding algorithms (e.g., for automata construction). In general, expressivity and complexity 
are coupled terms such that a logic with very rich expressivity has very high complexity. Furthermore, the easiness to 
express the specifications and to comprehend the meaning of the formulae is also a crucial aspect when choosing temporal 
logics. TWTL induces finite languages, and it has the same expressivity of BLTL.3 On the other hand, STL and MTL are more 
expressive languages than TWTL since they are developed for real-time systems and can express continuous-time properties.

3 The next operator (X) is usually part of the syntax of BLTL, but may be defined as Xφ ≡ G≤1φ ∨ (¬φ ∧ F≤1φ). The nested next operator is denoted by 
Xd , d ∈ Z≥0.



C.-I. Vasile et al. / Theoretical Computer Science 691 (2017) 27–54 31
Table 1
The representation of (3) in TWTL, BLTL, and MTL.

TWTL [H4 A][3,8] ∧ [H2 B][4,7]
BLTL X3F≤8−4−3G≤4 A ∧ X4F≤7−2−4G≤2 B
MTL

∨8−4
i=3 G[i,i+4] A ∧ ∨7−2

i=4 G[i,i+2] B

Table 2
The representation of (4) in TWTL, BLTL, and MTL.

TWTL [H3 A][0,5] · [H2 B][4,9]
BLTL F≤5−3(G≤3 A ∧ X3+4F≤9−2−4G≤2 B)

MTL
∨5−3

i=0 (G[i,i+3] A ∧ ∨i+3+9−2
j=i+3+4 G[ j, j+2] B)

Table 3
The representation of (5) in TWTL, and BLTL. Equivalent MTL formulae are too long, and thus were omitted.

TWTL [H3 A][0,5] · [H2 B][0,3] · [H4C][0,6] ∧ ¬[B · [A][0,15] ∨ C · [A ∨ B][0,15]][0,16]
BLTL (G≤3(¬(B ∨ C)))U≤5−3 A ∧ F≤5−3(G≤3 A ∧ X3((G≤2¬C)U≤3−2 B ∧ F≤3−2(G≤2 ∧ X2F≤6−4G≤4C)))

TWTL provides some benefits over other time-bounded temporal logics. From the perspective of easiness to express 
specifications and to comprehend formulae, a main benefit of TWTL is the existence of concatenation, within, and hold 
operators. In particular, these operators lead to compact (shorter length) representation of specifications, which greatly 
improves the readability of the formulae. For example, consider the specifications in (3), (4) and (5), which are expressed in 
various temporal logics in Table 1, 2 and 3. Note that the TWTL formulae are short and comprehensible whereas an expert 
in formal methods might be required to create the other formulae to take into account the nested temporal operators, the 
shifted time windows, and the disjunction of numerous sub-formulae.

From the perspective of complexity, a main benefit of TWTL is the existence of explicit concatenation operator. In partic-
ular, the concatenation of two tasks can be expressed in other logics in a more sophisticated way than TWTL. In Table 2, we 
illustrate that the MTL formula contains a set of recursively defined sub-formulae connected by disjunctions whereas the 
BLTL formula contains nested temporal operators with conjunction. In both cases, dealing with the disjunction of numerous 
sub-formulae and the nested temporal operators with conjunction significantly increases the complexity of constructing the 
automaton (i.e., in exponential and quadratic ways, respectively [32]). On the other hand, we provide a linear-time algorithm 
in Sec. 7 to handle the concatenations of tasks under some mild assumptions.

Moreover, the automata construction algorithms in Sec. 7 are specifically developed for TWTL. Thus, an automaton for 
the satisfying language of a TWTL formula can be constructed directly (without translating it to another logic to use an 
off-the-shelf tool). For example, the authors of [39] translate a BLTL formula to a syntactically co-safe linear temporal logic 
(scLTL) formula [28] to use the automata construction tool scheck [29], which increases the complexity due to additional 
operations. Finally, for a given TWTL formula φ, we show that all possible temporally relaxed φ can be encoded to a very 
compact representation, which is enabled from the definition of temporal relaxation introduced in the next section.

4. Temporal relaxation

In this section, we introduce a temporal relaxation of a TWTL formula. This notion is used in Sec. 5 to formulate an 
optimization problem over temporal relaxations.

To illustrate the concept of temporal relaxation, consider the following TWTL formula:

φ1 = [H1 A][0,2] · [H3 B ∧ [H2C][0,4]][1,8]
. (7)

In cases where φ1 cannot be satisfied, one question is: what is the “closest” achievable formula that can be satisfied? 
Hence, we investigate relaxed versions of φ1. One way to do this is to relax the deadlines for the time windows, which are 
captured by the within operator. Accordingly, a relaxed version of φ1 can be written as

φ1(τ ) = [H1 A][0,(2+τ1)] · [H3 B ∧ [H2C][0,(4+τ2)]][1,(8+τ3)], (8)

where τ = (τ1, τ2, τ3) ∈ Z
3. Note that a critical aspect while relaxing the time windows is to preserve the feasibility of the 

formula. This means that all sub-formulae of φ enclosed by the within operators must take less time to satisfy than their 
corresponding time window durations.

Definition 4.1 (Feasible TWTL formula). A TWTL formula φ is called feasible, if the time window corresponding to each within
operator is greater than the duration of the corresponding enclosed task (expressed via the hold operators).
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Remark 4.1. Consider the formula in Eq. (8). For φ1(τ ) to be a feasible TWTL formula, the following constraint must hold: 
(i) 2 +τ1 ≥ 1; (ii) 4 +τ2 ≥ 2 and (iii) 7 +τ3 ≥ max{3, 4 +τ2}. Note that τ may be non-positive. In such cases, φ1(τ ) becomes 
a stronger specification than φ1, which implies that the sub-tasks are performed ahead of their actual deadlines.

Let φ be a TWTL formula. Then, a τ -relaxation of φ is defined as follows:

Definition 4.2 (τ -Relaxation of φ). Let τ ∈ Z
m , where m is the number of within operators contained in φ. The τ -relaxation 

of φ is a feasible TWTL formula φ(τ ), where each subformula of the form [φi][ai ,bi ] is replaced by [φi][ai ,bi+τi ] .

Remark 4.2. For any φ, φ(0) = φ.

Definition 4.3 (Temporal relaxation). Given φ, let φ(τ ) be a feasible relaxed formula. The temporal relaxation of φ(τ ) is 
defined as |τ |T R = max j(τ j).

Remark 4.3. If a word o |= φ(τ ) with |τ |T R ≤ 0, then o |= φ.

5. Optimization over temporal relaxation

In this section, first, we propose a generic optimization problem over temporal relaxations of a TWTL formula. Then, we 
show how this setup can be used to formulate verification, synthesis, and learning problems.

The objective of the following optimization problem is to find a feasible relaxed version of a TWTL formula that optimizes 
a cost function penalizing the sets of satisfying and unsatisfying words, and the vector of relaxations.

Problem 5.1. Let φ be a TWTL formula over the set of atomic propositions A P , and let L1 and L2 be any two languages 
over the alphabet � = 2A P . Consider a cost function F : Z≥0 × Z≥0 × Z

m → R, where m is the number of within operators 
contained in φ. Find τ such that F (|L(φ(τ )) ∩L1| , |L(¬φ(τ )) ∩L2| , τ ) is minimized.

The sets L1 and L2 are used to impose constraints on the sets of words satisfying and violating the relaxed formula 
φ(τ ).

5.1. Verification, synthesis, and learning

In the following, we formulate three specific problems related to verification, synthesis, and learning based on Prob-
lem 5.1. The synthesis problem addressed in this paper follows a recent trend of methods that return policies with 
reasonable performance even in the case when the specification cannot be met. In literature, some synthesis problems 
are framed as an optimization problem where the objective is to find a solution satisfying the minimal relaxation of a given 
specification [37,40,41,21,14]. Alternatively, some studies impose a hierarchical structure on the input specification based on 
some given priorities [37,40,14]. As such, lower priority properties may be disregarded in case the original specification can-
not be satisfied. Yet another approach is presented in [31] where the authors consider a desired specification and a method 
to “locally” mend solution strategies in case these become infeasible. Thus, the method avoids global re-synthesis. Note that 
in these approaches it is very hard to translate and evaluate relaxed policies with respect to the original specifications.

The objective of the synthesis problem formulated in this section is to find a control policy (or strategy) that results 
in the satisfaction of the original formula or its minimal relaxation in case of infeasibility. Our solution approach differs 
from existing studies [37,40,41,21,14] in that the relaxation is defined at a semantic level, i.e., the TWTL formulae are 
parametrized. The main benefit of our approach is that the results of a synthesis algorithm can be interpreted in the same 
semantics as the original specification without using an additional representation (e.g., automata) for the relaxed formulae.

The verification problem addressed in this paper checks if a systems satisfies the structure of a specification without 
considering the time parameters, i.e., the deadlines of the within operators. This formulation differs from the generic ones 
that consider properties with fixed (temporal or spatial) parameters. Verification problems involving parametric formulae 
were also considered in [46] for STL and in [3] for LTL properties. In [46], the authors consider a (dense-time) STL specifi-
cation with a single parameter and the problem of estimating bounds for that parameter. The solution is obtained using an 
optimization procedure that is defined in terms of robustness degree for STL properties. The problems explored in [3] are 
closer to the ones proposed in this paper. However, both bounded and unbounded properties are considered in [3] and the 
focus of the exposition is geared towards establishing decidability and complexity bounds.

Lastly, we address a parameter learning problem where the goal is to learn the time parameters of a TWTL formula from 
a given data set. The parameter synthesis for PSTL formulae is tackled in [4,19]. Moreover, Temporal Logic Inference, which is 
the problem of learning both the structure and parameters of properties, is considered in [23,13]. In this paper, we focus 
only on the inference of deadlines for TWTL formulae from labeled data such that the misclassification rate is minimized.
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5.1.1. Verification4

Given a transition system T and a TWTL formula φ, we want to check if there exists a relaxed formula φ(τ ) such that 
all output words generated by T satisfy φ(τ ).

In Problem 5.1, we can set L1 = ∅ and L2 =L(T ), and we choose the following cost function:

F (x, y,τ ) = 1 − δ(y), (9)

where x, y ∈ Z≥0 and δ(x) =
{

1 x = 0

0 x �= 0
. The cost function in Eq. (9) has a single global minimum value at 0 which corre-

sponds to the case L(T ) ∩L(¬φ(τ )) = ∅.

5.1.2. Synthesis
Given a transition system T and a TWTL formula φ, we want to find a policy (a trajectory of T ) that produces an output 

word satisfying a relaxed version φ(τ ) of the specification with minimal temporal relaxation |τ |T R .
In Problem 5.1, we can set L1 =L(T ) and L2 = ∅, and we choose the following cost function:

F (x, y,τ ) =
{

|τ |T R x > 0

∞ otherwise
, (10)

where x, y ∈ Z≥0. The cost function in Eq. (10) is minimized by an output word of T , which satisfies the relaxed version of 
φ with minimum temporal relaxation, see Definition 4.3.

5.1.3. Learning
Let φ be a TWTL formula and Lp and Ln be two finite sets of words labeled as positive and negative examples, 

respectively. We want to find a relaxed formula φ(τ ) such that the misclassification rate, i.e., 
∣∣{w ∈Lp | w �|= φ(τ )}∣∣ +

|{w ∈Ln | w |= φ(τ )}|, is minimized.
This case can be mapped to the generic formulation by setting L1 =Ln , L2 =Lp and choosing the cost function

F (x, y,τ ) = x + y, (11)

which captures the misclassification rate, where x, y ∈ Z≥0.

5.2. Overview of the solution

We propose an automata-based approach to solve the verification, synthesis, and learning problems defined above. 
Specifically, the proposed algorithm constructs an annotated DFA A∞ , which captures all temporal relaxations of the given 
formula φ, i.e., L(A∞) =L(φ(∞)) (see Definition 6.3 for the definition of φ(∞)). Note that the algorithm can also be used 
to construct a (normal) DFA A which accepts the satisfying language of φ, i.e., L(A) = L(φ). Using the resulting DFA A∞ , 
we proceed in Sec. 8 to solve the synthesis and verification problems using a product automaton approach. For the synthesis 
problem, we propose a recursive algorithm that computes a satisfying path with minimum temporal relaxation. The learning 
problem is solved by inferring the minimum relaxation for each trajectory and then combining these relaxations to ensure 
minimum misclassification rate.

6. Properties of TWTL

In this section, we present properties of TWTL formulae, their temporal relaxations, and their accepted languages.
In this paper, languages are represented in three ways: as TWTL formulae, as automata, and as sets. As one might expect, 

there is a duality between some operators of TWTL and set operations, i.e., conjunction, disjunction, and concatenation 
correspond to intersection, union, and concatenation languages, respectively. Negation may be mapped to complementation 
with respect to the language of all bounded words, where the bound is given by the time bound of the negated formula.

Proposition 6.1. The following properties hold

(φ1 · φ2) · φ3 = φ1 · (φ2 · φ3) (12)

φ1 · (φ2 ∨ φ3) = (φ1 · φ2) ∨ (φ1 · φ3) (13)

[φ1 ∨ φ2][a,b] = [φ1][a,b] ∨ [φ2][a,b] (14)

¬(Hd p) = [¬p][0,d] (15)

4 This problem is not a verification problem in the usual sense, but rather finding a formula that is satisfied by all runs of a system.



34 C.-I. Vasile et al. / Theoretical Computer Science 691 (2017) 27–54
[φ1][a1,b1] =
b1∨

i=a1

(Hi−1� · φ1) (16)

[φ1][a1,b1] = (Ha1−1�) · [φ1][0,b1−a1] (17)

(Hd1 p) · (Hd2 p) = Hd1+d2+1 p (18)

[φ1][a,b] ⇒ [φ1][a,b+τ ] (19)

where φ1 , φ2 , and φ3 are TWTL formulae, p ∈ {s, ¬s}, s ∈ A P ∪ {�}, and a, b, a1, b1, d, d1, d2, τ ∈ Z≥0 such that a ≤ b and 
1 ≤ a1 ≤ b1 .

Proof. These follow directly from the semantics of TWTL formulae. �
Definition 6.1 (Disjunction-Free Within form). Let φ be a TWTL formula. We say that φ is in Disjunction-Free Within (DFW) 
form if for all within operators contained in the formula the associated enclosed subformulae do not contain any disjunction 
operators.

An example of a TWTL formula in DFW form is φ1 = [H2 A][0,9] ∨ [H5 B][0,9] , while a formula not in DFW form is 
φ2 = [H2 A ∨ H5 B][0,9] . However, φ1 and φ2 are equivalent by Eq. (14) of Proposition 6.1. The next proposition formalizes 
this property.

Proposition 6.2. For any TWTL formula φ , if the negation operators are only in front of the atomic propositions, then φ can be written 
in the DFW form.

Proof. The result follows from the properties of distributivity of Boolean operators and Proposition 6.1, which can be applied 
iteratively to move all disjunction operators outside the within operators. �

In the following, we define the notion of unambiguous concatenation, which enables tracking of progress for sequential 
specifications. Specifically, if the property holds, then an algorithm is able to decide at each moment if the first specification 
has finished while monitoring the satisfaction of two sequential specifications.

Definition 6.2. Let L1 and L2 be two languages. We say that the language L1 ·L2 is an unambiguous concatenation if each 
word in the resulting language can be split unambiguously, i.e., 

(
L1, L1, L1 · (P (L2) \ {ε})) is a partition of P (L1 ·L2), 

where L1 = {w0,i | w ∈L1, i ∈ {0, . . . , |w| − 2}} and P (L) denotes the maximal prefix language of L.

The three sets of the partition from Definition 6.2 may be thought as indicating whether the first specification is in 
progress, the first specification has finished, and the second specification is in progress, respectively.

Proposition 6.3. Consider two languages L1 and L2 . The language L1 · L2 is an unambiguous concatenation if and only if L1 is an 
unambiguous language.

Proof. Let 
(
L1, L1, L1 · (P (L2) \ {ε})) be a partition of P (L1 ·L2) and L be a proper subset of L1. Assume that there exists 

w ∈ L and w ′ ∈ L1 \ L such that w = w ′
0,i , for some i ∈ {0, . . . , 

∣∣w ′∣∣ − 1}. It follows that w ∈ L1, because w �= w ′ . However, 
this contradicts the fact that L1 and L1 are disjoint.

Conversely, let L1 be unambiguous and consider a word w ∈ P (L1 ·L2). Assume that w ∈ L1 ∩L1. It follows that {w} is 
a prefix language for L1 \ {w}, which contradicts with the hypothesis that L1 is unambiguous. Similarly, if we assume that 
there exists w ∈ P (L1) ∩ (

L1 · (P (L2) \ {ε})), then there exists w ′, w ′′ ∈ L1 such that w ′ is a prefix of w , w is a prefix of 
w ′′ , and 

∣∣w ′∣∣ < |w| ≤ ∣∣w ′′∣∣. Thus, we arrive again at a contradiction with the unambiguity of L1. Thus, the three sets form 
a partition of P (L1 ·L2). �
Proposition 6.4. Consider two unambiguous languages L1 and L2 . The language L1 ∪L2 is unambiguous if and only if L1 ∩ P (L2) =
L2 ∩ P (L1) = ∅.

Proof. Let L1 ∪L2 be unambiguous. Assume that there exists w ∈ L1 ∩ P (L2). It follows that w ∈ P (L2) ⊆ P (L1 ∪L2) and 
w ∈L1 ∪L2, which implies a contradiction with the hypothesis that L1 ∪L2 is unambiguous. Thus, we obtain L1 ∩ P (L2) =
∅. Similarly, it follows that L2 ∩ P (L1) = ∅.

Conversely, let L1 ∩ P (L2) = L2 ∩ P (L1) = ∅. Let L = L1 ∪ L2 ⊂ L1 ∪ L2 such that L �= ∅, L1 ⊂ L1 and L2 ⊂ L2. It 
follows that L1 ∩ P (L1) = ∅ and L1 ∩ P (L2) = ∅. Thus, L1 ∩ (

P (L1) ∪ P (L2)
) = L1 ∩ P (L1 ∪L2) = ∅. Similarly, we obtain 

L2 ∩ P (L1 ∪L2) = ∅. Finally, it follows that L ∩ P (L1 ∪L2) = (L1 ∪ L2) ∩ P (L1 ∪L2) = ∅, which shows that L cannot be a 
prefix language of L1 ∪L2. Therefore, L1 ∪L2 is unambiguous. �
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Fig. 1. An AST corresponding to the TWTL in Eq. (7). The intermediate light gray nodes correspond to the Boolean, concatenation, and within operators, 
while the dark gray leaf nodes represent the hold operators.

Proposition 6.5. If L1 and L2 are unambiguous languages, then language L1 ∩L2 is unambiguous.

Proof. Let w ∈ L1 ∩ L2. It follows that w /∈ P (L1) and w /∈ P (L2). Therefore w /∈ P (L1 ∩L2), which implies L1 ∩ L2 is 
unambiguous. �

In the following results, we frequently use the notion of abstract syntax tree of a TWTL formula. An Abstract Syntax Tree 
(AST) of φ is denoted by A S T (φ), where each leaf corresponds to a hold operator and each intermediate node corresponds to 
a Boolean, concatenation, or within operator. Given a TWTL formula φ, there might exist multiple AST trees that represent φ. 
In this paper, A S T (φ) is assumed to be computed by an LL(*) parser [35]. The reader is referred to [17] for more details on 
AST and parsers. An example of an AST tree of Eq. (7) is illustrated in Fig. 1.

Proposition 6.6. Let τ ′, τ ′′ ∈ Z
m such that φ(τ ′) and φ(τ ′′) are two feasible relaxed formulae, where m is the number of within 

operators in φ . If τ ′ ≤ τ ′′ , then φ(τ ′) ⇒ φ(τ ′′).

Proof. The proof follows by structural induction over A S T (φ). The base case is trivial, since the leafs correspond to the 
hold operators. For the induction step, the result follows trivially if the intermediate node is associated with a Boolean or 
concatenation operator. The case of the within operator follows from Eq. (16) and (19) in Proposition 6.1. Let φ = [φ1][a,b] . 
By the induction hypothesis, it holds φ1(τ ′

1) ⇒ φ1(τ ′′
1) for all τ ′

1 ≤ τ ′′
1 ∈ Z

m−1. Let τ ′ ≤ τ ′′ ∈ Z, τ ′ = [τ T τ ]T and τ ′′ =
[τ ′′ T τ ′′]T . Thus, φ(τ ′) = ∨b+τ ′

i=a (Hi−1� ·φ1(τ ′
1)) =⇒ ∨b+τ ′

i=a (Hi−1� ·φ1(τ ′′
1)) = [φ1(τ ′′

1)][a,b+τ ′] ⇒ [φ1(τ ′′
1)][a,b+τ ′′] , where the 

first implication follows from the induction hypothesis applied to each pair of delayed formulae, i.e., 
(

Hi−1� · φ1(τ ′
1)

) =⇒(
Hi−1� · φ1(τ ′′

1)
)
, for all i ≥ 0. The second implication holds due to Eq. (19). �

Definition 6.3. Given an output word o, we say that o satisfies φ(∞), i.e., o |= φ(∞), if and only if ∃τ ′ < ∞ s.t. o |= φ(τ ′).

The next corollary follows directly from Proposition 6.6.

Corollary 6.7. Let τ < ∞, then φ(τ ) ⇒ φ(∞), ∀τ .

Proposition 6.8. Let φ(τ ′) and φ(τ ′′) be two feasible relaxed formulae. If τ ′ ≤ τ ′′ , then 
∥∥φ(τ ′)

∥∥ ≤ ∥∥φ(τ ′′)
∥∥.

Proof. The result follows by structural induction from Eq. (1) using a similar argument as in the proof of Proposition 6.6. �
An important observation about TWTL is that the accepted languages corresponding to formulae are finite languages. In 

the following, we characterize such languages in terms of the associated automata.

Definition 6.4. A DFA is called strict if and only if (i) the DFA is blocking, (ii) all states reach a final state, and (ii) all states 
are reachable from the initial state.

Proposition 6.9. Any DFA A may be converted to a strict DFA in O (|SA| · |�|) time.

Proof. States unreachable from the initial state can be identified by traversing the automaton graph from the initial state 
using either breath- or depth-first search. Similarly, the states not reaching a final state can be removed by traversing the 
automaton graph using the reverse direction of the transitions. Both operations take at most O (|δA|) = O (|SA| · |�|), since 
there are at most |�| transitions outgoing from each state, where � is the alphabet of A. �

Note that a strict DFA is not necessarily minimal with respect to the number of states.

Proposition 6.10. If L is a finite language over an alphabet �, then the corresponding strict DFA is a directed acyclic graph (DAG). 
Moreover, given a (general) DFA A, checking if its language L(A) is finite takes O (|SA| · |�|) time.
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Proof. For the first part, assume for the sake of contradiction that A has a cycle. Then, we can form words in the accepted 
language by traversing the cycle n ∈ Z≥0 times before going to a final state. Note that the states in the cycle are reachable 
from the initial state and also reach a final state, because A is a strict DFA. It follows that L is infinite, which contradicts 
the hypothesis. Checking if a DFA A is DAG takes O (|SA| · |�|) by using a topological sorting algorithm, because of the 
same argument as in Proposition 6.9. �
Corollary 6.11. Let L be a finite unambiguous language over the alphabet � and A be its corresponding strict DFA. The following two 
statements hold:

1. if s ∈ FA , then the set of outgoing transitions of s is empty.
2. A may be converted to a DFA with only one final states.

Proof. Consider a final state s ∈ FA . Assume that there exists s′ ∈ SA such that s σ−→A s′ , where σ ∈ �. Since A is strict, 
it follows that there is another final state s′′ ∈ FA which can be reached from s′ . Next, we form the words w and w ′
leading to s and s′′ passing trough s′ , respectively. Clearly, w is a prefix of w ′ , which implies that L is not an unambiguous 
language. The second statement follows from the first by noting that in this case, merging all final states does not change 
the accepted language of the DFA A. �

The following result shows that any finite language can be expressed by either TWTL and BLTL. However, as shown in 
Sec. 3, the two logics may not be equally concise.

Proposition 6.12. For every finite language L, there exists a TWTL formula φ and a BLTL formula ϕ such that L =L(φ) =L(ϕ).

Proof. First, note that both TWTL and BLTL have bounded time semantics, and therefore describe finite languages. Let A P
be a finite set of atomic propositions and L a finite language over � = 2A P . For every word w = w0, w1, . . . ∈ L, we can 
form the TWTL formula φw = ∏|w|

i=0

(∧
σ∈wi

σ
)

, and BLTL formula ϕw = ∧|w|
i=0

(
Xi

(∧
σ∈wi

σ
))

, where 
∏

denotes iterated 
concatenation. Consider φL = ∨

w∈L φw and ϕL = ∨
w∈L ϕw . It follows that L = L(φw) =L(ϕL). �

7. Automata construction

In this section, we present a recursive procedure to construct DFAs for TWTL formulae and their temporal relaxations. 
The resulting DFA are used in Sec. 8 to solve the proposed problems in Sec. 5.1.

An important property of the automata representation proposed in this section is that it is independent of the time 
bounds (deadlines) in the formula. Thus, we obtain a parametric representation of all relaxed formulae from a given TWTL 
formula. Note that a similar (or parametric) representation may not be accommodated via SAT, SMT or MILP encoding 
schemes which depend on the exact time bounds of the encoded formulae.

Throughout the paper, a TWTL formula is assumed to have the following properties:

Assumption 1. Let φ be a TWTL. Assume that (i) negation operators are only in front of atomic propositions, and (ii) all 
sub-formulae of φ correspond to unambiguous languages.

The second part (ii) of Assumption 1 is a desired property of specifications in practice, because it is related to the 
tracking of progress towards the satisfaction of the tasks. More specifically, if (ii) holds, then the end of each sub-formula 
can be determined unambiguously, i.e., without any look-ahead. Formulae that induce ambiguous languages correspond to 
bad specification. In Sec. 7.6, we provide a method to check (ii) and associated complexity analysis.

As stated previously in Sec. 3, TWTL formulae define prefix languages. Thus, the algorithms presented in this section 
compute automata with finite languages that terminate when their final states are reached.

7.1. Construction algorithm

In [43], a TWTL formula φ is translated to an equivalent scLTL formula, and then an off-the-shelf tool, such as scheck [29]
and spot [10], is used to obtain the corresponding DFA. In this paper, we propose an alternative construction, shown in 
Algorithm 1, with two main advantages: (i) the proposed algorithm is optimized for TWTL formulae so it is significantly 
faster than the method used in [43], and (ii) the same algorithm can be used to construct a special DFA, which captures all 
τ -relaxations of φ, i.e., the DFA A∞ corresponding to φ(∞).

Algorithm 1 constructs the DFA recursively by traversing A S T (φ) computed via an LL(*) parser [17,35] from the leaves to 
the root. If the parameter inf is true, then the returned DFA is an annotated DFA A∞ corresponding to φ(∞); otherwise a 
normal DFA A is returned. Each operator has an associated algorithm �⊗ with ⊗ ∈ {∧, ∨, ·, H, ∞, [ ]}, which takes the DFAs 
corresponding to the operands (subtrees of the operator node in the AST) as input. Then, �⊗ returns the DFA that accepts 
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Algorithm 1: Translation algorithm – translate(·).
Input: φ – the specification as a TWTL formula in DFW form
Input: inf – flag specifying if the normal or annotated DFA is computed
Output: A – translated DFA

1 if φ = φ1 ⊗ φ2 , where ⊗ ∈ {∧, ∨, ·} then
2 A1 ← translate(φ1), A2 ← translate(φ2)

3 A ← �⊗(A1, A2)

4 else if φ = Hd p, where p ∈ {s, ¬s} and s ∈ A P then
5 A ← �H (p, d, A P )

6 else if φ = [φ1][a,b] then
7 A1 ← translate(φ1)

8 if inf then A ← �∞(A1, a, b)

9 else A ← �[ ](A1, a, b)

10 return A

the formula associated with the operator node. In the following, we present all operators and related operations, such as 
annotating a DFA, relabeling the states of a DFA, or returning the truncated version of a DFA with respect to some given 
bound.

7.2. Annotation

The algorithms presented in this section use DFAs with some additional annotation. In this subsection, we introduce 
a annotated DFA and two algorithms, Algorithm 3 and Algorithm 2, that are used to (re)label DFAs and the associated 
annotation data, respectively.

We assume the following conventions to simplify the notation: (i) there is a global boolean variable inf accessible by all 
algorithms, which specifies whether the normal or the annotated DFAs are to be computed; (ii) in all algorithms, we have 
� = 2A P ; (iii) an element of σ ∈ � is called a symbol and is also a set of atomic propositions, σ ⊆ A P ; (iv) a symbol σ is 
called blocking for a state s if there is no outgoing transition from s activated by σ .

7.2.1. Annotation
An annotated DFA is a tuple A = (SA, s0, �, δ, FA, TA), where the first five components have the same meaning as in 

Definition 2.4 and TA is a tree that corresponds to the AST of the formula associated with the DFA. Each node T of the tree 
contains the following information:

1. T .op is the operation corresponding to T ;
2. T .I is the set of initial states of the automaton corresponding to T ;
3. T .F is the set of final states of the automaton corresponding to T ;
4. T .le f t and T .right are the left and right child nodes of T , respectively.

Additionally, if T .op is ∨ (disjunction), then T has another attribute T .choice, which is explained in Sec. 7.3.2.
Note that the associated trees are set to ∅ and are ignored, if the normal DFAs are computed, i.e., inf is false.
The labels of the states change during the construction of the automata. Algorithm 2 is used to update the labels stored 

in the data structures of the tree. The algorithm takes the tree T as input, a mapping m from the states to the new labels, 
and a boolean value e that specifies if the states are mapped to multiple new states. The first step is to convert the states’ 
new labels to singleton sets if e is false (line 1). Then, the algorithm proceeds to process the tree recursively starting with T . 
The mapping m is then used to compute t.I and t.F by expanding each state to a set and then computing the union of the 
corresponding sets (lines 5–6). In the case of op = ∨, the three sets B , L, and R , which form the tuple t.choices are also 
processed. The elements of all three sets are pairs of a state s and a symbol σ ∈ �. Algorithm 2 converts the states of all 
these pairs in the tree sets (lines 7–12).

7.2.2. Relabeling a DFA
The Algorithm 3 relabels the states of a DFA A with labels given by the mapping m. The map m can be a partial function 

of the states. The states not specified are labeled with integers starting from i0 in ascending order. If m is empty, then all 
states are relabeled with integers. Lastly, if inf is true then the tree TA associated with the DFA is also relabeled, otherwise 
it is set as empty.

7.3. Operators

7.3.1. Hold
The DFA corresponding to a hold operator is constructed by Algorithm 4. The algorithm takes as input an atomic proposi-

tion s in positive or negative form, a duration d, and the set of atomic propositions A P . The computed DFA has d + 2 states 
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Algorithm 2: relabelT ree(T , m, e).
Input: T – a tree structure
Input: m – (complete) relabeling mapping
Input: e – boolean, true if m maps states to sets of states

1 if ¬e then m(s) ← {m(s)}, ∀s
2 stack ← [T ]
3 while stack �= [ ] do
4 t ← stack.pop()

5 t.I ← ⋃
s∈t.I m(s)

6 t.F ← ⋃
s∈t.F m(s)

7 if op = ∨ then
8 B, L, R ← t.choices
9 B ′ ← ⋃

(sB ,σ )∈B {(s, σ) | s ∈ m(sB )}
10 L′ ← ⋃

(sL ,σ )∈L{(s, σ) | s ∈ m(sL)}
11 R ′ ← ⋃

(sR ,σ )∈R {(s, σ) | s ∈ m(sR )}
12 t.choices ← (B ′, L′, R ′)
13 if t.le f t �= ∅ then stack.push(t.le f t)
14 if t.right �= ∅ then stack.push(t.right)

Algorithm 3: relabel(A, m, i0).
Input: A = (SA, s0, �, δ, FA) – a DFA
Input: m – (partial) relabeling mapping
Input: i0 – start labeling index
Output: the relabeled DFA

1 for s ∈ SA s.t. �m(s) do
2 m(s) ← i0

3 i0 ← i0 + 1

4 S ′
A ← {m(s) | s ∈ SA}

5 δ′ ← {m(s) σ−→A m(s′) | s σ−→A s′}
6 F ′

A ← {m(s) | s ∈ FA}
7 if inf then T ′

A ← relabelT ree(TA, m)

8 else T ′
A ← ∅

9 return (S ′
A, m(s0), �, δ′, F ′

A, T ′
A)

(line 1) that are connected in series as follows: (i) if s is in positive form then the states are connected by all transitions 
activated by symbols which contain s (lines 2–4); and (ii) if s is in negative form then the states are connected by all 
transitions activated by symbols which do not contain s (lines 5–7). Lastly, if inf is true, a new leaf node is created (line 8).

Algorithm 4: �H (p, d, A P ).
Input: p ∈ {s, ¬s}, s ∈ A P
Input: d – hold duration
Input: A P – set of atomic propositions
Output: DFA corresponding to Hd p

1 S ← {0, . . . , d + 1}
2 if p = s then
3 �s ← 2A P \ 2(A P\{s})
4 δ ← {i σ−→A (i + 1) | i ∈ {0, . . . , d}, σ ∈ �s}
5 else
6 �¬s ← 2(A P\{s})
7 δ ← {i σ−→A (i + 1) | i ∈ {0, . . . , d}, σ ∈ �¬s}
8 if inf then T ← tree(Hd, ∅, ∅, {0}, {d + 1})
9 else T ← ∅

10 return (S, 0, 2A P , δ, {d + 1}, T )

7.3.2. Conjunction and disjunction
The construction for conjunction and disjunction operations is based on the synchronous product construction and is 

similar to the standard one [17]. However, �∧ and �∨ produce strict DFAs, which only have one accepting state. Both algo-
rithms recursively construct the product automaton starting from the initial composite state. In the following, we describe 
the details of the algorithms separately.

Conjunction: The DFA corresponding to the conjunction operation is constructed by Algorithm 5. The procedure is re-
cursive and the synchronization condition, i.e., the transition relation, is the following: given two composite states (s1, s2)
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and (s′
1, s

′
2), there exists a transition from the first state to the second state if there exists a symbol σ such that: (i) there 

exists pairwise transitions enabled by σ in the two automata (lines 9–11), i.e., s1
σ−→A1 s′

1 and s2
σ−→A2 s′

2; (ii) one au-
tomaton reached a final state and the other has a transition enabled by σ (lines 5–8), i.e., either (a) s1 = s′

1 = s f 1 and 
s2

σ−→A2 s′
2, or (b) s1

σ−→A1 s′
1 and s2 = s′

2 = s f 2. The first case covers the synchronous execution (simulation) of both A1
and A2 when a symbol is encountered. The second case corresponds to the situation when the two automata require words 
of different sizes to accept an input. A simple example of this case is the DFA encoding H2 A ∧ H3 B and the input word 
{A, B}, {A, B}, {A, B}, {B}, which clearly satisfies the TWTL formula.

Algorithm 5: �∧(A1, A2).
Input: A1 = (SA1 , s01, �, δ1, {s f 1}, TA1 ) – left DFA
Input: A2 = (SA2 , s02, �, δ2, {s f 2}, TA2 ) – right DFA
Output: DFA corresponding to L(A1) ∩L(A2)

1 S ← {(s01, s02)}, E ← ∅
2 stack ← [(s01, s02)]
3 while stack �= [ ] do
4 s = (s1, s2) ← stack.pop()

5 if s1 = s f 1 then
6 Sn ← {((s1, s′

2), σ) | s2
σ−→A2 s′

2}
7 else if s2 = s f 2 then
8 Sn ← {((s′

1, s2), σ) | s1
σ−→A1 s′

1}
9 else

10 Sn ← {((s′
1, s′

2), σ) | ∃σ ∈ � s.t.
11 (s1

σ−→A1 s′
1) ∧ (s2

σ−→A2 s′
2)}

12 E ← E ∪ {(s, σ , s′) | (s′, σ) ∈ Sn}
13 S ′ ← {s′ | ∃σ ∈ � s.t. (s′, σ) ∈ Sn}
14 stack.extends(S ′ \ S)

15 S ← S ∪ S ′

16 mL = {
(u, {(u, v) ∈ SA}) | u ∈ SA1

}
17 mR = {

(v, {(u, v) ∈ SA}) | v ∈ SA2

}
18 TA ← tree(∧, relabelT ree(TA1 , mL , �),
19 relabelT ree(TA2 , mR , �), {(s01, s02)}, {(s f 1, s f 2)})
20 A ← (S, (s01, s02), �, E, {(s f 1, s f 2)}, TA)

21 return relabel(A, ∅, 0)

Note that Algorithm 5 generates only composite states which are reachable from the initial composite state (s01, s02). 
The resulting automaton has a single final state (s f 1, s f 2) which captures the fact that both automata must accept the input 
word in order for the product automaton to accept it.

After the automaton is constructed, the corresponding tree is created (lines 16–19). The child subtrees are taken from 
A1 and A2, and relabeled. The relabeling mapping expands each state s to the set of all composite states, which have s as 
the first or second component corresponding to whether s is a state of the left or right automaton, respectively.

Disjunction: The disjunction operations is translated using Algorithm 6. The first step of the algorithm is to add a trap 
state in each of the two automata A1 and A2 (line 1). All states of an automaton, except the final state, are connected via 
blocking symbols to the trap state �� (lines 3–4). The trap state has self-transitions for all symbols. Afterwards, the algorithm 
creates the synchronous product automaton in the same way as for the conjunction operation (lines 4–13). However, in this 
case, we do not need to treat composite states that contain a final state of one of the two automata separately. This follows 
from the semantics of the disjunction operation, which accepts a word as soon as at least one automaton accepts the word.

In the standard construction [17], the resulting automaton would have multiple final states, which are computed in 
line 17. However, because finals states do not have outgoing transitions, we can merge all final states and obtain an au-
tomaton with only one final state (lines 17–20). The composite trap state is also removed from the set of states (line 18).

The annotation tree is created similarly to the conjunction case (lines 21–24). However, for the disjunction case, we add 
additional information on the automaton. This information T .choices is used in latter algorithm to determine if a word has 
satisfied the left, right, or both sub-formulae corresponding to the disjunction formula. This is done by partitioning the 
transitions incoming into finals states (line 14–16) and storing this partition in the associated tree node (line 25). Note that 
only the start state and the symbol of each transition is stored in the partition sets and these are well defined, because the 
DFAs are deterministic.

7.3.3. Concatenation
The algorithm to compute an automaton accepting the concatenation language of two languages is shown in Algorithm 7. 

The special structure of the unambiguous languages, see Sec. 6 for details, admits a particularly simple and intuitive con-
struction procedure. The composite automaton is obtained by identifying the final state of left automaton A1 with the initial 
state of the right automaton A2.



40 C.-I. Vasile et al. / Theoretical Computer Science 691 (2017) 27–54
Algorithm 6: �∨(A1, A2).
Input: A1 = (SA1 , s01, �, δ1, {s f 1}, TA1 ) – left DFA
Input: A2 = (SA2 , s02, �, δ2, {s f 2}, TA2 ) – right DFA
Output: DFA corresponding to L(A1) ∪L(A2)

1 S ′
A1

← SA1 ∪ {��}, S ′
A2

← SA2 ∪ {��}
2 δ′

1 ← δ1 ∪ {(s, σ , ��) | s ∈ S ′
A1

\ {s f 1}, σ ∈ �, �δ1(s, σ)}
3 δ′

2 ← δ2 ∪ {(s, σ , ��) | s ∈ S ′
A2

\ {s f 2}, σ ∈ �, �δ2(s, σ)}
4 S ← {(s01, s02)}, E ← ∅
5 stack ← [(s01, s02)]
6 while stack �= [ ] do
7 s = (s1, s2) ← stack.pop()

8 Sn ← {((s′
1, s′

2), σ) | ∃σ ∈ � s.t.
9 (s′

1 = δ′
1(s1, σ)) ∧ (s′

2 = δ′
2(s2, σ))}

10 E ← E ∪ {(s, σ , s′) | (s′, σ) ∈ Sn}
11 S ′ ← {s′ | ∃σ ∈ � s.t. (s′, σ) ∈ Sn}
12 stack.extends(S ′ \ S)

13 S ← S ∪ S ′

14 B ← {(s, σ) | ∃σ s.t. (s, σ , (s f 1, s f 2)) ∈ E}
15 L ← {(s, σ) | ∃s2 �= s f 2, ∃σ s.t. (s, σ , (s f 1, s2) ∈ E}
16 R ← {(s, σ) | ∃s1 �= s f 1, ∃σ s.t. (s, σ , (s1, s f 2) ∈ E}
17 F ← {(s1, s2) ∈ S | (s1 = s f 1) ∨ (s2 = s f 2)}
18 S ← S \ (F ∪ {(��, ��)})
19 E ← E \ {(s, σ , s′) ∈ E | s′ ∈ F }
20 E ← E ∪ {(s, σ , (s f 1, s f 2)) | (s, σ) ∈ B ∪ L ∪ R}
21 mL = {

(u, {(u, v) ∈ SA}) | u ∈ SA1

}
22 mR = {

(v, {(u, v) ∈ SA}) | v ∈ SA2

}
23 TA ← tree(∨, relabelT ree(TA1 , mL , �),
24 relabelT ree(TA2 , mR , �), {(s01, s02)}, {(s f 1, s f 2)})
25 TA.choices ← (B, L, R)

26 A ← (S, (s01, s02), �, E, {(s f 1, s f 2)}, TA)

27 return relabel(A, ∅, 0)

Algorithm 7: �·(A1, A2).
Input: A1 = (SA1 , s01, �, δ1, {s f 1}, TA1 ) – left DFA
Input: A2 = (SA2 , s02, �, δ2, {s f 2}, TA2 ) – right DFA
Output: DFA corresponding to L(A1) ·L(A2)

1 A1 ← relabel(A1, ∅, 0)

2 A2 ← relabel(A2, {(s02, s f 1)}, ∣∣SA1

∣∣)
3 if inf then T ← tree(·, TA1 , TA2 , {s01}, {s f 2})
4 else T ← ∅
5 return (SA1 ∪ SA2 , s01, �, δ1 ∪ δ1, {s f 2}, T )

7.3.4. Within
There are two algorithms used to construct a DFA associated with a within operator, Algorithm 8 and Algorithm 9

correspond to the relaxed and normal construction (lines 6–9 of Algorithm 1).
Relaxed within: The construction procedure Algorithm 8 is as follows: starting from the DFA corresponding to the enclosed 

formula, all states are connected via blocking symbols to the initial state (lines 3–4). The last step is to create a number of 
a states connected in sequence for all symbols, similarly to Algorithm 4, and connecting the a-th state to the initial state 
also for all symbols (lines 5–8).

Connecting all states to the initial state represents a restart of the automaton in case a blocking symbol was encountered. 
Thus, the resulting automaton offers infinite retries for a word to satisfy the enclosed formula. The a states added before 
the initial state represent a delay of length a for the start of the tracking of the satisfaction of the enclosed formula. Note 
that the procedure and resulting automaton do not depend on the upper bound b.

Normal within: The algorithm for the normal case builds upon Algorithm 8. In this case the construction procedure 
Algorithm 9 must take into account the upper time bound b. Similarly to the relaxed case, we need to restart the automaton 
of the when a blocking symbol is encountered. However, there are two major differences: (i) the automaton must track the 
number of restarts, because there are only a finite number of tries depending on the deadline b, and (ii) the automaton A
may need to be truncated for the last restart retries, i.e., all paths must have a length of at most a given length, in order to 
ensure that the satisfaction is realized before the upper time limit b.

In Algorithm 9, first the maximum number of restarts p is computed in lines 1–2. Then, p DFAs are created (lines 3–12), 
which correspond to the relabeled and truncated copies of A, see Algorithm 10, and their union is computed iteratively. The 
truncation bound is computed as the remaining time units until the limit b is reached. The final state is always labeled with 
−1 (line 7) and, therefore, the resulting DFA has exactly one final state. Next, the restart transitions are added (lines 13–18). 
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Algorithm 8: �∞(A, a, b).
Input: A = (SA, s0, �, δ, {s f }, TA) – child DFA
Input: a – lower bound of time-window
Input: b – upper bound of time-window
Output: computed DFA

1 A ← relabel(A, ∅, 0)

2 S ← ∅, E ← ∅
3 for s ∈ SA \ {s f } do
4 E ← E ∪ {(s, σ , s0) | �s′ = δ(s, σ)}
5 if a > 0 then
6 S ← {|SA| , . . . , |SA| + a − 1}
7 E ← E ∪ {

(i, σ , i + 1) | i ∈ S \ {|SA| + a − 1}, σ ∈ �
}

8 E ← E ∪ {(|SA| + a − 1, σ , s0) | σ ∈ �}
9 T ← tree([ ][a,b]∞ , TA, ∅, {|SA|}, {s f })

10 return (SA ∪ S, |SA| , �, δ ∪ E, {s f }, T )

Algorithm 9: �[ ](A, a, b).
Input: A = (SA, s0, �, δ, {s f }, TA) – child DFA
Input: a – lower bound of time-window
Input: b – upper bound of time-window
Output: computed DFA

1 l ← Dijkstra(A, s0, s f )

2 p ← b − a − l + 2
3 I ← [ ] // list
4 n ← 0
5 Ar ← (SAr = ∅, ∞, �, δr = ∅, ∅, ∅)

6 for k ∈ {1, . . . , p} do
7 m ← {(s f , −1)} // mark final state
8 Aa ← relabel(A, m, n)

9 At ← truncate(Aa, b − a + 2 − k)

10 Ar ← (SAr ∪ SAt , ∞, �, δr ∪ δt , {−1}, ∅)

11 I ← I + [s0t ]
12 n ← n + ∣∣SAt

∣∣
13 Sc ← {I[0]}, E ← ∅
14 for sr ∈ I[1 : ] do
15 Sn ← ∅
16 for s ∈ Sc \ {−1} do
17 E ← E ∪ {(s, σ , sr) | σ ∈ � s.t. �δr(s, σ)}
18 Sc ← Sc ∪ {sr}
19 S ← ∅
20 if a > 0 then
21 S ← {∣∣SAr

∣∣ , . . . , ∣∣SAr

∣∣ + a − 1}
22 E ← E ∪ {

(i, σ , i + 1) | i ∈ S \ {∣∣SAr

∣∣ + a − 1}, σ ∈ �
}

23 E ← E ∪ {(∣∣SAr

∣∣ + a − 1, σ , s0) | σ ∈ �}
24 return (SAr ∪ S, I[0], �, δr ∪ E, {−1}, ∅)

Note that the transitions, enabled by blocking symbols, lead to initial states of the proper restart automaton. For example, 
if a blocking symbol was encountered after two symbols, then the restart transition (if it exists) leads to the initial state of 
the fourth copy of the automaton. Lastly, a delay of a time units is added before the initial state of the automaton similar 
to the relaxed case.

7.3.5. Truncate
Algorithm 10 takes as input a DFA A and a cutoff bound l and returns a version of A with all paths guaranteed to have 

length at most l. The algorithm is based on a breath-first search and returns a strict DFA.

7.4. Correctness

The following theorems show that the proposed algorithms for translating TWTL formulae to (normal or annotated) 
automata are correct.

Theorem 7.1. If φ is a TWTL formula satisfying Assumption 1 and the global parameter inf is true, then Algorithm 1 generates a DFA 
A∞ such that L(A∞) =L(φ(∞)).
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Algorithm 10: truncate(A, l).
Input: A = (SA, s0, �, δ, {s f }, TA) – a DFA
Input: l – cutoff value
Output: computed DFA

1 S ← {s0}
2 E ← ∅
3 Ln ← {s0}
4 for i ∈ {1, . . . , l} do
5 Lc ← Ln

6 Ln ← ∅
7 for s ∈ Lc do
8 for (sc , σc) ∈ {(s′, σ)|∃σ ∈ � s.t. s σ−→A s′} do
9 E ← E ∪ (s, σc , sc))

10 if sc /∈ S then
11 S ← S ∪ {sc}
12 Ln ← Ln ∪ {sc}

13 At = (SA, s0, �, δ \ E, {s f }, TA)

14 Straps = {s ∈ SA|�σ ∈ �∗ s.t. s σ−→At s f }
15 return (SA \ Straps, s0, �, δ \ E, {s f }, TA)

Proof. The proof follows by structural induction on A S T (φ) and the properties of TWTL languages.
Before we proceed with the induction, notice that all construction algorithms associated with the operators of TWTL 

generate strict DFAs with only one final state without any outgoing transitions.
The base case corresponds to the leaf nodes of A S T (φ) which are associated with hold operators, see Fig. 1, and follows 

by construction from Algorithm 4.
The induction hypothesis requires that the theorem holds for the DFAs returned by the recursion in Algorithm 1. In 

the case of the conjunction and disjunction operators, the property follows from the product construction method [17]. The 
theorem holds also for the concatenation operator, because: (a) the returned DFAs have one final state without any outgoing 
transitions, and (b) the languages corresponding to the two operand formulae are unambiguous. Thus, the correctness of the 
construction described in Algorithm 7 follows immediately from the unambiguity of the concatenation, see Definition 6.2. 
Lastly, the case of the within operator (relaxed form), follow from the Assumption 1. The within operator adds transitions to 
a DFA from each state to the initial state on all undefined symbols. In other words, the operator restarts the execution of a 
DFA from the initial state. If there are no disjunction operators, then going back to the initial state is the only correct choice. 
Otherwise, the information about which paths need to be restarted is lost, because the paths induced by a disjunction 
become indistinguishable from each other. Thus, it is not possible to properly add backward transitions to restart paths 
associated with the terms of the disjunction independently in the automaton as needed to capture the within operator. �
Theorem 7.2. If φ is a TWTL formula satisfying Assump. 1 and the global parameter inf is false, then Algorithm 1 generates DFA A such 
that L(A) =L(φ).

Proof. The proof is similar to that of Theorem 7.1 and is omitted for brevity. �
7.5. Complexity

In this section, we review the complexity of the algorithms presented in the previous section for the construction of DFAs 
from TWTL formulae. The complexity of basic composition operations for incomplete and acyclic DFAs has been explored 
in [32,16,7,12,9]. Our construction algorithms differ from the ones in the literature because we specialized and optimized 
them to translate TWTL formulae and handle words over power sets of atomic propositions.

The complexity of the relabeling procedures are O (|T |) and O (|SA|) corresponding to Algorithm 2 and Algorithm 3, 
respectively. The complexity of the hold operator Algorithm 4 is O (d · 2|A P |). The construction algorithms for conjunction 
and disjunction Algorithm 5 and Algorithm 6 have the same complexity O (|SA1 | · |SA2 | · 2|A P |), because these are based 
on the product automaton construction. Concatenation has complexity O (|SA1 | + |SA2 |) due to the relabeling operations. 
Lastly, the within operation can be performed in O (a · 2|A P | + |SA| · 2|A P |) and O (a · 2|A P | + b |SA| · 2|A P |) for the infinity 
Algorithm 8 and the normal Algorithm 9 construction, respectively, where Algorithm 10 used in the normal construction 
procedure takes O (|SA| · 2|A P |). The overall translation algorithm Algorithm 1 takes at most O (2|φ|+|A P |).

It is very important to notice that the infinity construction does not depend on the deadline b, which makes the proce-
dure more efficient than the normal construction.

7.6. Ambiguity checking

The following result establishes the complexity of checking the ambiguity of a language.
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Proposition 7.3. Checking if a language is unambiguous takes at most O (2|φ|+|A P |).

Proof. First, note that the languages generated by hold operators are unambiguous, and the only operation that may create 
ambiguous languages is the disjunction operation. The claim follows from Proposition 6.3 and 6.5 for concatenation and 
conjunction, respectively. The case of the within operator follows from its definition, since a word satisfying the inner 
formula immediately implies the satisfaction of the overall formula.

To check for ambiguity we use Proposition 6.4 in Algorithm 6. At line 17, we check if the set of final states of the product 
automaton F ⊆ {(s f 1, ��), (��, s f 2), (s f 1, s f 2)}, which is equivalent to L(φ1) ∩ P (L(φ2)) = ∅ and L(φ2) ∩ P (L(φ1)) = ∅. Thus, 
the complexity of checking if the language of a TWTL formula is unambiguous is at most the same as computing the 
corresponding automaton. �
8. Verification, synthesis, and learning algorithms

In this section, we will use the following notation. Let T be an annotation tree associated with a DFA. We denote by 
φT the TWTL formula corresponding to the tree T . Given a finite sequence p = p0, . . . , pn , we denote the first and the last 
elements by b(p) = p0 and e(p) = pn , respectively.

Definition 8.1 (Primitive). Let φ be a TWTL formula. We say that φ is primitive if φ does not contain any within operators.

8.1. Compute temporal relaxation for a word

The automata construction presented in Sec. 7 can be used to compute the temporal relaxation of words with respect
to TWTL formulae. Let φ be a TWTL formula and σ be a word. In this section, we show how to infer (synthesize) a set of 
temporal relaxations τ of the deadlines in φ such that σ satisfies φ(τ ) and |τ |T R is minimized. Algorithm 11 computes the 
vector of temporal relaxations corresponding to each within operator. First, the annotated DFA A∞ is computed together 
with the associated annotation tree T (line 2). Next, additional annotations are added to the tree T using the initT reeT R()

procedure (line 3). Each node corresponding to a within operation is assigned three variables T .ongoing , T .done and T .steps, 
which track whether the processing of the operator is ongoing, done, and the number of steps to process the operator, 
respectively. The three variables are initialized to ⊥, ⊥, and −1, respectively. Then, Algorithm 11 cycles through the symbols 
of the input word σ and updates the tree using updateT ree() via Algorithm 12. Finally, the temporal relaxation vector is 
returned by the evalT reeT R() procedure via Algorithm 13.

Algorithm 11: tr(·) – Compute temporal relaxation.

Input: σ a word over the alphabet 2A P

Input: φ a TWTL formula
Output: τ ∗ – minimum maximal temporal relaxation
Output: τ – temporal relaxation vector

1 if φ is primitive then return (−∞, [ ])
2 A∞, T ← translate(φ; inf = �)

3 initT reeT R(T )

4 sprev ←⊥; sc ← s0

5 updateT reeT R(T , sc, sprev , ∅, ∅)

6 for σ ∈ σ do
7 if sc ∈ FA∞ then break
8 sprev ← sc

9 sc ← δA∞ (sc , σ)

10 updateT reeT R(T , sc , sprev , σ , ∅)

11 return evalT reeT R(T )

The tree is updated recursively in Algorithm 12. A within operator is marked as ongoing, i.e., T .ongoing = �, when the 
current state is in the set of initial states associated with the operator (line 2). Similarly, when the current state is in the 
set of final states associated with the operator, the within operator is marked as done (lines 3–6), i.e. T .done = � and 
T .ongoing =⊥. The number of steps T .steps of all ongoing within operators is incremented (line 7).

To enforce correct computation of the temporal relaxation with respect to the disjunction operators, Algorithm 12 keeps 
track of a set of constraints C . The set C is composed of state-symbol pairs, and is used to determine which of the two 
subformulae of a disjunction are satisfied by the input word (lines 12–17). To achieve this, we use the annotation variables 
T .choices (see Algorithm 6), which capture both cases. For all other operators, the constraint sets are propagated unchanged 
(lines 8, 10, 11).

Finally, Algorithm 13 extracts the temporal relaxation from the annotation tree T after all symbols of the input word 
σ were processed. Algorithm 13 also computes the minimum maximum temporal relaxation value, which may be −∞ if 
φ is primitive (line 1). The recursion in Algorithm 13 differs between disjunction and the other operators. One subformula 
is sufficient to hold to satisfy the formula associated with a disjunction operator. Thus, the optimal temporal relaxation 
is the minimum or maximum between the two optimal temporal relaxations of the subformulae for disjunction (line 12), 
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Algorithm 12: updateT reeT R(·).
Input: sc – current state
Input: sprev – previous state
Input: σ – current symbol in word
Input: C – set of constraints associated with the states

1 if T .op = [ ][a,b] then
2 if sc ∈ T .I then T .ongoing ← �
3 if sc ∈ T .F then
4 if (C = ∅) ∨ (σ ⊆ C(sprev )) then
5 T .ongoing ←⊥
6 T .done ← �
7 if T .ongoing then T .τ ← T .τ + 1
8 updateT reeT R(T .le f t, sc , sprev , σ , C)

9 else
10 if T .op = · then CL ← ∅; C R ← C
11 else if T .op = ∧ then CL ← C ; C R ← C
12 else if T .op = ∨ then
13 CL ← T .choices.L ∪ T .choices.B
14 C R ← T .choices.R ∪ T .choices.B
15 if C �= ∅ then
16 CL ← C ∩ CL

17 C R ← C ∩ C R

18 updateT reeT R(T .le f t, sc , sprev , σ , CL)

19 updateT reeT R(T .right, sc , sprev , σ , C R )

and conjunction and concatenation (line 13), respectively. Lines 15–16 of Algorithm 13 cover the cases involving primitive 
subformulae.

The complexity of Algorithm 11 is O (2|φ|+|A P | + |σ | · |φ|), where the first term is the complexity of constructing A∞ in 
line 1 and the second term corresponds to the update of the tree for each symbol in σ and the final evaluation of the tree.

Algorithm 13: evalT reeT R(·).
Input: T – annotated tree
Output: τ ∗ – minimum maximal temporal relaxation
Output: τ – temporal relaxation vector

1 if φT is primitive then return (−∞, [ ])
2 else if T .op = [φ][a,b] then
3 τ ∗

ch, τ ch = evalT reeT R(tree.le f t)
4 if T .done = � then
5 return

(
max{τ ∗

ch, T .steps − b}, [τ ch, T .steps − b])
6 else
7 return

( − ∞, [τ ch, −∞])
8 else // ∧, ∨ or ·
9 τ ∗

L , τ L = evalT reeT R(tree.le f t)
10 τ ∗

R , τ R = evalT reeT R(tree.right)
11 if (τ ∗

L �= −∞) ∧ (τ ∗
R �= −∞) then

12 if T .op = ∨ then τ ∗ ← min{τ ∗
L , τ ∗

R }
13 else τ ∗ ← max{τ ∗

L , τ ∗
R }

14 else
15 if T .op = ∨ then τ ∗ ← max{τ ∗

L , τ ∗
R }

16 else τ ∗ ← −∞
17 return

(
τ ∗, [τ L , τ R ])

8.2. Control policy synthesis for a finite transition system

Let T be a finite transition system, and φ a specification given as a TWTL formula. The procedure to synthesize an 
optimal control policy by minimizing the temporal relaxation has three steps:

1. constructing the annotated DFA A∞ corresponding to φ,
2. constructing the synchronous product P = T ×A∞ between the transition system T and the annotated DFA A∞ ,
3. computing the optimal policy on P using Algorithm 14 and generating the optimal trajectory of T from the optimal 

trajectory of P by projection,

where the synchronous product P is defined as follows:
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Definition 8.2 (Product automaton). Given a TS T = (X, x0, �, A P , h) and a DFA A = (SA, s0, 2A P , δA, FA), their product 
automaton, denoted by P = T ×A, is a tuple P = (SP , p0, �P , FP ) where:

• p0 = (x0, s0) is the initial state;
• SP ⊆ X × SA is a finite set of states that are reachable from the initial state: for every (x∗, s∗) ∈ SP , there exists a 

sequence of x = x0x1 . . . xnx∗ , with xk →T xk+1 for all 0 ≤ k < n and xn →T x∗ , and a sequence s = s0s1 . . . sns∗ such 
that s0 is the initial state of A, sk

h(xk+1)−−−−−→B sk+1 for all 0 ≤ k < n and sn
h(x∗)−−−→T s∗;

• �P ⊆ SP × SP is the set of transitions defined by: ((x, s), (x′, s′)) ∈ �P iff x →T x′ and s h(x′)−−−→B s′;
• FP = (X × FA) ∩ SP is the set of accepting states of P .

A transition in P is also denoted by (x, s) →P (x′, s′) if ((x, s), (x′, s′)) ∈ �P . A trajectory p = (x0, s0)(x1, s1) . . . of P is 
an infinite sequence, where (x0, s0) = p0 and (xk, sk) →P (xk+1, sk+1) for all k ≥ 0. A trajectory of P = T ×A is said to be 
accepting if and only if it ends in a state that belongs to the set of final states FP . It follows by construction that a trajectory 
p = (x0, s0)(x1, s1) . . . of P is accepting if and only if the trajectory s0s1 . . . is accepting in A. As a result, a trajectory of T
obtained from an accepting trajectory of P satisfies the given specification encoded by A. We denote the projection of a 
trajectory p = (x0, s0)(x1, s1) . . . onto T by γT (p) = x0x1 . . ..

Before we present the details of the proposed algorithm, we want to point out that completeness may be decided easily 
by using the product automaton P . That is, testing if there exists a temporal relaxation such that a satisfying policy in T
may be synthesized can be performed very efficiently as shown by the following theorem.

Theorem 8.1. Let φ be a TWTL formula and T be a finite transition system. Deciding if there exists a finite τ ∈ Z
m and a trajectory x

of T such that o |= φ(τ ), can be performed in O (|�| · ∣∣δA∞
∣∣), where m is the number of within operators in φ , A∞ is the annotated 

DFA corresponding to φ , o is the output trajectory induced by x, and � and δA∞ are the sets of transitions of T and A∞ , respectively.

Remark 8.2. The complexity in Theorem 8.1 is independent of the deadlines of the within operators φ.

Proof. The result follows immediately from the construction of the product automaton P by checking if the set of accepting 
states is empty. Because P contains all reachable states, accepting states exists if and only if there is a trajectory x of T
that generates an output word o satisfying a relaxed specification φ(τ ), for some finite τ . If there are accepting states, 
then a trajectory x can be computed using Dijkstra’s algorithm on P from the initial state to an accepting state, and then 
projecting onto T . �

Note that Dijkstra’s algorithm may not necessarily provide an optimal trajectory of T with respect to the minimum 
maximum temporal relaxation of the induced output word. Thus, we present a Dijkstra-based procedure to compute an 
optimal policy using the product automaton P . The proposed solution is presented in Algorithm 14, which describes a 
recursive procedure over an annotated AST tree T .

The recursive procedure in Algorithm 14 has six cases. The first case (lines 1–3) corresponds to a primitive formula. 
In this case, there are no deadlines to relax since the formula does not contain any within operators. Thus, solutions (if 
any exist) can be computed using Dijkstra’s algorithm. The next two cases treat the within operators. In the former case 
(lines 4–5), the enclosed formula is a primitive formula and the only deadline which must be optimized is the one associated 
with the current within operator. In the latter case (lines 7–10), the enclosed formula is not primitive. Therefore, there are 
multiple deadlines that must be considered. To optimize the temporal relaxation |·|T R , we take the maximum between the 
previous maximum temporal relaxation and the current temporal relaxation (line 10). The fourth case (lines 11–15) handles 
the concatenation operator. First, the paths and the corresponding temporal relaxations are computed for the left and the 
right subformulae in lines 12 and 13, respectively. Afterwards, the paths satisfying the left subformula are concatenated 
to the paths satisfying the right formula. However, the concatenation of paths pL and pR is restricted to pairs which 
have the following property: there exists a transition in P between the last state of pL and the first state in pR . The 
temporal relaxation of the concatenation of two paths is the maximum between the temporal relaxations of the two paths 
(line 15). The next case is associated with the disjunction operator (lines 16–20). As in the concatenation case, first the paths 
satisfying the left ML and the right MR subformulae are computed in lines 17 and 18, respectively. The set corresponding 
to the disjunction of the two formulae is the union of the two sets because the paths must satisfy either one of the two 
subformulae. The temporal relaxation of a path p in the union is computed as follows (line 20): (a) if a path is only in the 
left, p ∈ ML \ MR , or only in the right set, p ∈ MR \ ML , then the temporal relaxation is τ ∗

L [p] or τ ∗
R [p], respectively; (b) the 

path is in both sets, p ∈ ML ∩ MR , then the temporal relaxations is the minimum of the two previously computed ones, 
min{τ ∗

L [p], τ ∗
R [p]}. In the case (a), p satisfies only one subformula and, therefore, only one temporal relaxation is available. 

In the case (b), p satisfies both subformulae. Because only one is needed, the subformula that yields the minimum temporal 
relaxation is chosen, i.e., the minimum between the two temporal relaxations. The last case handles the conjunction operator 
(lines 21–25). As in the previous two cases, the paths satisfying the left and the right subformulae are computed first 
(lines 22–23). Then the intersection of the two sets is computed as the set of paths satisfying the conjunctions because 
the paths must satisfy both subformulae. The temporal relaxations of the paths in the intersections are computed as the 
maxima between the previously computed temporal relaxations for the left and the right subformulae.



46 C.-I. Vasile et al. / Theoretical Computer Science 691 (2017) 27–54
Algorithm 14: Policy synthesis – policy(T , P).
Input: T – the annotation AST tree
Input: P – product automaton

1 if φT is primitive then
2 M = {p | b(p) ∈ T .I, e(p) ∈ T .F }
3 τ ∗[p] = −∞, ∀p ∈ M

4 else if T .op = [ ][a,b] ∧ φT .le f t is primitive then
5 M = {p | b(p) ∈ T .I, e(p) ∈ T .F }
6 τ ∗[p] = |p| − b, ∀p ∈ M

7 else if T .op = [ ][a,b] ∧ φT .le f t is not primitive then
8 Mch, τmax

ch = policy(T .le f t, P)

9 M = {pi
a−→ p ∗−→ p′ | pi ∈ T .I, p ∗−→ p′ ∈ Mch}

10 τ ∗[p] = max{|p| − b, τ ∗
ch[p]}, ∀p ∈ M

11 else if T .op = · then
12 ML , τ ∗

L = policy(T .le f t, P)

13 MR , τ ∗
R = policy(T .right, P)

14 M = {p1 · p2 | p1 ∈ ML , p2 ∈ MR , e(p1) →P b(p2)}
15 τ ∗[p] = max{τ ∗

L (p), τ ∗
R (p)}, ∀p ∈ M

16 else if T .op = ∨ then
17 ML , τ ∗

L = policy(T .le f t, P)

18 MR , τ ∗
R = policy(T .right, P)

19 M = ML ∪ MR

20 τ ∗[p] =

⎧⎪⎨
⎪⎩

τ ∗
L [p] p ∈ M \ MR

τ ∗
R [p] p ∈ M \ ML

min{τ ∗
L [p], τ ∗

R [p]} p ∈ ML ∩ MR

21 else if T .op = ∧ then
22 ML , τ ∗

L = policy(T .le f t, P)

23 MR , τ ∗
R = policy(T .right, P)

24 M = ML ∩ MR

25 τ ∗[p] = max{τ ∗
L (p), τ ∗

R (p)}, ∀p ∈ M

26 return (M , τ ∗)

Note that considering primitive formulae in Algorithm 14, instead of traversing the AST all the way to the leaves, opti-
mizes the running time and the level of recursion of the algorithm.

A very important property of Algorithm 14 is that its complexity does not depend on the deadlines associated with the 
within operators of the TWTL specification formula φ. This is an immediate consequence of the DFA construction proposed 
in Sec 7. Moreover, it follows from Remark 4.3 that the completeness with respect to φ (unrelaxed) may also be decided 
independently of the values of the deadline values. Formally, we have the following results.

Theorem 8.3. Let φ be a TWTL formula and T be a finite transition system. Synthesizing a trajectory x of T such that o |= φ(τ ) and 
|τ |T R is minimized can be performed in O (|φ| · |�| · ∣∣δA∞

∣∣), where τ ∈ Z
m, m is the number of within operators in φ , A∞ is the 

annotated DFA corresponding to φ(∞), o is the output trajectory induced by x, and � and δA∞ are the sets of transitions of T and 
A∞ , respectively.

Proof. The worst-case complexity of Algorithm 14 is achieved when the TWTL formula φ has the form of primitive formulae 
enclosed by within operators and then composed by either the conjunction, disjunction, and concatenation operators.

The recursive algorithm stops when it encounters the primitive formulae and executes Dijkstra’s algorithm that takes 
at most O (|�P |) = O (|�| · ∣∣δA∞

∣∣) time. Since the recursion is performed with respect to an AST T of φ, the algorithm 
processes each operator only once. The complexity bound follows because the size of the set of paths M returned by the 
algorithm is at most the sum of the sized of the sets corresponding to the left and the right sets ML and MR , respectively. 
Thus, we obtain the bound O (|φ| · |�| · ∣∣δA∞

∣∣) by summing up the time complexity over all nodes of T . �
Corollary 8.4. Let φ be a TWTL formula and T be a finite transition system. Deciding if there exists a trajectory x of T such that o |= φ

can be performed in O (|φ| · |�| · ∣∣δA∞
∣∣), where A∞ is the annotated DFA corresponding to φ , o is the output trajectory induced by x, 

and � and δA∞ are the sets of transitions of T and A∞ , respectively.

Proof. It follows from Theorem 8.3 and Remark 4.3. �
8.3. Verification

The procedure described in Algorithm 15 solves the verification problem of a transition system T against all relaxed 
versions of a TWTL specification First, the annotated DFA A∞ corresponding to φ is computed (line 1). Then a trap state ��
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is added in line 2 (see Algorithm 6 for details). Note that the final state is not connected to trap state. The transition system 
T is composed with the DFA A∞ to produce the product automaton P (line 3).

Lastly, it is checked if all trajectories of P reach the final state in finite time (line 4), i.e., satisfy a relaxation of φ. The 
condition in line 4 ensures that: (i) there are final states; (ii) all paths are finite, i.e., P is a DAG; and (iii) the only allowed 
sink states are the final states, i.e., the out degree deg(v) of all non-final states v of P is positive.

Algorithm 15: Verification.
Input: T – transition system
Input: φ – TWTL specification
Output: Boolean value

1 A∞ ← translate(φ; inf = �)

2 add trap state �� to A∞
3 P ← T ×A∞
4 return FP �= ∅ ∧ isD AG(P) ∧

(∧
p∈SP \FP deg(v) > 0

)

8.4. Learning deadlines from data

In this section, we present a simple heuristic procedure to infer deadlines from a finite set of labeled traces such that 
the misclassification rate is minimized. Let φ be a TWTL formula and Lp and Ln be two finite sets of words labeled as 
positive and negative examples, respectively. The misclassification rate is 

∣∣{w ∈ Lp | w �|= φ(τ )}∣∣ + |{w ∈ Ln | w |= φ(τ )}|, 
where φ(τ ) is a feasible τ -relaxation of φ. The terms of the misclassification rate are the false negative and false positive 
rates, respectively.

The procedure presented in Algorithm 16 uses Algorithm 11 to compute the tightest deadlines for each trace. Then each 
deadline is determined in a greedy way such that the misclassification rate is minimized. The heuristic in Algorithm 11 is 
due to the fact that each deadline is considered separately from the others. However, the deadlines are not independent 
with respect to the minimization of the misclassification rate.

Notice that the algorithm constructs A∞ only once at line 1. Then the automaton is used in the tr(·) function to compute 
the temporal relaxation of each trace, lines 2–3. Thus, the procedure avoids building A∞ for each trace.

Algorithm 16: Parameter learning.
Input: Lp – set of positive traces
Input: Ln – set of negative traces
Input: φ – template TWTL formula
Output: d – the vector of deadlines

1 A∞ ← translate(φ; inf = �)

2 D p ← {tr(p, A∞) + b | p ∈Lp}
3 Dn ← {tr(p, A∞) + b | p ∈Ln}
4 d ← (−∞, −∞, . . . , −∞) // m-dimensional
5 for k ∈ {1, . . . , m} do
6 Dk ← {d′[k] | d′ ∈ D p ∪ Dn}
7 d[k] ← arg mind∈Dk

( ∣∣Dk
F P (d)

∣∣ + ∣∣Dk
F N (d)

∣∣ ), where

8 Dk
F P (d) ← {d′[k] | d′[k] > d, d′ ∈ Dn}

9 Dk
F N (d) ← {d′[k] | d′[k] ≤ d, d′ ∈ D p}

10 return d

In Algorithm 16, m denotes the number of within operators and b is the m-dimensional vector of deadlines associated 
with each within operator in the TWTL formula φ. We assume that the order of the within operators is given by the 
post-order traversal of A S T (φ), i.e., recursively traversing the children nodes first and then the node itself.

Note that the optimization problem in line 7 of Algorithm 16 may have multiple optimal solutions, in which case we 
choose the lowest deadline. An example of this situation is shown in Sec. 10.4.

The complexity of the learning procedure is O
(
2|φ|+|A P | + (|Lp| + |Ln|) · lm · |φ| + m2 · (|Lp| + |Ln|)), where: (a) the first 

term is the complexity of constructing A∞ (line 1); (b) the second term corresponds to computing the tight deadlines for 
all traces positive and negative in lines 2 and 3, respectively; (c) the third term is the complexity of the for loop, which 
computes each deadline separately in a greedy fashion (lines 5–9). The maximum length of a trace (positive or negative) is 
denoted by lm in the complexity formula.

9. TWTL Python package

We provide a Python 2.7 implementation named PyTWTL of the proposed algorithms based on LOMAP [42], 
ANTLRv3 [35] and NetworkX [15] libraries. PyTWTL implementation is released under the GPLv3 license and can be down-
loaded from hyness.bu.edu/twtl. The library can be used to:

http://hyness.bu.edu/twtl
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Fig. 2. The AST corresponding to the TWTL formula in Eq. (20).

1. construct a DFA Aφ and a annotated DFA A∞ from a TWTL formula φ;
2. monitor the satisfaction of a TWTL formula φ;
3. monitor the satisfaction of an arbitrary relaxation of φ, i.e., φ(∞);
4. compute the temporal relaxation of a trace with respect to a TWTL formula;
5. compute a satisfying control policy with respect to a TWTL formula φ;
6. compute a minimally relaxed control policy with respect to a TWTL formula φ, i.e., for φ(τ ) such that |τ |T R is minimal;
7. verify if all traces of a system satisfy some relaxed version of a TWTL formula φ;
8. learn the parameters of a TWTL formula φ, i.e., the deadlines of the within operators in φ.

The parsing of TWTL formulae is performed using ANTLRv3 framework. We provide grammar files which may be used 
to generate lexers and parsers for other programming languages such as Java, C/C++, Ruby. To support Python 2.7, we used 
version 3.1.3 of ANTLRv3 and the corresponding Python runtime ANTLR library, which we included in our distribution for 
convenience.

10. Case studies

In this section, we present some examples highlighting the solutions for the verification, synthesis and learning problems. 
First, we show the automaton construction procedure on a TWTL formula and how the tight deadlines are inferred for a 
given trace. Then, we consider an example involving a robot whose motion is modeled as a TS. The policy computation 
algorithm is used to solve a path planning problem with rich specifications given as TWTL formulae. The procedure for 
performing verification, i.e., all robot trajectories satisfy a given TWTL specification, is also shown. Finally, the performance 
of the heuristic learning algorithm is demonstrated on a simple example.

10.1. Automata construction and temporal relaxation

Consider the following TWTL specification over the set of atomic propositions A P = {A, B, C, D}:

φ = [H2 A][0,6] · ([H1 B][0,3] ∨ [H1C][1,4]) · [H1 D][0,6] (20)

An AST of formula φ is shown in Fig. 2. The TWTL formula φ is converted to an annotated DFA A∞ using Algorithm 1. 
The procedure recursively constructs the DFA from the leafs of the AST to the root. A few processing steps are shown 
in Fig. 3. The construction of DFA corresponding to a leaf, i.e., a hold operator, is straightforward, see Fig. 3a. Next, the 
transformation corresponding to a within operator is shown in Fig. 3b. Note that the delay of one time unit is due to the 
lower bound of the time window of the within operator. Also, note that the automaton restarts on symbols that block the 
DFA corresponding to the inner formula H1C .

The next two figures, Fig. 3c and Fig. 3d, show the translation of the disjunction operator. Specifically, Fig. 3c, shows the 
product DFA corresponding to the disjunction without merging the final states. Since none of the final states have outgoing 
transitions, see Corollary 6.11, and they can be merged into a single final state, see Fig. 3d. However, we still need to keep 
track of which subformula of the disjunctions holds. The annotation variable T .choices, introduced in Sec. 7.3.2, stores this 
information as⎧⎪⎨

⎪⎩
L = {(s11, B ∧ ¬C), (s11, B ∧ C), (s12, B ∧ ¬C)},
R = {(s02,¬B ∧ C), (s02, B ∧ C), (s12,¬B ∧ C)},
B = {(s12, B ∧ C)}.

(21)

Notice that the tuples in Eq. (21) correspond to the ingoing edges of the final states in the DFA from Fig. 3c. Finally, the 
DFA corresponding to the overall specification formula φ is shown in Fig. 3e.

Let φA = [H2 A][0,6] , φB = [H1 B][0,3] , φC = [H1C][1,4] , and φD = [H1 D][0,6] be subformulae of φ associated with the within
operators. The annotation data for these subformulae is shown in the following table.
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Subformula T .I T .F

φ {s0} {s10}
φA {s0} {s3}
φB {s3, s5, s6} {s8}
φC {s3} {s3}
φD {s8} {s10}

Fig. 3. Annotated automata corresponding to subformulae of the TWTL specification in Eq. (20).
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Consider the following word over the alphabet � = 2A P :

σ = ε, {A}, {A}, {A}, ε, {B, C}, {B, C}, ε, {D}, {D} (22)

where ε is the empty symbol. The following table shows the stages of Algorithm 11 as the symbols of the word σ are 
processed:

No. Symbol State φA φB φC φD

Init s0 (�,⊥,0) (⊥,⊥,−1) (⊥,⊥,−1) (⊥,⊥,−1)

0 ε s0 (�,⊥,1) (⊥,⊥,−1) (⊥,⊥,−1) (⊥,⊥,−1)

1 {A} s1 (�,⊥,2) (⊥,⊥,−1) (⊥,⊥,−1) (⊥,⊥,−1)

2 {A} s2 (�,⊥,3) (⊥,⊥,−1) (⊥,⊥,−1) (⊥,⊥,−1)

3 {A} s3 (⊥,�,3) (�,⊥,0) (�,⊥,0) (⊥,⊥,−1)

4 ε s5 (⊥,�,3) (�,⊥,1) (�,⊥,1) (⊥,⊥,−1)

5 {B, C} s7 (⊥,�,3) (�,⊥,2) (�,⊥,2) (⊥,⊥,−1)

6 {B, C} s8 (⊥,�,3) (⊥,�,2) (⊥,�,2) (�,⊥,0)

7 ε s8 (⊥,�,3) (⊥,�,2) (⊥,�,2) (�,⊥,1)

8 {D} s9 (⊥,�,3) (⊥,�,2) (⊥,�,2) (�,⊥,2)

9 {D} s10 (⊥,�,3) (⊥,�,2) (⊥,�,2) (⊥,�,2)

where each 3-tuple in last four columns represents the annotation variables T .ongoing , T .done and T .steps, respectively. 
The temporal relaxation for σ can be extracted from the values in the last row by subtracting the deadlines of the within
operators from them. Thus, the vector of tightest τ values is (−3, −1, −2, −3). However, because φB and φC are in disjunc-
tion, we have the temporal relaxation τ = (−3, −∞, −2, −3), where we choose to ignore the subformula containing φB . 
Thus, the maximum temporal relaxation is |τ |T R = −2.

10.2. Control policy synthesis

Consider a robot moving in an environment represented as the finite graph shown in Fig. 4a. The nodes of the graph 
represent the points of interest, while the edges indicate the possibility of moving the robot between the edges’ endpoints. 
The numbers associated with the edges represent the travel times, and we assume that all the travel times are integer 
multiples of a time step �t . The robot may also stay at any of the points of interest.

The motion of the robot is abstracted as a transition system T , which is obtained from the finite graph by splitting each 
edge into a number of transitions equal to the corresponding edge’s travel time. The generated transition system thus has 
27 states and 67 transitions and is shown in Fig. 4b.

Consider the TWTL specification φ from Eq. (20). The product automaton P = T ×A∞ is constructed, where A∞ is the 
annotated DFA corresponding to φ(∞) shown in Fig. 3e. The product automaton P has 204 states and 378 transitions. The 
control policy computed by using Algorithm 14 is

x = Base, A, A, A, C, C, Base, D, D, (23)

which generates the output word

σ = ε, ε, {A}, {A}, {A}, ε, {C}, {C}, ε, ε, {D}, {D}. (24)

The minimum temporal relaxation for σ is |τ |T R = −2, where τ = (−2, −∞, −2, −3) is the minimal temporal relaxation 
vector associated with σ .

10.3. Verification

In the verification problem, we are concerned with checking for the existence of relaxed specifications for every possible 
run of a transition system.

To illustrate this problem, consider the transition system in Fig. 5 and the following two TWTL specifications:

φ1 = [H1 A][1,2] (25)

φ2 = [H3¬B][1,2] (26)

To check the transition system T simple against the two specifications, we can use Algorithm 15. It is straightforward that 
the procedure will return true for φ1, because every run of T simple satisfies φ1(3) = [H1 A][1,2+3] . Note that the runs of 
the transition system may not need to satisfy the original specification as the satisfaction of a relaxed version is sufficient. 
Similarly, Algorithm 15 returns false for φ2, because there exists a run of T simple that does not satisfy any relaxation of the 
specification, e.g., x = (A, B, B, ε, A)∗ .

An important conclusion highlighted by the two examples is that the verification problem proposed in this paper is 
concerned with checking a system against the logical structure of a specification and not against any particular time bounds. 
This might be useful in situation where the deadlines of the specification are not known a priori, but the logical structure 
of the specification is.
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(a) An environment with five points of interest, Base A, B , C , and D . The edges indicate the existence of paths between their endpoints, while the 
associated numbers represent the travel times of the edges. The robot may stay at a region of interest.

(b) The transition system T obtained from the environment graph shown in Fig. 4a.

Fig. 4. The environment where the robot operates and its abstraction T .

Fig. 5. A simple transition system T simple .

10.4. Learning deadlines from data

In the previous two cases, we use the TWTL specifications in conjunction with problems involving infinite sets of words 
encoded as transition systems. However, it is often the case that only finite sets of (output) trajectories are available. In this 
section, we give a simple example of the learning problem presented in Sec. 5.

Consider the specification φl = [H1 A][0,d1] · [H2 B][0,d2] with unknown deadlines and the following set of labeled trajec-
tories, where C p and Cn are the positive and negative example labels, respectively:

Word Label Deadlines

σ 1 ={A}, {A}, {A}, {B}, {B}, {B}, {B}, ε C p (1,3)

σ 2 = ε, {A}, {A}, ε, {B}, {B}, {B}, ε C p (2,3)

σ 3 ={B}, ε, {A}, {A}, {B}, {B}, {B}, {B} Cn (3,2)

σ 4 = ε, {A}, {A}, ε, ε, {B}, {B}, {B} Cn (2,4)
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Fig. 6. The training set contains 50 positive and 50 negative labeled trajectories.

The last column in the above table shows the tight deadlines obtained in lines 2 and 3 of Algorithm 16. Next, the 
learning algorithm computes the heuristic sets Dk

F P and Dk
F N , k ∈ {d1, d2}, of false positive and false negative trajectories, 

respectively:

Deadline Value Dk
F P Dk

F N

∣∣Dk
F P

∣∣ + ∣∣Dk
F N

∣∣
d1 1 ∅ {σ 2} 1
d1 2 {σ 4} ∅ 1
d1 3 {σ 3,σ 4} ∅ 2

d2 2 {σ 3} {σ 1,σ 2} 3
d2 3 {σ 3} ∅ 1
d2 4 {σ 3,σ 4} ∅ 2

Finally, Algorithm 16 chooses the deadline pair d = (d1, d2) = (1, 3) that has the lowest heuristic misclassification rate, ∣∣Dk
F P

∣∣+ ∣∣Dk
F N

∣∣ shown in the last column of the above table, for d1 and d2, respectively. An important observation is that the 
inferred formula φd

l = [H1 A][0,1] · [H2 B][0,3] has zero as actual misclassification rate. The discrepancy between the values 
in the table and the actual value of the final misclassification rate are due to the heuristic of synthesizing each deadline 
separately. Thus, the heuristic procedure in Algorithm 16 ignores the temporal and logical structure of the template TWTL 
formula which may lead to suboptimal performance, i.e., misclassification rate.

We also tested the learning algorithm on larger sets of trajectories. Algorithm 16 was ran using the template TWTL 
formula [H2 A][0,d1] · [H3 B][2,d2] · [H2C][0,d3] . The inference was performed using a set of 100 trajectories, 50 positive and 50 
negative, shown in Fig. 6. Executing Algorithm 16 returned the vector of deadlines (d1, d2, d3) = (29, 40, 31) that induces a 
misclassification rate of 14%.

11. Conclusion

In this paper, we introduced a specification language called time window temporal logic (TWTL), which is a linear-
time logic encoding sets of discrete-time bounded-time trajectories. We showed that TWTL has several benefits over other 
bounded temporal logics in terms of complexity and easiness to express and comprehend specifications. Different from 
other temporal logics, TWTL has an explicit concatenation operator, which enables the compact representation of serial 
tasks. Such a compact representation significantly reduces the complexity of constructing the automaton for the accepting 
language. In this paper, we also presented temporal relaxations of TWTL formulae and provided provably-correct algorithms 
to construct an annotated automaton that can encode all temporal relaxations of a given TWTL formula. Moreover, we 
demonstrated the potential of TWTL and its relaxation on three problems related to verification, synthesis, and learning. 
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In the verification problem, we checked whether a system can satisfy the structure of a given formula without considering 
its time bounds. In the synthesis problem, we found a control policy for a system that satisfies the original TWTL formula 
or its minimal relaxation in case of infeasibility. In the learning problem, we considered a data set and a template TWTL 
formula with parametric time bounds, and we synthesized the time parameters by minimizing the misclassification rate. 
Finally, we developed a Python package for the solutions of the aforementioned problems.

As future work, we plan to extend the application areas of the proposed methods. For example, TWTL is a good fit for 
statistical model checking, where the problem of learning deadlines can be modified to yield statistically robust deadline 
values in a template formula. The current version of the learning algorithm can find the time bounds of a given template 
formula (with fixed structure) from a data set. We are also working on more advanced algorithms that can infer not only 
the time bounds but also the structure of the template. Furthermore, we plan to improve the Python package PyTWTL by 
integrating automata minimization in the construction procedure in a way that (i) preserves annotation, and (ii) takes into 
account structure of the generated automata. Since the languages associated with TWTL formulae are finite, specialized 
minimization techniques may be used. For instance, one approach is to use Deterministic Finite Cover Automata [24,25,
8] that can decrease the return automata’s sizes significantly with almost no additional computational cost. Other small 
optimizations we plan to include in PyTWTL are: (i) the case when the satisfaction of atomic propositions is assumed 
mutually exclusive; and (ii) preprocessing of TWTL formulae for performance improvement using AST rewriting rules. We 
also plan to develop AST rewriting rules to automatically transform a TWTL formula to DFW form.
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