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Abstract—In this paper, we study the translational and rota-
tional (SE(N)) invariance properties of locally interacting multi-
agent systems. We focus on a class of networked dynamical
systems, in which the agents have local pairwise interactions,
and the overall effect of the interaction on each agent is the sum
of the interactions with other agents. We show that such systems
are SE(N)-invariant if and only if they have a special, quasi-
linear form. The SE(N)-invariance property, sometimes referred
to as left invariance, is central to a large class of kinematic
and robotic systems. When satisfied, it ensures independence to
global reference frames. In an alternate interpretation, it allows
for integration of dynamics and computation of control laws in
the agents’ own reference frames. Such a property is essential
in a large spectrum of applications, e.g., navigation in GPS-
denied environments. Because of the simplicity of the quasi-linear
form, this result can impact ongoing research on design of local
interaction laws. It also gives a quick test to check if a given
networked system is SE(N)-invariant.

Index Terms—translational and rotational invariance, net-
worked systems, pairwise interaction.

I. INTRODUCTION

In this paper we present necessary and sufficient conditions
for a multi-agent system with pairwise interactions to be
invariant under translations and rotations of the inertial frame
in which the dynamics are expressed (i.e. SE(N)-invariant).
This kind of invariance is important because it allows agents
to execute their control laws in their body reference frame [1],
[2], [3], using information measured in their body reference
frame, without effecting the global evolution of the system.
This is critical for any scenario where global information
about an agent’s reference frame is not readily available, for
example coordinating agents underground, underwater, inside
of buildings, in space, or in any GPS denied environment [4],
[5], [6].

We assume that the agents are kinematic in N-dimensional
Euclidean space, and their control laws are computed as
the sum over all neighbors of pairwise interactions with the
neighbors. We prove that the dynamics are SE(N)-invariant if
and only if the pairwise interactions are quasi-linear, meaning
linear in the difference between the states of the two agents,
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multiplied by a scalar gain which depends only on the distance
between the states of the two agents. This result can be used
as a test (does a given multi-agent controller require global
information?), or as a design specification (a multi-agent
controller is required that uses only local information, hence
only quasi-linear pairwise interactions can be considered). It
can also be used to test hypothesis about local interaction
laws in biological (e.g., locally interacting cells) and physical
systems.

We prove the result for agents embedded in Euclidean
space of any dimension, and the result holds for arbitrary
graph topologies, including directed or undirected, switching,
time varying, and connected or unconnected. We show that
many existing multi-agent protocols are quasi-linear and thus
SE(N)-invariant. Examples include the interactions from the
classical n-body problem [7] and most of the existing multi-
agent consensus and formation control algorithms, e.g., [8],
[9], [10], [11], [12], [13], [14]. In particular, explicit con-
sensus algorithms implemented using local information in
the agents’ body frames [6] satisfy the SE(N)-invariance
property, as expected. We also show that some multi-agent
interaction algorithms, such as [15], are not SE(N)-invariant,
and therefore cannot be implemented locally in practice. We
also consider a sub-class of SE(N)-invariant (and therefore
quasi-linear) pairwise interaction systems, and show that they
reach a consensus, using the graph Laplacian to represent
the system dynamics and the typical LaSalle’s invariance
analysis to show convergence. Finally, we present extensions
of the SE(N)-invariance notion to discrete-time systems,
dynamical systems of higher order and systems with switching
topologies. Moreover, for a sub-class of discrete-time SE(N)-
invariant pairwise interaction systems, we show that they reach
consensus by exploiting the quasi-linear structure given by the
main result.

With a few exceptions [16], [17], [18], [6], the problem
of invariance to global reference frames was overlooked in
the multi-agent control and consensus literature. In [16], the
authors discuss invariance for the particular cases of SE(2)
and SE(3) actions, and with particular focus on virtual struc-
tures. Rotational and translational invariance are also discussed
for a particular class of algorithms driving a team of agents
to a rigid structure in [17]. The problem of invariance to
group actions in multi-agent systems was very recently studied
in [18], where the authors present a general framework to
find all symmetries in a given second-order planar system.
The authors’ main motivation is to determine changes of
coordinates transformations that align the system with the



2 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. XX, NO. XX, MONTH YEAR

symmetry directions and thus aid in stability analysis using
LaSalle’s principle. This paper is complementary to our work,
in the sense that the authors start from a system and find
invariants, while in our case we start from an invariance
property and find all systems satisfying it. Our results hold
for any (finite) dimensional agent state space. Finally, our
characterization of invariance is algebraic, and as a result
does not require any smoothness assumptions on the functions
modeling the interactions. As a result, it can be used for a large
class of systems, including discrete-time systems.

Preliminary results from this work were presented in a
conference version [19]. The present paper expands on [19] by
including all proofs of the main results, as well as new results
on the stability of SE(N)-invariant systems, switching net-
work topologies, and discrete-time systems. We also provide
several new examples with simulations.

The rest of the paper is organized as follows. Section II
describes SE(N)-invariance from a geometrical point of view.
Section III defines necessary concepts and states the main
result. The main result is proved in Sections IV, and V. Sec-
tion VI considers convergence to consensus in a special class
of systems. Section VII presents some extensions of SE(N)-
invariance to discrete-time, higher order systems and systems
with switching topologies. Section VIII analyzes the SE(N)-
invariance of several well-known systems, and conclusions are
given in Section IX.

II. SIGNIFICANCE OF SE(N)-INVARIANCE

In this section we present SE(N)-invariance from a ge-
ometrical point of view and give two interpretations which
prove to be useful for networked agent systems. Formal
definitions will be provided in Sec. III together with the main
result of the paper.
SE(N) is the Special Euclidean group that acts on RN ,

i.e., the set of all possible rotations and displacements in
RN . As mentioned before, SE(N)-invariance is a property
related to reference frames. Consider a global inertial (world)
reference frame {W}, which we call world frame, and another
(mobile) reference frame {M}, which is related to {W} by the
rotation and translation pair (R,w) ∈ SE(N). Also, consider
a networked system with n agents which interact with each
other in a pairwise manner, i.e. communication is point-to-
point and may be one-way. Let xWi and xMi be the state
of agent i in reference frames {W} and {M}, respectively.
(See Fig. 1(a) for an illustration in the case of N=3). The
states of agent i in the two references frames are related by
xWi = RxMi + w.

In order to relate the velocities of an agent i in the two
reference frames, careful consideration must taken about how
the velocities are measured and represented. Consider the
velocities WvWi and WvMi measured with respect to the world
frame {W} and represented in {W} and {M}, respectively.
Then these are related by WvWi = RWvMi . On the other hand,
the dynamics of agent i is given by WvWi = fij(x

W
i , x

W
j ),

where we assumed for simplicity that agent i communicates
only with agent j.

The notion of SE(N)-invariance says that the dynamics of
agent i must be the same in all reference frames, i.e. WvMi =

(a) (b)

Fig. 1. The diagram in (a) shows the world frame {W}, the reference frame
{M}, two agents i and j and their states in these two frames. The diagram
in (b) shows the agents’ states expressed in the body frame of agent i.

fij(x
M
i , x

M
j ) must hold for all {M}. A quick substitution yields

RWvMi = fij(Rx
M
i + w,RxMj + w). On the other hand we

have RWvMi = Rfij(x
M
i , x

M
j ), which implies that SE(N) in-

variance reduces to Rfij(xMi , x
M
j ) = fij(Rx

M
i +w,RxMj +w)

for all values of the states xMi , x
M
j and all transformations

(R,w) ∈ SE(N). This is the notion of left invariance that we
will define formally in Sec. III. Notice that SE(N)-invariance
is a basic assumption very common in physical models (i.e.
the laws of physics must be the same in all inertial reference
frames). In the context of differential geometry, this intuition
is formalized and generalized by the notion of left-invariance
of vector fields.

In the context of networked systems, each agent maintains
an individual mobile reference frame. If the reference frames
of all agents coincide, then they achieve global localization
(this may be implemented using GPS, SLAM, etc.). However,
if we desire a truly distributed system, then the agents must
maintain local reference frames, which are not synchronized
with each other, and be able to compute their own individual
control laws in their own local frames. A special choice of
a mobile reference frame is the body frame of an agent.
Each agent i is associated with its body frame {Bi}, (see
Fig. 1(b)). The agents measure (using an on-board sensor such
as a camera) and express the states of all their neighbors in
their own individual reference frames {Bi}. Consequently, if
the system is SE(N)-invariant, then the agents can compute
their individual control laws (their velocities) in their own
body frames, without the need of a predefined global reference.
Therefore, we consider that, in practice, SE(N)-invariance is
a very important property of distributed networked systems.

Another interpretation of SE(N)-invariance is is related to
the networked system’s behavior, i.e. the agents’ trajectories.
The invariance property implies that the system produces the
same trajectories in any two reference frames. The trajectories
of an agent have the same shape and scale (they are isometric)
and are related by the transformation between the two refer-
ence frames. Fig. 2 shows an example of trajectories generated
by an SE(2)-invariant system and one set of trajectories
from a non-SE(2)-invariant system in two reference frames,
respectively.

III. DEFINITIONS AND MAIN RESULT

In this section, we introduce the notions and definitions used
throughout the paper. The main result of the paper is stated at



VASILE, SCHWAGER, BELTA: TRANSLATIONAL AND ROTATIONAL INVARIANCE IN NETWORKED DYNAMICAL SYSTEMS 3

(a) Trajectories of a SE(2)-invariant sys-
tem as seen from {W1}

(b) Trajectories of a SE(2)-invariant
system as seen from {W2}

(c) Trajectories of a non-SE(2)-invariant
system as seen from {W1}

(d) Trajectories of a non-SE(2)-
invariant system as seen from {W2}

Fig. 2. The figure shows the trajectories of two systems in two reference
frames {W1} and {W2}, which are related by a rotation R(π/4) in clockwise
direction and a translation w = [1, 1]T . Clearly, the trajectories generated
by the SE(2)-invariant system have the same shape and are related by
(R,w), (a) and (b). The shape of the trajectories generated by the non-SE(2)-
invariant system are different in the two reference frames, (c) and (d).

the end of the section.
For a set S, we use |S| to denote its cardinality. The sets

R≥a and Z≥p represent the interval [a,∞) and {p, p+1, . . .},
where a ∈ R and p ∈ Z, respectively. The notation ∆

= denotes
a definition. The canonical basis for the Euclidean space of
dimension N , denoted by RN , is {e1, . . . , eN}. We use IN and
1N to denote the N×N identity matrix and the N×1 vector of
ones, respectively. The special orthogonal group acting on RN
is denoted by SO(N). Similarly, SE(N) represents the special
Euclidean group of rotations and translations acting on RN .
Throughout the paper, the norm ‖·‖ refers to the Euclidean
norm. The Kronecker product of two matrices is denoted by
⊗.

Given a directed graph G, we use V (G) and E(G) ⊆
V (G) × V (G) to denote its sets of nodes and edges, respec-
tively. An edge (i, j) ∈ E(G) is interpreted as starting from
i and ending at j. An edge starting at i is called an outgoing
edge of i, while an edge ending at i is called an incoming edge
of i. Given a node i ∈ V (G), N→i stands for the set of out-
going neighbors of i, i.e. N→i = {j ∈ V (G)|(i, j) ∈ E(G)}.
Similarly, N←i = {j ∈ V (G)|(j, i) ∈ E(G)} represents the
set of incoming neighbors of i.

Definition III.1 (SE(N)-invariant function). A function f :
RN×· · ·×RN → RN is said to be SE(N)-invariant if for all
R ∈ SO(N) and all x1, , xp, w ∈ RN the following condition
holds:

Rf(x1, . . . , xp) = f(Rx1 + w, . . . , Rxp + w). (1)

Definition III.2 (Pairwise Interaction System). A continuous-
time pairwise interaction system is a double (G,F ), where G

is a graph and F = {fij | fij : RN × RN → RN , (i, j) ∈
E(G)} is a set of functions associated to its edges. Each i ∈
V (G) labels an agent, and a directed edge (i, j) indicates
that node i requests and receives information from node j.
The dynamics of each agent are described by

ẋi =
∑
j∈N→i

fij(xi, xj), (2)

where fij defines the influence (interaction) of j on i.

For each agent i ∈ V (G), we denote the total interaction
on agent i by

Si(x1, . . . , x|V (G)|) =
∑
j∈N→i

fij(xi, xj). (3)

Definition III.3 (SE(N)-Invariance). A pairwise interaction
system (G,F ) is said to be SE(N)-invariant if, for all i ∈
V (G), the total interaction functions Si are SE(N)-invariant.

Definition III.4 (Quasi-linear function). A function f : RN →
RN is said to be quasi-linear if there is a function k : R≥0 →
R such that f(x) = k(‖x‖)x, for all x ∈ RN.

Definition III.5 (Quasi-linear interaction system). A pairwise
interaction system (G,F ) is said to be quasi-linear if the
total interaction Si of each agent i is a sum of quasi-linear
functions. Formally, for all i ∈ V (G):

Si =
∑
j∈N→i

kij(‖xj − xi‖)(xj − xi), (4)

where kij : R≥0 → R are scalar gain functions for all j ∈
N→i and N ≥ 3.

Remark III.6. The definition of quasi-linearity for pairwise
interaction systems is a statement about the overall dynamics
of agents. Specifically, Def. III.5 does not imply that the
pairwise interaction functions fij are themselves quasi-linear
functions. See Ex. VIII.1 and Remark III.8.

The main result of this paper can be stated as follows:

Theorem III.7. A pairwise interaction system (G,F ) is
SE(N)-invariant if and only if it is quasi-linear.

Remark III.8. The pairwise interaction form of the systems
considered in this paper is a fundamental assumption needed
to obtain the main result, Thm. III.7. To illustrate this, consider
a system with three agents and the following total interaction
function of agent 1, which captures a three-way interaction
among agents:

S1(x1, x2, x3) = ‖x2 − x1‖ (x3 − x2).

By Def. III.1 S1 is SE(N)-invariant. Indeed,

RS1(x1, x2, x3) =

= ‖x2 − x1‖R(x3 − x2)

= ‖Rx2 + w − (Rx1 + w)‖ (Rx3 + w − (Rx1 + w))

= S1(Rx1 + w,Rx2 + w,Rx3 + w)

for all (R,w) ∈ SE(N). However, S1 cannot be written as a
sum of quasi-linear functions.
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Centralizer of SO(N)

Prop. IV.6 ⇒ Thm. IV.7

Lemmas
SO(3)

Lemma IV.4
Lemma IV.5

Lemmas
SO(N)

Lemma IV.2
Lemma IV.3

SE(N)-Invariant Total
Interaction Functions

Prop. V.1
Lemma V.2

}
⇒ Lemma V.3

Main Result

Thm. V.4
⇓

Thm. III.7 Extensions

Sec. VII

Stability

Sec. VI

Fig. 3. Diagram of results

Remark III.9. Since SE(N)-invariance is a property of
reference frames, it does not imply anything about the stability
of the system. The converse does not hold either. Therefore,
we can have unstable SE(N)-invariant systems and stable
systems which are not SE(N)-invariant. More details are
included in Sec. VIII.

Remark III.10. Note that we do not impose any restrictions
on the graph G or the set of functions F . The results hold
even if G is disconnected and the local interaction functions
are not related to each other.

The main result of the paper (Thm. III.7) can be regarded as
a characterization of SE(N)-invariant functions arising from
pairwise interaction systems. We establish the structure of
these SE(N)-invariant functions in Sec. IV, where we show
that all local interaction functions corresponding to an agent
are quasi-linear functions with an additional affine term. We
also show that the sum of all affine terms over the neighbors of
an agent must vanish. Thus, it follows that the total interaction
functions are quasi-linear, i.e. these can be written as sums of
quasi-linear functions. As an intermediate step to establishing
the form of SE(N)-invariant total interaction functions, we
prove that functions which commute with SO(N) are quasi-
linear. We provide stability results on SE(N)-invariant sys-
tems in Sec. VI. Finally, in Sec. VII, we include extensions
of Thm. III.7 to discrete-time systems, higher order systems
and switching topologies. An overview of how the results in
the paper follow from each other is presented in Fig. 3.

IV. CHARACTERIZING THE CENTRALIZERS OF SO(N)

In this section, we prove that functions which commute with
SO(N) are quasi-linear, which generalizes the well-known
result for linear functions [20]. We establish the general case
using induction on N ≥ 3. The case N = 2 is treated
separately in App. X.

Let T = {f : RN → RN} be the set of all transforma-
tions acting on RN . T is a monoid with respect to function
composition and is called the transformation monoid.

Definition IV.1 (Centralizer). Let A be a sub-semigroup of
T . The centralizer (or commuter) of A with respect to T is
denoted by CT (A) and is the set of all elements of T that
commute with all elements of A, i.e. CT (A) = {f ∈ T |fg =
gf,∀g ∈ A}.

The centralizer CT (A) is a submonoid of T and can be
interpreted as the set of transformations invariant with respect
to all transformations in A. In other words, the action of f ∈
CT (A) on RN and then transformed by g ∈ A is the same as
the action of f on the transformed space g(RN ).

Note that the set of all quasi-linear functions is a submonoid
of T , which will be denoted by QL(N).

Before we proceed, we provide two lemmas that are used
in subsequent proofs. The following lemma, whose proof is
straightforward and omitted, shows the intuitive fact that the
only vector invariant under all rotations is the null vector.

Lemma IV.2. Let x ∈ RN . If Rx = x for all R ∈ SO(N),
N ≥ 2, then x = 0.

Lemma IV.3. Let f = (f1, . . . , fN ) : RN → RN such that
f commutes with all elements of SO(N). Then xT f(x) =
‖x‖ f1(‖x‖ e1), for all x ∈ RN .

Proof. Let x ∈ RN and R ∈ SO(N) such that Rx =
‖x‖ e1 or equivalently x = RT ‖x‖ e1. It follows that
f(x) = f(RT ‖x‖ e1) = RT f(‖x‖ e1). Finally, xT f(x) =
xTRT f(‖x‖ e1) = (Rx)T f(‖x‖ e1) = ‖x‖ eT1 f(‖x‖ e1) =
‖x‖ f1(‖x‖ e1).

The following three lemmas establish the case N = 3 which
forms the base case of the induction argument used in the proof
of Thm. IV.7.

Lemma IV.4. Let u = (u1, u2, u3) ∈ R3 such that ‖u‖ = 1

and u 6= ±e1. Then Ru =


u1 0 −

√
u2

2 + u2
3

u2
u3√
u2
2+u2

3

u1u2√
u2
2+u2

3

u3 − u2√
u2
2+u2

3

u1u3√
u2
2+u2

3


is a rotation matrix in SO(3).

Proof. The matrix satisfies RuRTu = I3 and det(Ru) = 1,
and thus it is a rotation matrix in SO(3).

Lemma IV.5. Let f = (f1, f2, f3) : R3 → R3 such that f
commutes with all elements of SO(3), then

f1(x) = −f1(−x1,−x2, x3) (5)
f1(x) = −f1(−x1, x2,−x3) (6)
f2(x) = f1(x2,−x1, x3) (7)
f3(x) = f1(x3, x2,−x1), (8)

where x = (x1, x2, x3) ∈ R3.
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Proof. Let R1 =

 0 1 0
−1 0 0
0 0 1

, R2 =

 0 0 1
0 1 0
−1 0 0

 and

R3 =

1 0 0
0 0 1
0 −1 0

. The constrains are obtained using the

commutation condition f(Rx) = Rf(x) and some algebraic
manipulation. From R1f(x) = f(R1x), we get:

f2(x) = f1(x2,−x1, x3) (9)
−f1(x) = f2(x2,−x1, x3) = f1(−x1,−x2, x3) (10)
f3(x) = f3(x2,−x1, x3). (11)

Similarly, we obtain for R2:

f3(x) = f1(x3, x2,−x1) (12)
f2(x) = f2(x3, x2,−x1) (13)
−f1(x) = f3(x3, x2,−x1) = f1(−x1, x2,−x3) (14)

and for R3

f1(x) = f1(x1, x3,−x2) (15)
f3(x) = f2(x1, x3,−x2) (16)
−f2(x) = f3(x1, x3,−x2). (17)

Using Eq. (9) and (12) to express f2 and f3 in terms of
f1, respectively, and rearranging the variables we obtain the
desired constrains.

f1(x) = −f1(−x1,−x2, x3)

f1(x) = −f1(−x1, x2,−x3)

f1(x) = f1(x1,−x3, x2)

f1(x) = −f1(x1, x3, x2)

f2(x) = f1(x2,−x1, x3)

f3(x) = f1(x3, x2,−x1).

Proposition IV.6. The centralizer of SO(3) with respect to T
is the monoid of quasi-linear functions QL(3).

Proof. Let x = (x1, x2, x3) ∈ R3 such that x 6= αe1, α ∈ R
and f = (f1, f2, f3) : R3 → R3. Let u = x

‖x‖ and Ru as in
Lemma IV.4, we have x = Ru ‖x‖ e1 and ui = xi

‖x‖ . Using
the commutation property we obtain f(x) = f(Ru ‖x‖ e1) =
Ruf(‖x‖ e1) and writing the equation for f1, it follows that

f1(x) = u1f1(‖x‖ e1)−
√
u2

2 + u2
3 f3(‖x‖ e1). (18)

Using the equality from Lemma IV.5, Eq. (8), we have
f3(‖x‖ , 0, 0) = f1(0, 0,−‖x‖). On the other hand, it follows
from Eq. (5) that f1(0, 0, α) = −f1(0, 0, α), which implies
f1(0, 0, α) = 0 for all α ∈ R. It follows that f3(‖x‖ e1) = 0
for all x ∈ R3, x 6= αe1 and α ∈ R. Thus, Eq. (18) can be
simplified to

f1(x) = x1
f1(‖x‖ e1)

‖x‖
= x1k(‖x‖), (19)

where k : R≥0 → R is k(α)
∆
= f1(αe1)

α , α ≥ 0. The general
form of f(x) = k(‖x‖)x is obtained using Eq. (7) and (8).

The case x = 0 follows easily from Lemma IV.2, because
it implies f(0) = 0. The remaining case x = αe1 is trivial;
f(αe1) = [f1(αe1) f2(αe1) f3(αe1)]T = [α f1(αe1)

α 0 0]T =
k(‖x‖)x, where f2(αe1) = 0 and f3(αe1) = 0 follow from
Eq. (7), (6) and Eq. (8), (5), respectively.

Conversely, if f ∈ QL(N), then Rf(x) = R(k(‖x‖)x) =
k(‖Rx‖)Rx = f(Rx), where R ∈ SO(3). Thus, we have
f ∈ CT (SO(3)), which concludes the proof.

Theorem IV.7. The centralizer of SO(N) with respect to T is
the monoid of quasi-linear functions QL(N), for all N ≥ 3.

Proof. The proof follows from an induction argument with
respect to N . The base case is established by Prop. IV.6. To
simplify the notation, given a vector x = (x1, . . . , xN ) we will
denote by xi:j , i < j, the sliced vector (xi, . . . , xj) ∈ Rj−i+1.

The induction step: Let x ∈ RN+1, x 6= 0, and R1 =[
R 0
0 1

]
, R2 =

[
1 0
0 R

]
, where R ∈ SO(N). Using R1,

it follows that Rf1:N (x1:N , xN+1) = f1:N (Rx1:N , xN+1).
Applying the induction hypothesis, we obtain

f1:N (x1:N , xN+1) = k1(‖x1:N‖ , xN+1)x1:N . (20)

Similarly, using R2 we have Rf2:N+1(x1, x2:N+1) =
f2:N+1(x1, Rx2:N+1) and obtain

f2:N+1(x1, x2:N+1) = k2(‖x2:N+1‖ , x1)x2:N+1 . (21)

Equating Eq. (20) and (21) for f2 and assuming w.l.o.g. x2 6=
0, we get a constraint between the two gains

k2(‖x2:N+1‖ , x1) = k1(‖x1:N‖ , xN+1) . (22)

Thus, we obtain fN+1 in terms of the gain k1 by using the
last equality from Eq. (21) and (22) to substitute k2 for k1

fN+1(x1, . . . , xN+1) = k1(‖x1:N‖ , xN+1)xN+1 . (23)

Finally, putting all the components of f obtained from Eq. (20)
and (23) together and left multiplying it by xT , we get

xT f(x) =

N+1∑
i=1

x2
i k1(‖x1:N‖ , xN+1)

= ‖x‖2 k1(‖x1:N‖ , xN+1) = ‖x‖ f1(‖x‖ e1),

where the last equality follows from Lemma IV.3. It follows
that k1(‖x1:N‖ , xN+1) = f1(‖x‖e1)

‖x‖
∆
= k(‖x‖). Thus, f(x) =

k(‖x‖)x or equivalently f ∈ CT (SO(N)).
Conversely, we have QL(N) ⊆ CT (SO(N)) (see proof of

Prop. IV.6).

V. SE(N)-INVARIANT FUNCTIONS

In this section, we use the result from the previous section
that CT (SO(N)) = QL(N) in order to characterize SE(N)-
invariant functions that arise from pairwise interaction sys-
tems.

Proposition V.1. A function h(x1, x2) : RN × RN → RN is
SE(N)-invariant if and only if h is quasi-linear in x2 − x1.
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Proof. Trivially, a quasi-linear function h(x1, x2) =
k(‖x2 − x1‖)(x2 − x1) is SE(N)-invariant. Conversely, if
R = IN and w = −x2, then h(x1, x2) = h(x1−x2, x2−x2) =

h(x1 − x2, 0)
∆
= ĥ(x2 − x1). Let x ∈ RN and R ∈ SO(N),

it follows that Rĥ(x) = Rh(−x, 0) = h(−Rx, 0) = ĥ(Rx).
Since ĥ commutes with all elements of SO(N) it follows that
it is quasi-linear. Thus, we have h(x1, x2) = ĥ(x2 − x1) =
k(‖x2 − x1‖)(x2 − x1).

Lemma V.2. Let h1, h2 : RN × RN → RN . Then
S(x0, x1, x2) = h1(x0, x1) + h2(x0, x2) is an SE(N)-
invariant function if and only if there exists k1(·) and k2(·)
such that for all x0, x1, x2 ∈ RN we have

h1(x0, x1) = h1(x0, x0) + k1(‖x1 − x0‖)(x1 − x0) (24)
h2(x0, x2) = h2(x0, x0) + k2(‖x2 − x0‖)(x2 − x0) (25)

and h1(x0, x0) + h2(x0, x0) = 0.

Proof. It is easy to show that if S is the sum of func-
tions satisfying Eq. (24), (25) and the zero-sum constraint,
then S is SE(N)-invariant. Conversely, let f1(a, b) =
h1(a, b) + h2(a, a) and f2(a, b) = h1(a, a) + h2(a, b), where
f1, f2 : RN × RN → RN and a, b ∈ RN . It follows
immediately that f1 and f2 are SE(N)-invariant, because
h1(x0, x1) + h2(x0, x2) is SE(N)-invariant. Therefore, we
have by Prop. V.1 that f1(a, b) = k1(‖b− a‖)(b − a) and
f2(a, b) = k2(‖b− a‖)(b− a). Choosing a = b in any of the
previous two equations, we obtain h1(a, a)+h2(a, a) = 0. Fi-
nally, we obtain h1(a, b) = −h2(a, a) + f1(a, b) = h1(a, a) +
k1(‖b− a‖)(b − a) and h2(a, b) = −h1(a, a) + f2(a, b) =
h2(a, a) + k2(‖b− a‖)(b− a).

Lemma V.3. Let h1, . . . , hp : RN × RN → RN , p ∈
Z≥2. Then S(x0, . . . , xp) =

∑p
i=1 hi(x0, xi) is an SE(N)-

invariant function if and only if there exists ki(·), i ∈
{1, . . . p}, such that for all x0, x1, . . . , xp ∈ RN we have

hi(x0, xi) = hi(x0, x0) + ki(‖xi − x0‖)(xi − x0) (26)

for all i ∈ {1, . . . , p} and
p∑
i=1

hi(x0, x0) = 0 . (27)

Proof. As before, the quasi-linearity of S, which follows from
Eq. (26) and (27), trivially implies its SE(N)-invariance. We
will prove the converse by induction with respect to p. The
base step p = 2 is established by Lemma V.2. For the induction
step, we assume that Lemma V.3 holds for p and we must show
that it also holds for p+ 1.

Let xp+1 = x1 and define the function
h′1(x0, x1) = h1(x0, x1) + hp+1(x0, x1). Clearly
h′1(x0, x1) +

∑p
i=2 hi(x0, xi) is an SE(N)-invariant

function and by the induction hypothesis we have for all

i ∈ {2, . . . , p}

hi(x0, xi) = hi(x0, x0) + ki(‖xi − x0‖)(xi − x0)

h′1(x0, x1) = h′1(x0, x0) + k′1(‖x1 − x0‖)(x1 − x0)

= h1(x0, x0) + hp+1(x0, x0)

+ k′1(‖x1 − x0‖)(x1 − x0)

and h′1(x0, x0) +
∑p
i=2 hi(x0, x0) =

∑p+1
i=1 hi(x0, x0) = 0.

Similarly, let xp+1 = x2 and define h′2(x0, x2) =
h2(x0, x2)+hp+1(x0, x2). Using the same argument as before,
we obtain h1(x0, x1) = h1(x0, x0)+k1(‖x1 − x0‖)(x1−x0).
Substituting h1 in the expression of h′1 and solving for hp+1

we have

hp+1(x0, xp+1) = h′1(x0, xp+1)− h1(x0, xp+1)

= hp+1(x0, x0)

+ kp+1(‖xp+1 − x0‖)(xp+1 − x0),

where kp+1 = k′1 − k1. This concludes the proof.

We conclude this section with a characterization theorem of
the total interaction functions of pairwise interaction systems.

Theorem V.4. Let S(x0, x1, . . . , xp) =
∑p
j=1 hj(x0, xj),

where hj : RN × RN → RN and p ≥ 1. Then S is SE(N)-
invariant if and only if it is the sum of quasi-linear functions in
xj−x0, j ∈ {1, . . . , p}, that is S =

∑p
j=1 kj(‖xj − x0‖)(xj−

x0), where kj : R≥0 → R.

Proof. Let S(x0, . . . , xp) =
∑p
j=1 hj(x0, xj) be an SE(N)-

invariant function, it follows from Lemma V.3 that there exists
kj(·) for all j ∈ {1, . . . , p}, such that

S =

p∑
j=1

(hj(x0, x0) + kj(‖xj − x0‖)(xj − x0))

=

p∑
j=1

hj(x0, x0) +

p∑
j=1

kj(‖xj − x0‖)(xj − x0)

=

p∑
j=1

kj(‖xj − x0‖)(xj − x0),

where the last equality follows from Eq. (27) of Lemma V.3,
which says that the sum of all affine terms must vanish.

Conversely, let S =
∑p
j=1 kj(‖xj − x0‖)(xj − x0), then S

is SE(N)-invariant, i.e. for all (R,w) ∈ SE(N)

RS =

p∑
j=1

kj(‖xj − x0‖) R (xj − x0)

=

p∑
j=1

kj(‖Rxj + w − (Rx0 + w)‖)(Rxj + w − (Rx0 + w))

= S(Rx0 + w,Rx1 + w, . . . , Rxp + w),

where we used the fact that ‖Rx‖ = ‖x‖ for all R ∈ SO(N)
and x ∈ RN . The proof is now complete.

Thm. III.7 follows immediately from Thm. V.4, since we
can apply Thm. V.4 on the total interaction function Si of
any agents i, where p, x0 and hj(x0, xj), j ∈ {1, . . . , p},
correspond to |N→i |, xi and fij(xi, xj), j ∈ N→i , respectively.
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Remark V.5. Theorem III.7 is stated in terms of total inter-
action functions, independent of a notion of dynamics, which
has two benefits: (1) it greatly expands the applicability of the
result to other cases (See. VII), and (2) we do not need to
assume any smoothness conditions on the functions, such as
continuity or differentiability.

VI. STABILITY OF SE(N)-INVARIANT SYSTEMS

In this section, we explore the stability of SE(N)-invariant
pairwise interaction systems, showing that a subclass of such
systems converges to a consensus state (one in which all
agents’ states are equal). The stability result exploits the
structure of SE(N)-invariant systems imposed by Thm. III.7
and some additional constraints on the connectivity of the
communication graph and local interaction functions.

Before we state the stability theorem, we prove a lemma
connecting the Laplacian matrix of a graph with the conver-
gence rate of the systems towards the equilibria set.

Lemma VI.1. Let L be a n × n real symmetric positive
semidefinite matrix with eigenvalues λn ≥ . . . ≥ λ2 > λ1 = 0
and 1n be the right eigenvector corresponding to the eigen-
value λ1 = 0. Then for all x ∈ RN×n, N > 2, such that
(1Tn ⊗ IN )x = 0, we have

xT (L ⊗ IN )x ≥ λ2(L) ‖x‖2 . (28)

Proof. The spectrum of the Kronecker product of two matrices
A, B is composed of the pairwise product of eigenvalues of
A and B. Therefore, L ⊗ IN has the same eigenvalues as L.
The inequality in Eq. (28) follows from a special case of the
Courant-Fisher theorem [8], [21].

Theorem VI.2. Let (G,F ) be a continuous-time pairwise-
interaction system that satisfies the following properties:

1) (G,F ) is SE(N)-invariant;
2) G is strongly connected;
3) (G,F ) is balanced, i.e. for all agents i and xi, xj ∈ RN∑

j∈N→i

fij(xi, xj) +
∑
j∈N←i

fji(xj , xi) = 0 (29)

4) positivity – for all (i, j) ∈ E(G) and xi 6= xj ∈ RN

(xj − xi)T fij(xi, xj) > 0. (30)

Then the consensus set Ω(x̄(0)) = {x|xi = x̄(0),∀i ∈ V (G)}
is globally asymptotically stable, where x = [xT1 , . . . , x

T
n ]T is

the stacked state vector and x̄(0) = 1
n

∑
i∈V (G) xi(0), n =

|V (G)|. Moreover, for each (i, j) ∈ E(G) the limit σij =

limxi→xj

(xj−xi)
T (fij(xi,xj)−fij(xi,xi))

‖xj−xi‖2
exists, and if σij > 0

for all (i, j) ∈ E(G), then Ω(x̄(0)) is globally exponentially
stable.

Proof. The proof uses a Lyapunov function based argument
similar to the one in [8, Thm. 3]. We use Thm. III.7 to rewrite
the dynamics of the system in quasi-linear form. We proceed
to define a weighted Laplacian matrix, where the weights are
dependent on the agents’ states, which is the main difference
from the proof presented in [8]. Finally, we define a quadratic

Lyapunov function and show that the total derivative can be
upper bounded using the Fiedler value of the Laplacian matrix
and thus guarantees global asymptotic stability. The details are
presented below.

First, we show that the average state x̄(t) =
1
n

∑
i∈V (G) xi(t) is invariant with respect to time. The

derivative of x̄(t) is

˙̄x =
1

n

∑
i∈V (G)

∑
j∈N→i

fij(xi, xj) =
1

n

∑
(i,j)∈E(G)

fij(xi, xj)

=
1

2n

∑
i∈V (G)

 ∑
j∈N→i

fij(xi, xj) +
∑
j∈N←i

fji(xj , xi)


= 0,

where the third equality follows from writing the sum of all
local interaction functions in two ways, using the incoming and
outgoing edges. The last equality follows from the assumption
that (G,F ) is balanced.

Let δ(t) = x(t)−1n⊗ x̄(0) be the disagreement vector.The
next step is to show that the disagreement space spanned by
δ is orthogonal to the consensus space

(1Tn ⊗Dα)δ(t) = (1Tn ⊗Dα)x(t)− (1Tn ⊗Dα)(1n ⊗ x̄(0))

= Dα (nx̄(t)− nx̄(0)) = 0,

where α ∈ Rn and Dα = diag(α). The last equality above
holds due to the conservation of the average state.

Next, we use the SE(N)-property to rewrite the system’s
dynamics in the quasi-linear form given by Thm. V.4. Let L(x)
denote the n×n weighted Laplacian matrix of (G,F ), i.e. for
all i, j ∈ V (G)

Lij =


∑

p∈N→i
kip(‖xi − xp‖) for i = j

−kij(‖xi − xj‖) for i 6= j and (i, j) ∈ E(G)

0 otherwise

where
∑
j∈N→i

fij(xi, xj) =
∑
j∈N→i

kij(‖xj − xi‖)(xj −
xi). The positivity assumption in Eq. (30) implies that
kij(a) > 0 for all (i, j) ∈ E(G) and a > 0.

Using the Laplacian, the system dynamics may be written
in the following compact form:

ẋ = −(L(x)⊗ IN )x . (31)

Also, because kij(‖xi − xj‖) = kij(‖xi + α− (xj + α)‖),
we have that L(x) = L(x + (1n ⊗ α)), for all α ∈ RN .
This implies that L(x) = L(δ). Moreover, the dynamics of
the disagreement vector is

δ̇ = ẋ = −(L(x)⊗ IN )x (32)

= −(L(δ)⊗ IN )
(
δ + (1n ⊗ x̄(0))

)
(33)

= −(L(δ)⊗ IN )δ + (L(δ)⊗ IN )(1n ⊗ x̄(0)) (34)
= −(L(δ)⊗ IN )δ, (35)

where the second term in Eq. (34) vanishes, because 1n is a
right eigenvector of L(δ).

Let L̂(x) = 1
2 (L(x) + LT (x)) be the Laplacian matrix of

the mirror graph of G, i.e. the graph with both the edges of G
and the reversed edges of G. Notice that L̂(x) is symmetric
and xT L̂(x)x = 1

2 (xTL(x)x+ xTLT (x)x) = xTL(x)x.
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Consider the Lyapunov function V (δ) = 1
2 ‖δ‖

2, which is
trivially positive definite and radially unbounded. The total
derivative of V (·) is

V̇ (δ) = δT δ̇ = −δT (L(δ)⊗ IN )δ (36)

= −δT (L̂(δ)⊗ IN )δ (37)

≤ −λ2(L̂(δ)) ‖δ‖2 , (38)

where λ2(L̂(δ)) is the Fiedler value (second smallest eigen-
value) of L̂(δ). The inequality in Eq. (38) follows from
Lemma VI.1, because G is balanced and thus L̂(x)1n =
1
2 (L(x)1n + L(x)T1n) = 0.

The total derivative of the Lyapunov function V̇ (δ) is zero
if and only if either: (1) δ is zero, or (2) G is not strongly
connected. However, the positivity condition, Eq. (30), implies
that G is strongly connected for all δ 6= 0. Since, δ = 0
implies δ̇ = 0 it follows from LaSalle’s invariance principle
that δ∗ = 0 is globally asymptotically stable. It follows that
x∗ = 1n⊗ x̄(0) and Ω(x̄(0)) is globally asymptotically stable.

Lastly, the limits σij exists for all (i, j) ∈ E(G), because

σij = lim
xi→xj

(xj − xi)T (fij(xi, xj)− fij(xi, xi))
‖xj − xi‖2

(39)

= lim
xi→xj

kij(‖xj − xi‖)
(xj − xi)T (xj − xi)
‖xj − xi‖2

(40)

= kij(0). (41)

Notice that the set Λ2 = {λ2(L(δ(t)))|t ≥ 0} is compact
and therefore admits a minimum value. If σij = kij(0) > 0,
then all values in Λ2 are positive. In particular, it follows that
min Λ2 > 0. We can then upper bound the quantity in Eq. (38)
by V̇ ≤ −min Λ2 ‖δ‖2, which in turn shows that

d

dt
‖δ‖ ≤ −min Λ2 ‖δ‖ . (42)

Therefore, Ω(x̄(0)) is globally exponentially stable.

VII. EXTENSIONS

The main result presented in Sec. III is stated for first order
(kinematic) continuous-time dynamics. In this section, we
discuss extensions to discrete-time and higher order dynamics.
We also show that the results hold for switching and time-
varying graph topologies.

A. Discrete-time systems

A discrete-time pairwise interaction system can be de-
fined by replacing differentiation (ẋi) with one-step difference
(∆xi(t) = xi(t + 1) − xi(t)) in Eq. (2) of Def. III.2.
The definitions of the total interaction function and SE(N)-
invariance remain unchanged, (see Eq. (3) of Def. III.2 and
Def. III.3, respectively).

The main result of the paper, Thm. III.7, holds for discrete-
time systems as well. The stability results on the other hand
need to be adjusted.

Lemma VII.1. Let (X, d) be a non-empty complete metric
space and (Tn)n≥0 be a sequence of Lipschitz continuous
functions such that all admit a Lipschitz constants q < 1.

Define the sequence xn+1 = Tn(xn). If all maps Tn have the
same fixpoint x∗ ∈ X , then for all x0 ∈ X we have xn → x∗.

Proof. First note that all maps Tn are contractions, because
q < 1. Thus, by the contraction mapping theorem, all Tn have
a unique fixpoint x∗. Moreover, for all n ≥ 0 and x ∈ X we
have the following

d(Tn(x), x∗) = d(Tn(x), T (x∗)) ≤ qd(x, x∗). (43)

It follows by induction d(xn, x
∗) ≤ qnd(x0, x

∗), for all
n ≥ 1. The base case n = 1 follows by applying Eq. (43).
For the induction step, we again use Eq. (43), d(xn+1, x

∗) =
d(Tn(xn), x∗) ≤ qd(xn, x

∗) ≤ qn+1d(x0, x
∗), where in the

last inequality we used the induction hypothesis.
Lastly, xn is a Cauchy sequence, because for all m,n ≥ 0

d(xm, xn) ≤ d(xm, x
∗) + d(x∗, xn) ≤ (qm + qn)d(x0, x

∗),
where we used the triangle inequality in the first inequality.
Therefore, xn has the unique limit x∗, because X is complete
and the distance map d is continuous.

Definition VII.2. Let (G,F ) be a discrete-time pairwise
interaction system and GT be the transpose graph of G, i.e.
the graph with all edges reversed. Denote by SG and SG

T

the vectors of stacked total interaction functions for all agents
with communication graphs G and GT , respectively. System
(G,F ) is said to be forward-backward consistent if(

id + SG
T
)
◦
(
id + SG

)
=
(
id + SG

)
◦
(
id + SG

T
)
, (44)

where id is the identity function and ◦ is the function compo-
sition operator.

Remark VII.3. The identity function in the terms of Eq. (44)
arises, because the equations of the forward (G) and backward
(reversed, GT ) evolution of the system are x(t+ 1) = x(t) +

SG(x(t)) and x(t+ 1) = x(t) + SG
T

(x(t)), respectively.

Remarks VII.4. Def. VII.2 describes a property about the
evolution of a system in two time units, where in either the
first or the second time unit the edges of the communication
graph are reversed. The property in Eq. (44) captures the idea
that the state the system ends up in is independent of when
the reversal of the edges occurred.

The property can also interpreted in the following way.
Consider a network with half-duplex communication links and
a global switch which changes the direction of all links at the
same time. The forward-backward consistency property implies
that the state of the network at time t depends only on the
initial state and the number of network switches until time t
and not the sequence of switches itself.

Yet another way to interpret the property is as a relaxation
of time-reversibility. If the two terms in Eq. (44) were equal
to the identity function, then the pairwise interaction system
(G,F ) would be time-reversible and moreover the system
could be brought back to the initial state using (GT , F ) with
the communication graph reversed. Therefore, Def. VII.2 can
be though of as a relaxation of time-reversibility.

Theorem VII.5. Let (G,F ) be a discrete-time pairwise inter-
action system that satisfies the following properties:

1) (G,F ) is SE(N)-invariant;
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2) G is strongly connected;
3) (G,F ) is forward-backward consistent, see Def. VII.2;
4) positivity – for all (i, j) ∈ E(G)

inf
xi 6=xj

{
(xj − xi)T (fij(xi, xj)− fij(xi, xi))

‖xj − xi‖2

}
> 0

(45)
5) the maximum out-degree is less than one, i.e.

sup
i, xi

 ∑
j∈N→i

‖fij(xi, xj)− fij(xi, xi)‖
‖xj − xi‖

 < 1. (46)

Then the consensus set Ω(x̄(0)) = {x|xi = x̄(0),∀i ∈ V (G)}
is globally exponentially stable, where x = [xT1 , . . . , x

T
n ]T is

the stacked state vector and x̄(0) = 1
n

∑
i∈V (G) xi(0), n =

|V (G)|.

Proof. In the following we use the notation introduced in the
proof of Thm VI.2. Thus, the dynamics can be written as

x(t+ 1) = (P (x(t))⊗ IN )x(t) (47)
δ(t+ 1) = (P (δ(t))⊗ IN )δ(t), (48)

where P (x) = In−L is the Perron matrix. Similarly to L(·),
we have P (x) = P (δ).

For any fixed δ ∈ Rn×N such that (1Tn ⊗ IN )δ = 0, we
have that P (δ) is a nonnegative doubly stochastic matrix. The
positivity assumption Eq. (45) is equivalent to kij(a) > 0
for all a ≥ 0 and (i, j) ∈ E(G), which trivially implies
that all off-diagonal elements of P (δ) are non negative.
Moreover, the maximum degree assumption can be restated as∑
j∈Ni

kij(‖δi − δj‖) < 1 which is equivalent to Pii(δ) > 0.
The forward-backward consistency property implies that P (δ)
is a normal matrix, for all δ. The Perron matrix P (δ) is double
stochastic, i.e. G is balanced, because 1n is a right eigenvector
of L(δ) and P (δ)PT (δ)1n = PT (δ)P (δ)1n = PT (δ)1n
which implies that PT (δ)1n = a1n, a 6= 0, is an eigenvector
of P (δ) corresponding to the eigenvalue 1. Since PT (δ) has
the same spectrum as P (δ), it follows that a must be 1.

The Perron matrix is a contraction on the linear space
defined by (1Tn ⊗ IN )δ = 0, because

‖(P (δ)⊗ IN )α‖2 = αT (P (δ)⊗ IN )T (P (δ)⊗ IN )α (49)

= αT ((P (δ)TP (δ))⊗ IN )α (50)

= αT ((UD∗DU∗)⊗ IN )α (51)

≤ |µ2(P (δ))|2 · ‖α‖2 , (52)

where µ2(P (δ)) is the second largest eigenvalue in absolute
value of P (δ), P (δ) = UDU∗, U is a unitary matrix, D is the
diagonal matrix corresponding to the spectrum of P (δ), and ∗

is the conjugate transpose operator. The inequality in Eq. (52)
follows from the Courant-Fisher Theorem [21].

Lastly, it follows that P (δ(t))⊗IN is a sequence of contrac-
tion maps. All of them admit 0 as a fixpoint. The Lipschitz
constant for all of them is q = supt≥0 |µ2(P (δ(t)))| < 1,
because the positivity assumption guarantees that P (δ(t)) is
nonnegative doubly stochastic for all t ≥ 0. By Lemma VII.1
it follows that δ(t) converges to 0, where X ⊂ RN is the space
defined by (IN ⊗ Dα)δ = 0 with distance function induced

by the Euclidean norm ‖·‖.

B. Higher-order dynamics

In this section we extend the notion of SE(N)-invariance
to higher-order pairwise interaction systems, i.e. each agent’s
dynamics has order m ≥ 2. If the dynamics of these systems
depends only the agents’ states, then the definitions and results
from Sec. III all hold. However, we are interested in systems
whose dynamics depend on the agents’ (generalized) velocities
as well. For this class of systems, we show a similar result
to Thm. III.7. As in Sec. V, all (generalized) velocities are
measured with respect to a global inertial frame, but are
represented in a reference frame of the agents’ choice.

Definition VII.6 (SE(N)-invariant function). A function f :
RN×m×p → RN is said to be SE(N)-invariant if for all
R ∈ SO(N) and all w ∈ RN the following condition holds:

Rf(x, v1, . . . , vm−1) = f(Rx+w,Rv1, . . . ,Rvm−1), (53)

where x, v1, . . . , vm−1 ∈ RN , R = R⊗ Ip and w = w ⊗ 1p.

Definition VII.7 (Pairwise Interaction System). A continuous-
time pairwise interaction system is a double (G,F ), where G
is a graph and F = {(f0

ij , . . . , f
m−1
ij ) | frij : RN × RN →

RN , (i, j) ∈ E(G)} is a set of tuple of functions associated to
its edges. Each i ∈ V (G) labels an agent, and a directed edge
(i, j) indicates that node i requests and receives information
from node j. The dynamics of each agent are described by

x
(m)
i =

∑
j∈N→i

f0
ij(xi, xj) +

m−1∑
r=1

∑
j∈N→i

frij(x
(r)
i , x

(r)
j ), (54)

where frij , 0 ≤ r < m, define the influence (interaction) of j
on i.

For each agent i ∈ V (G), we denote the total interaction
on agent i by

Si(x, v
1, . . . , vm−1) =

∑
j∈N→i

f0ij(xi, xj) +

m−1∑
r=1

∑
j∈N→i

frij(v
r
i , v

r
j ).

The definitions of SE(N)-invariant systems and quasi-
linear systems remain unchanged, but are interpreted using
the extended notions. The main theorem can thus be extended
as follows:

Theorem VII.8. Let (G,F ) be a continuous-time pairwise
interaction system such that frij(v

r
i , v

r
j ) = grij(v

r
i −vrj ), where

grij : RN → RN and r ∈ {1, . . . ,m − 1}. Then (G,F ) is
SE(N)-invariant if and only if it is quasi-linear.

Proof. Let Si be the total interaction function of agent i ∈
V (G). Let vr = 0 for all 1 ≤ r ≤ m− 1. Since

RSi(x, 0, . . . , 0) = Si(Rx+ w, 0, . . . , 0)

for all (R,w) ∈ SE(N), we have by Lemma V.3 that

Si(x, 0, . . . , 0) =
∑
j∈N→i

k0
ij(‖xi − xj‖)(xj − xi).
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Similarly, let x = 0 and vr = 0 for r 6= s, 1 ≤ r, s ≤ m− 1.
We have

RSi(0, 0, . . . , v
s, . . . , 0) = R

∑
j∈N→i

fsij(v
s
i , v

s
j )

=
∑
j∈N→i

fsij(Rv
s
i , Rv

s
j )

=
∑
j∈N→i

gsij(Rv
s
i + w − (Rvsj + w))

= Si(0, . . . ,Rv
s + w, . . . , 0)

for all (R,w) ∈ SE(N). Again, by Lemma V.3 it follows that

Si(0, 0, . . . , v
s, . . . , 0) =

∑
j∈N→i

ksij(
∥∥vsj − vsi ∥∥)(vsj − vsi ).

Overall, it follows that

Si =
∑
j∈N→i

k0
ij(‖xi − xj‖)(xj − xi)

+

m−1∑
r=1

∑
j∈N→i

krij(
∥∥vri − vrj∥∥)(vrj − vri ).

Conversely, if all total interaction functions are quasi-linear, it
is straightforward to check that the system is SE(N)-invariant.

C. Switching topologies

The main result of the paper, Thm. III.7, as well as the
extensions to discrete-time systems and higher order system
will hold also in the case when the communication topology
G changes and the switching signal is time-dependent. Intu-
itively, the time-varying topology is not related to the reference
frames of the agents. Thus, SE(N)-invariance implies the
quasi-linear structure regardless of the topology of the system.

VIII. EXAMPLES

In this section we provide some examples to clarify and
illustrate the notions of SE(N)-invariance and quasi-linearity
for pairwise interaction systems. We also consider several
existing pairwise multi-agent systems that have been studied
in the literature. We show that many of these are SE(N)-
invariant, although we also show an example that is not, and
one that is only SE(N)-invariant under certain conditions.
These results are summarized in Table I.

The following example shows an SE(N)-invariant system
with local interaction functions which are not quasi-linear.
However, as shown by Thm. V.4, the total interaction functions
associated with the system’s agents can be rewritten as sums
of quasi-linear functions. Moreover, Ex. VIII.1 provides an
example of a weakly stable system where the agents follow
elliptical periodic orbits (see Fig. 4). The shape of the elliptical
orbits depends on the initial states of the agents: (1) if the
agents start from equidistant states then they follow circular
periodic trajectories (see Fig. 4(a)); (2) otherwise their peri-
odic trajectories are elliptical (see Fig. 4(b)). This example,
together with the systems considered in [12] and [13], show

that SE(N)-invariant pairwise interaction systems have rich
asymptotic behaviors aside from consensus.

Example VIII.1. Let (G,F ) be a pairwise interaction system
where G = K3 is the complete graph with 3 vertices and

fij(xi, xj) =

{
xj (i, j) ∈ {(1, 2), (2, 3), (3, 1)}
−xj otherwise

The pairwise interaction functions of this system are not
quasi-linear in xj − xi, (i, j) ∈ E(G). However, the system
can easily be checked to be SE(N)-invariant. For agent 1 we
have

S1(x1, x2, x3) = f12(x1, x2) + f13(x1, x3) = x2 − x3

RS1 = Rx2 + w − (Rx3 + w)

= f12(Rx1 + w,Rx2 + w) + f13(Rx1 + w,Rx3 + w)

= S1(Rx1 + w,Rx2 + w,Rx3 + w),

where R ∈ SO(N) and w ∈ RN . However, by Thm. V.4
the total interaction function S1 must be a sum of quasi-
linear functions. Indeed, we can rewrite S1 = x2 − x1 +
(−1)(x3 − x1). Similarly, the SE(N)-property holds for the
total interaction functions of the other two agents and these
functions can be rewritten as sums of quasi-linear functions.

(a) xT
1 (0) = [1, 1], xT

2 (0) = [ 3
2
, 1+

√
3

2
],

xT
3 (0) = [2, 1]

(b) xT
1 (0) = [1, 1], xT

2 (0) = [ 3
2
, 3
2
],

xT
3 (0) = [2, 1]

Fig. 4. Trajectories of the SE(2)-invariant system presented in Ex. VIII.1.
The three agents are shown in red, blue and green, respectively. The states
of the agents at time t = 0 sec and t = 1 sec are marked by diamonds and
dots, respectively.

Example 1 in Tab. I was proposed in [12] to model swarm
aggregation and is a quasi-linear system because g(·) is
a quasi-linear function. The system exhibits an asymptotic
behavior where the agents aggregate (in finite time) within
a hyper-ball and stay inside it forever [12]. The second [15],
third [10] and fourth [11] examples define the agents’ dy-
namics based on potential functions. Example 2 from [15]
drives the agents towards some goal states which are encoded
in the γi() functions, while ensuring that the agents avoid
each other and fixed and known obstacles and it is enforced
using the βi() functions. The system is not quasi-linear,
because the potential function whose gradient is used for
navigation depends explicitly on the agents’ states, as opposed
to distances between agents’ states, and thus its gradient
cannot be a quasi-linear function. We can conclude that the
multi-agent system in the second example is not SE(N)-
invariant. On the other hand, example 4 [11] is quasi-linear,
because the gradients of ∇xi

Vij(·) are quasi-linear functions.
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TABLE I
THE TABLE CONTAINS EXAMPLES OF NETWORKED SYSTEMS THAT ARE

QUASI-LINEAR, EXCEPT FOR THE SECOND EXAMPLE AND POSSIBLY THE
FOURTH. IT FOLLOWS THAT THE QUASI-LINEAR SYSTEMS BELOW ARE

ALSO SE(N)-INVARIANT BY THM. III.7. ALL SYSTEMS HAVE n AGENTS
AND FOR EACH AGENT i ∈ {1, . . . , n}, WE DENOTE BY xi ITS STATE. THE
MAPS VI , Vh, Vij : R≥0 → R REPRESENT POTENTIAL FUNCTIONS. IN THE

THIRD EXAMPLE, x̃p REPRESENTS THE STATE OF A VIRTUAL LEADER
p ∈ {1, . . . ,m}. IN THE FOLLOWING, ∇xiV REPRESENTS THE GRADIENT

OF V WITH RESPECT TO xi .

No. System dynamics Refe-
rence

Quasi-
linear?

1
ẋi =

n∑
j=1

g(xi − xj)

g(y) = −y

(
a− b exp

(
−‖y‖

2

c

))
[12] Yes

2
ẋi = −α∇xi

(
γi(x)

(γi(x)k + βi(x))1/k

) [15] No

3
ẍi =−

n∑
j 6=i

∇xiVI(‖xi − xj‖)

−
m−1∑
k=0

∇xiVh(‖xi − x̃k‖)

¨̃xp =f̃p(xj , x̃k, ẋj , ˙̃xk)

where 1 ≤ i ≤ n and 1 ≤ p ≤ m

[10] Yes
or
No.

4
ẍi =−

∑
j∈N→i

∇xi
Vij(‖xi − xj‖)

−
∑
j∈N→i

(ẋi − ẋj)

[11] Yes.

5
ẋi = ui or xi(k + 1) = xi(k) + ui

ui =
∑
j∈N→i

aij(xi − xj) or

ui =
∑
j∈N→i

(‖xi − xj‖2 − dij)(xi − xj)

where aij ∈ R and dij ∈ R

[8],
[9],
[13]

Yes

6
ẍi =

1

mi

n∑
j=1,j 6=i

Gmimj

‖xi − xj‖3
(xj−xi)

[7] Yes

We conclude that the system is SE(N)-invariant in the sense
of Def. VII.7 by Th. VII.8 for higher order systems with
generalized velocities. The system in example 3 is quasi-linear
if and only if the dynamics of the virtual leaders f̃p are sums
of quasi-linear functions, 1 ≤ p ≤ m. Example 5 corresponds
to systems implementing consensus and formation control [8],
[9], [13]. It is easy to see that these systems are quasi-linear
and therefore SE(N)-invariant. The last example shows a
system of n point masses which interact with each other due

to gravity. This system is also quasi-linear and thus exhibits
SE(N)-invariance, a fact which is well known in Hamiltonian
mechanics [7].

IX. CONCLUSIONS

In this paper, we studied the SE(N)-invariance property of
multi-agent, locally interacting systems. This property, which
guarantees the independence of a system of global reference
frames, implies that control laws can be computed and ex-
ecuted locally (i.e., in each agent’s frame) using only local
information available to the agent. This property is critical
in applications in which information about a global reference
frame cannot be obtained, e.g., in GPS-denied environments.

The main contribution of the paper is to fully characterize
pairwise interaction systems that are SE(N)-invariant. We
showed that pairwise interaction systems are SE(N)-invariant
if and only if they have a special quasi-linear form. Because of
the simplicity of this form form, this result can impact ongoing
research on design of local interaction laws. The result can
also be used to quickly check if a given networked system
is SE(N)-invariant. We also described a subset of SE(N)-
invariant pairwise interaction systems that reach consensus by
exploiting their quasi-linear structure. Finally, we extended the
results to discrete-time and high-order systems and systems
with time-dependent switching topologies. As in the contin-
uous case, we proved the convergence to consensus for a
subclass of discrete-time SE(N)-invariant pairwise interaction
systems.

X. APPENDIX. THE CASE N = 2

In this section we treat the case N = 2. The difference
between the cases N = 2 and N ≥ 3 arises from the fact
that SO(2), the group of planar rotations, is Abelian, while
SO(N) for N ≥ 3 is not, i.e., rotation matrices in 3 or more
dimensions do not, in general, commute.

All results in the paper carry over to the case N = 2,
because SO(2) and its centralizer are Abelian. In all theorems
quasi-linear functions are replaced with similar functions from
the centralizer of SO(2). In the following we provide the
characterization of CT (SO(2)), which supports our claim.

Proposition X.1. The centralizer of SO(2) with respect to T is
the submonoid {(k1(‖x‖)I2 + k2(‖x‖)J2)x}, where k1, k2 :

R≥0 → R and J2 =

[
0 1
−1 0

]
.

Proof. Let x ∈ R2, x 6= 0, and u = x
‖x‖ . Then Ru =[

u1 u2

−u2 u1

]
is a rotation matrix in SO(2) and x = Ru ‖x‖ e1.
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Next, we evaluate f(x)

f(x) = f(Ru ‖x‖ e1) = Ruf(‖x‖ e1)

=

[
u1 u2

−u2 u1

] [
f1(‖x‖ e1)
f2(‖x‖ e1)

]
=

1

‖x‖

[
x1f1(‖x‖ e1) + x2f2(‖x‖ e1)
x2f1(‖x‖ e1)− x1f2(‖x‖ e1)

]
=

1

‖x‖

[
f1(‖x‖ e1) f2(‖x‖ e1)
−f2(‖x‖ e1) f1(‖x‖ e1)

] [
x1

x2

]
∆
=

[
k1(‖x‖) k2(‖x‖)
−k2(‖x‖) k1(‖x‖)

] [
x1

x2

]
,

where k1(‖x‖) ∆
= f1(‖x‖e1)

‖x‖ and k2(‖x‖) ∆
= f2(‖x‖e1)

‖x‖ . The
case x = 0 follows from Lemma IV.2.
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