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Abstract— Robustness functions provide quantitative
scores to measure the satisfaction of temporal logic for-
mulas. We introduce a general class of parameterized ro-
bustness functions for Signal Temporal Logic (STL), and
demonstrate how it can be used for control problems in-
volving STL specifications. We employ power means and
generalized functional means to capture robust satisfaction
over space and time. We show that our general definition
encompasses many of the STL robustness functions in the
literature. Most importantly, we show how that our notion
of robustness addresses the two main limitations of the
the traditional robustness (masking and locality), which
currently limit using robustness-based approaches for con-
trol. The proposed robustness function parameters affect
the conservativeness of the score, and can be chosen
based on desired performance. We show how the proposed
robustness can be used for control.

Index Terms— Signal Temporal Logics, Power mean,
Generalized Mean, Robustness, Control Synthesis

I. INTRODUCTION

CYBER-PHYSICAL systems are required to satisfy com-
plex requirements that are beyond stability or reachabil-

ity. The wide adoption of these systems in many engineering
disciplines, from self-driving cars and robotics to biological
systems, have led to an increasing need for techniques and
tools to study their correct functioning. Formal methods can
express a broad spectrum of properties and constraints in
cyber-physical systems including time deadlines, sequentiality,
and safety [1], [2]. Numerous tools have been developed to
provide formal certificates for satisfaction of logical spec-
ifications, and to automatically design control policies that
guarantee correctness [3]–[5]. Linear Temporal Logic (LTL)
[6], Metric Temporal Logic (MTL) [7], Time Window Tempo-
ral Logic (TWTL) [8] and Signal Temporal Logic (STL) [9]
have been widely used as specification languages due to their
expressivity and similarity to natural language.

STL defines temporal and logical properties of real-valued
signals. In its qualitative (Boolean) semantics, a signal ei-
ther satisfies or violates a formula. The STL quantitative
semantics [10], known as robustness, provides a measure of
satisfaction or violation of a formula. Early works showed that
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it can be used for monitoring [9]. It has also been utilized as
the objective function in different optimization frameworks to
synthesize control policies [11]–[14].

The traditional robustness introduced in [10] uses max and
min functions over temporal and logical formulae, resulting
in a sound yet non-convex and non-smooth function, which
only includes the most critical part of the signal in the
robustness. Heuristic optimization algorithms such as Particle
Swarm Optimization and Rapidly Exploring Random Trees
(RRTs) were initially used to optimize the non-smooth robust-
ness function [15], [16]. Mixed Integer Linear Programming
(MILP) encoding of the temporal and Boolean constraints was
later proposed in [11], [17]. However, MILP encoding is only
applicable to linear systems with linear costs and formulae,
and relies on defining integer variables. This method scales
poorly with the size and horizon of the specifications. Previous
works focused on smoothing the robustness function by using
approximations of max and min, resulting in a differentiable
yet not sound robustness. This approach enables the use
of scalable, gradient-based optimization methods, which are
applicable to general nonlinear systems [18], [19].

Averaging was used in [20] to define quantitative semantics
for MTL in terms of linear time-invariant filters. Different
from STL robustness, the MTL semantics captures the degree
of truth, and is non-differentiable. Robustness notions for
LTL are proposed in [21], [22] that are closer to relaxed
satisfaction [23] than STL robustness.

The max and min functions in the traditional robustness
definition also induce masking and locality effects. Informally,
masking means that only the best or worst operands and time
points are selected by the robustness score. Thus, no informa-
tion about any other operands and time points is visible in the
result. The locality of a robustness score implies that it depends
only on the value of one predicate at one time point. These
have been shown to have negative impacts in optimization
problems due to hindering optimizers from obtaining gradient
information to improve solutions, and resulting in solutions
that were brittle to noise [24], [25]. Some works tackled
the aforementioned issues and refined the robustness function
to include more information on the signal by employing
averaging or cumulative functions [24], [26]–[29]. Other works
studied parametric approximations of the traditional robustness
that enabled tuning the locality and masking levels [25],
[30]. These works focused on defining smooth robustness
functions suitable for gradient-based optimizations at the cost
of losing monotonicity, and, thus, the interpretation of margin
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of satisfaction and violation, i.e., larger values corresponding
to greater satisfaction. Monotonicity also precludes the intro-
duction of local optima due to the score.

In this paper, we propose a generalized robustness function
for STL. We employ power means and generalized functional-
means to define a unified class of robustness scores param-
eterized by two continuous values, which 1) removes the
locality and masking effects of the traditional robustness score,
and 2) enables tuning the desired performance and conserva-
tiveness through the design parameters. Conservativeness in
this context represents the myopic view induced by masking
and locality. It impacts the performance of the system in
the presence of noise and disturbance. Traditional robustness
captures the satisfaction or violation margin at a singular time
point, and is, thus, most conservative. The proposed robustness
class based on generalized mean uses all sub-formulas at all
relevant time points. Solutions to the corresponding optimal
control problems satisfy sub-formulas at more time points and
can handle disturbance over the entire specification horizon.

The contributions of the paper are: (1) We propose a unified
class of parameterized robustness functions that enables tuning
desired conservativeness of the score, and as a result the
locality and masking effects. (2) We demonstrate the useful-
ness of the proposed robustness in open-loop control synthesis
case studies based on gradient methods such that the system
satisfies the desired STL specification robustly over the entire
horizon of the formula.

II. PRELIMINARIES

Let R, R≥0, Z, and Z≥0 be the sets of real, non-negative real,
integer, and non-negative integer numbers, respectively. Let f ∶
Rn → R be a real function. We define [f]+ = max{f,0} and
[f]− = −[−f]+. The vectors of ones and zeros of dimension
d, and the d × d identity matrix are denoted by 1d, 0d, Id,
respectively. Let δτ ∶ R≥0 → R be the Dirac delta function such
that δτ(t) = 1 if t = τ , and zero otherwise. Vectors and vector-
valued functions are denoted in bold, e.g., x and s. Define

∥x∥p = (∑
d
i=1 ∣xi∣

p
)

1
p , where p ∈ R and x = [x1, . . . xd] ∈ Rd.

For a function f ∶ I → R, define ∥f∥p = (∫I ∣f ∣
p(t)dt)

1
p , where

I ⊆ R is an interval, and p ∈ R. Note that ∥⋅∥p is a norm iff
p ≥ 1. The length of an interval I is denoted by ∣I ∣.
Signal Temporal Logic. A signal s ∶ T → M is a function
that maps each time point t in the time domain T to an n-
dimensional vector of real values s(t) ∈ M ⊆ Rn. The time
domain T ⊆ R≥0 can be continuous or discrete. The set of
all signals is denoted by S. Signal temporal logic (STL) [9] is
defined and interpreted over signals s. Its syntax is inductively
defined as φ ∶= ⊺ ∣ µ ∣ ¬φ ∣ φ1∧φ2 ∣ φ1 UI φ2, where φ, φ1, φ2

are STL formulae, ⊺ is the logical True value, µ ∶= (ℓ(s(t)) ≥
0) is a predicate over s(t), where ℓ ∶ M → D is a Lipschitz
continuous function. We assume that D = [−α,α], α ∈ R>0,
such that a ∈ D implies −a ∈ D. ∧ and ¬ are the Boolean
operators for conjunction and negation. φ1 UI φ2 is the timed
until operator with I = [t1, t2] a time interval, t2 ≥ t1 ≥ 0.
The logical False can be derived as � = ¬⊺, and the other
Boolean operators (e.g., disjunction ∨, implication ⇒) are
defined in the usual way [9]. The time-constrained eventually

♢I and always ◻I operators are derived as ♢Iφ = ⊺UI φ and
◻Iφ = ¬♢I¬φ, respectively. To simplify the notation, time is
implicitly understood to belong to the time domain T, i.e., all
time intervals I are interpreted as I ∩T. For example, [t1, t2]
is an ordered sequence {t1, t1 + δt, t1 + 2δt, . . . , t2} if T is
discrete and time is uniformly discretized with step δt. The
(Boolean) satisfaction of a formula φ by a signal s starting
from time t is denoted by (s, t) ⊧ φ (see [9] for a formal
definition). Satisfaction and violation at time 0 are denoted by
s ⊧ φ and s ⊭ φ, respectively.

Example 1: Consider a car of negligible size driving in the
environment shown in Fig. 1. Assume the car is required to
always drive in the assigned lane (0 ≤ y ≤ 4). We can write
this requirement as a STL formula φ = φ1 ∧ φ2, where φ1 =
◻[1,10]y(t) ≥ 0m and φ2 = ◻[1,10]y(t) ≤ 4m. Trajectory s1 in
Fig. 1 satisfies φ1, i.e., s1 ⊧ φ1, but exceeds the lane boundary
and violates φ2, i.e., s1 ⊭ φ2. The same is true for s2.

The STL quantitative semantics, known as robustness, as-
signs a real value to indicate how much a signal satisfies or
violates a formula [10].

Definition 1 (STL Robustness): Given a formula φ and a
signal s, the robustness score ρ(φ, s, t) at time t is [10]:
ρ(⊺, s, t) ∶= ρ⊺, ρ(µ, s, t) ∶= ℓ(s(t))), ρ (¬φ, s, t) ∶= −ρ(φ, s, t),
ρ (φ1 ∧ φ2, s, t) ∶=min (ρ(φ1, s, t), ρ(φ2, s, t)) ,
ρ (φ1 ∨ φ2, s, t) ∶=max (ρ(φ1, s, t), ρ(φ2, s, t)) ,
ρ (◻Iφ, s, t) ∶= inf

t′∈t+I
ρ(φ, s, t′), ρ (♢Iφ, s, t) ∶= sup

t′∈t+I
ρ(φ, s, t′),

ρ (φ1 UI φ2, s, t) ∶= sup
t′∈t+I

(min{ρ(φ2, s, t
′), inf

t′′∈[t,t′]
ρ(φ1, s, t

′′)})

(1)

where ρ⊺ = supD = α is the maximum robustness.
Theorem 1 (Soundness [10]): The robustness score is

sound, i.e., ρ (φ, s, t) > 0 implies that signal s satisfies φ at
time t, and ρ (φ, s, t) < 0 implies that s violates φ at time t.
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Fig. 1. Sample car trajectories satisfying φ1 and violating φ2 in Ex. 1

We refer to ρ(φ, s, t) as traditional robustness. For sim-
plicity, ρ(φ, s) denotes the robustness at t = 0. The formal
definition of time horizon of a STL formula φ, denoted by hzφ,
is given in [31]. Informally, the horizon of a formula represents
the smallest time duration from the current time into the future
needed to decide the satisfaction and, equivalently, to compute
the robustness, of any signal with respect to the formula. For
example, φ = ♢[0,t1]◻[0,t2](s > 0) has hzφ = t1 + t2.

Generalized Means. We describe generalizations of the usual
arithmetic and geometric means, using a function g [32]. Let
g ∶ R≥0 → R be a continuous and injective function, x =
[x1, . . . , xd] ∈ Rd

≥0 a vector of positive real numbers, and h ∶
I → R≥0 a function over a domain I ⊆ R≥0. The generalized
means of x and h associated with function g are defined as:

Fg(x) = g
−1
(
1

d

d

∑

i=1

g(xi)), F I
g (h) = g

−1
(
1

∣I ∣ ∫I
g(h(t))dt) (2)

We are especially interested in the class of means called
power means given by g(x) = xp and parameterized by the
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exponent p ∈ R. For a real number p the power means of x
and function h with exponent p are defined as:

Mp(x) =Mp(x1, . . . , xd) = (
1

d

d

∑

i=1

xpi )
1
p
= d
− 1
p ∥x∥p, (3)

MI
p (h) = (

1

∣I ∣ ∫I
hp(t)dν)

1
p
= ∣I ∣

− 1
p ∥h∥p, (4)

where ν is either the Lebesgue or discrete measure correspond-
ing to continuous or discrete time, respectively. Based on the
norm properties, both Mp(x) and M I

p (h) belong to R≥0.
Similar to [32], we use the convention Mp(x1, . . . , xd) = 0

for p < 0 and some xi = 0, i ∈ {1, . . . , d}. For the integral
version, M I

p (h) = 0 if h vanishes on a proper subset of I .
For p = 1,0,∞,−∞, we recover the arithmetic mean,

geometric mean, maximum and minimum, respectively [32,
Sec.2.9]. For any p, q ∈ R with p < q we have [32, Sec.2.9]:

Mp(x) ≤Mq(x). (5)
M−∞(x) ≤Mp(x) ≤M∞(x). (6)

The two means are equal, Mp(x) = Mq(x) with p ≠ q, if
and only if all xi are all equal [32, Sec.2.9].

Proposition 1: The following properties hold [32, Sec.2.9]:
1) symmetry: Mp(Px) =Mp(x) for all permutations P ,
2) fixed-point: Mp(α1d) = α,
3) absolutely scalable: Mp(αx) = αMp(x) for α ∈ R≥0,
4) monotonicity in each argument,
5) continuity in each argument, and
6) replacement: Mp(x) = Mp(Dkm1d + (Id − Dk)x),

where Dk = diag([1
T
k 0T

d−k]), m =Mp(x1∶k), 1 ≤ k ≤ d.
Replacement allows for block computation of mean, and
divide and conquer evaluation algorithms.

Generalized means with function g are only guaranteed to
satisfy properties 1, 2, and 5 from Prop. 1.
Boolean Algebra. The traditional robustness ρ is defined
based on Boolean algebras. A Boolean algebra is a 6-uple
(D,⊓,⊔, n, ρ⊺, ρ�), where ⊓, ⊔, and n are the conjunction,
disjunction, and negation operations on D = [−α,α]; ρ⊺ = α,
ρ� = −α are the least and greatest elements, respectively [33].
For a, b ∈ D, the identity and absorption laws are given by

a ⊓ ρ⊺ = a, a ⊔ ρ� = a, (identity) (7)
a ⊓ (a ⊔ b) = a, a ⊔ (a ⊓ b) = a. (absorption) (8)

Boolean algebras are also lattices. The partial order relation
⪯ on D is induced by the conjunction. Formally, for a, b ∈ D

a ⪯ b if and only if a = a ⊓ b (≡ b = a ⊔ b) (9)

The traditional robustness is defined using ⊓ = min, ⊔ =
max, and n(x) = −x. The order induced by min and max on
D is the standard order relation ≤ on real numbers.

III. MOTIVATION AND PROBLEM FORMULATIONS

The traditional robustness in Def. 1 has two main limita-
tions, called locality and masking, which negatively impact
the performance of optimization-based control and learning
algorithms. These are discussed in Sec. III-A and motivate
the class of robustness scores based on generalized means
proposed in Sec. IV, which subsume other scores proposed
in the literature [9], [18], [24], [28], [29], [34]. In this section,
we also formalize the control synthesis problem for dynamical
systems to meet STL specifications robustly.

A. Locality and Masking

In this section, we define two properties that motivated the
development of the proposed robustness scores in the next
section. The properties of locality and masking have impact
on the performance of robustness scores in optimizations
problems arising in control synthesis [35].

Let Φ be the set of all STL formulae and ϑ ∶ Φ×S×T→ R
a sound robustness score (the traditional robustness ρ defined
in Def. 1 is a particular instance of ϑ).

Definition 2 (Locality): The robustness ϑ is said to be local
if its value depends only on the value of signals at a single time
instant. Formally, for every φ ∈ Φ with hzφ > 0, s ∈ S, and t ∈
R≥0, there exists τ ≥ t such that ϑ(φ, s, t) = ϑ(φ, sϕ+s ⋅δτ , t),
where δτ is the Dirac delta function at τ , and sϕ is a signal
with zero robustness ϑ(φ, sϕ, t) = 0.

Def. 2 implies that we can ignore the values of the signal
s except at time τ .

Definition 3 (Masking): The robustness ϑ is said to be
masking conjunction and disjunction if its values for ∧ and
∨ operators depend on the robustness score of a particular
subformula, respectively.

Formally, conjunction is masking if ϑ(φ1 ∧ φ2, s, t) =
ϑ(φ1, s, t) whenever ϑ(φ1, s, t) ≤ ϑ(φ2, s, t), and disjunc-
tion is masking if ϑ(φ1 ∨ φ2, s, t) = ϑ(φ1, s, t) whenever
ϑ(φ1, s, t) ≥ ϑ(φ2, s, t), where φ1, φ2 ∈ Φ, s ∈ S, and t ∈ R≥0.

Def. 3 means that we can ignore all but one operand
in conjunction and disjunction formulae for computing the
overall robustness score. Masking and locality of robustness
may be desired in applications involving monitoring, where
the portions of the formulae and signals that lead to largest
violation need to be identified. However, in problems involving
optimization such as control synthesis and learning, local
and masking robustness scores impede the performance of
optimization solvers. The masking and locality properties
imply the existence of plateaus in the robustness landscape,
and, thus, providing little gradient information. Moreover, in
the other parts of the landscape, only a very small part of the
formula and signal contributes gradient information.

Proposition 2: The traditional robustness score ρ(φ, s, t) is
local and masking with respect to conjunction, and disjunction.

Proof: Locality and masking are consequences of the
lattice structure of Boolean algebras (9). The masking con-
dition for conjunction can be restated as ϑ(φ1 ∧ φ2, s, t) =
min{ϑ(φ1, s, t), ϑ(φ2, s, t)}, which matches traditional ro-
bustness (1). Similarly, disjunction can be restated in terms
of max, and, again, matches with (1). Locality can be shown
using structural induction, where the induction step follows
from the inf and sup operators that consider only the extreme
value as the aggregate measure over their domains.

Example 2: Consider the car trajectory s1 shown in Fig. 1
and formula φ2 in Ex. 1. Although s1 violates φ2 at t = 5,6,7,
the traditional robustness only considers the most violating
time at t = 6. Therefore, we have ρ(φ2, s1) = ρ(φ2, s1 ⋅ δ6) =
−2 (locality). Next, assume the car has to follow a maximum
speed limit given by STL formula φ3 = ◻[1,10]v(t) ≤ 5

m
s

, and
the maximum speed of the car given by trajectory s1 is 5.3m

s
.

Although s1 violates φ3 with ρ(φ3, s1) = −0.3, the traditional
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robustness of φ2 ∧ φ3 is only dependent on the robustness of
φ2, i.e., ρ(φ2 ∧ φ3, s1) = ρ(φ2, s1) (masking).

In Sec. IV, we formally define a class of robustness scores
with tunable design parameters that can modulate the level of
masking and locality.
B. Control Synthesis

Consider a dynamical system given by:

z+(t) = f(z(t),u(t)), z(0) = z0, (10)

where t ∈ T is either discrete or continuous time, z+(t) is
either ż(t) or z(t + δt), z(t) ∈ Z ⊆ Rn is the state of the
system, u(t) ∈ U ⊆ Rm is the control input at time t, z0 ∈ Z
is the initial state, and f ∶ Z×U → Z is a Lipschitz continuous
function representing the dynamics of the system. Given the
initial state z0 and control signal u(t), the system trajectory
z ∶ T→ Z is generated using (10), and is denoted by z(z0,u).
Consider a smooth cost function J(z(t),u(t)) and the system
temporal specifications given by an STL formula φ over z. Let
ϑ be a sound robustness score.

The control synthesis problem can be formulated as deter-
mining a control policy u∗ such that the system trajectory
satisfies the STL specification φ with maximum robustness
given by score ϑ and minimum cost:

u∗ = argminu
T

∫
0

J(u(t),z(t))dν − λϑ(φ,z(z0,u))

s.t. (10), ϑ(φ,z(z0,u)) ≥ ϵ,
(11)

where ν is either the Lebesgue or discrete measure correspond-
ing to continuous or discrete time, respectively. The planning
time horizon T must be chosen larger than the horizon hzφ
of φ such that the robustness ϑ(φ, ⋅) may be computed. The
trade-off between the two objectives is captured by the weight
λ ≥ 0. The lower bound ϵ ≥ 0 gives the satisfaction margin as
captured by the robustness score ϑ.

Note that since ϑ is assumed to be sound, the feasibility
of (11) implies that the system trajectory z(z0,u

∗) ⊧ φ.
The main shortcoming of the traditional robustness score is

that it only considers the robustness of the most satisfying or
violating part of the specification, without taking into account
satisfaction of the other parts. Consider the eventually operator,
♢Iφ, which is satisfied if φ is true at least once in the interval
I . Traditional robustness would only capture the time with
maximum satisfaction whereas we may want the robustness
score to be affected by all the time points satisfying φ. In the
following sections, we address this limitation by proposing a
class of robustness functions based on generalized means that
allows us to choose desired conservativeness of the score.

IV. GENERALIZED MEAN ROBUSTNESS

Throughout the section, we assume signals are integrable
with respect to both Lebesgue and discrete measures.
A. Robustness Definition

We first define functions associated with Boolean operators
that will be used in the robustness definition. Let △ ∶ Dd → D
be the d−ary conjunction function defined over x using two
power means with exponent parameters p, q ∈ R ∪ {±∞} as:

△(x) = {
Mp(x1, . . . , xd) if min(x) > 0

−Mq(−[x1]−, . . . ,−[xd]−) else
(12)

More explicitly, the conjunction function △ is determined
by the power mean with exponent p if ∀i ∶ xi > 0, thus,
it is positive (Mp(x) > 0); otherwise by the power mean
with exponent q defined over xi ≤ 0, thus, it is non-positive
(−Mq(−[x]−) ≤ 0). The branches in (12) enable us to define
a sound robustness function (See Thm. 2).

Negation function n ∶ D→ D is given by n(x) = −x.
The disjunction function ▽ is defined by DeMorgan’s law, i.e.,
▽(x1, . . . , xd) = n(△(n(x1), . . . , n(xd))), given by:

▽(x) =

⎧⎪⎪
⎨
⎪⎪⎩

Mq([x1]+, . . . , [xd]+) if ∃i ∶ xi > 0

−Mp(−x1, . . . ,−xd) else
. (13)

With a slight abuse of notation, we denote the conjunction
function over a continuum of values from (4):

△I(h) =

⎧⎪⎪
⎨
⎪⎪⎩

M I
p (h) if inft∈I{h(t)} > 0

−M I
q (−[h]−) else

. (14)

The disjunction function is extended to continuum domain in
a similar way, and is denoted by ▽I(h). Lastly, we define the
implication function ⊳∶ D ×D→ D as ⊳ (x, y) =▽(−x, y).
Next, we illustrate how the proposed functions relate to the
conjunction function (min) used in the traditional robustness
which is based on the Boolean lattice (D,min,max).

Remark 1: A weaker form of identity law (7) w.r.t. maxi-
mum true and minimum false hold for conjunction △(x, ρ�) <
0 and disjunction ▽(x, ρ⊺) > 0 for all x ∈ D, respectively.
Although (D,△,▽) is not a distributive lattice, i.e., Boolean
algebra, it does satisfy the Kleene algebra condition:
△(x,n(x)) ≤▽(y, n(y)), ∀x, y ∈ D.
An immediate consequence of (6) is that the conjunction and
disjunction functions are bounded by the smallest and largest
values of x, respectively. Therefore, for all p and q, we have:
△(x1, . . . , xd) ≥ M−∞(x1, . . . , xd) = min{x1, . . . , xd} and
▽(x1, . . . , xd) ≤M∞(x1, . . . , xd) =max{x1, . . . , xd}.

Remark 2: [25, Prop. 1] The conjunction function cannot
be sound, idempotent, and smooth simultaneously.

We define power mean robustness as the quantitative val-
uation of a property expressed by conjunction, disjunction,
negation and implication functions being true or false.

Definition 4 (Power Mean Robustness): Let s ∶ R≥0 → Dn,
and φ be an STL formula. The power mean robustness of
order (p, q) for signal s and formula φ at time t is

ηp,q(⊺, s, t) ∶= supD, ηp,q(µ, s, t) ∶= ℓ(s(t))

ηp,q(¬φ, s, t) ∶= n(ηp,q(φ, s, t))

ηp,q(φ1 ∧ φ2, s, t) ∶=△ (ηp,q(φ1, s, t), ηp,q(φ2, s, t))

ηp,q(φ1 ∨ φ2, s, t) ∶=▽ (ηp,q(φ1, s, t), ηp,q(φ2, s, t))

ηp,q(◻Iφ, s, t) ∶=△t+I (ηp,q(φ, s, t
′))

ηp,q(♢Iφ, s, t) ∶=▽t+I (ηp,q(φ, s, t
′))

ηp,q(φ1 UI φ2, s, t) ∶=▽t+I (△ (ηp,q(φ2, s, t
′),

△[t,t′] (ηp,q(φ1, s, t
′′)))),

(15)

where p, q ∈ R ∪ {±∞}, t′ ∈ t + I , and t′′ ∈ [t, t′].
We denote ηp,q(φ, s,0) by ηp,q(φ, s).
In the following, we relate the class of power mean ro-

bustness scores to the traditional one, and characterize the
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properties of these extensions. We show that the class of power
mean robustness is consistent with the semantics of STL.

Theorem 2 (Soundness): The power mean robustness is
sound for all p and q, meaning that a strictly positive ro-
bustness shows a satisfying trajectory, and a strictly negative
robustness shows a violating trajectory:

ηp,q(φ, s, t) > 0 ⇐⇒ ρ(φ, s, t) > 0 Ô⇒ s ⊧ φ,

ηp,q(φ, s, t) < 0 ⇐⇒ ρ(φ, s, t) < 0 Ô⇒ s ⊭ φ.
(16)

Proof: We prove the theorem by structural induction over
the formula φ. The base case corresponding to φ ∈ {⊺,�, µ}
is trivially true by definition from (15).
Let s be a signal. We have the following induction cases:
Negation: Let ϕ = ¬φ and ηp,q(ϕ, s, t) > 0. From (15) we have
ηp,q(φ, s, t) < 0, and by the induction hypothesis s /⊧ φ. Thus,
s ⊧ ϕ. Similarly, for ηp,q(ϕ, s, t) < 0 we get s ⊭ ϕ.
Conjunction: Let ϕ = φ1∧φ2 and ηp,q(ϕ, s, t) > 0. Assume that
one or both ηp,q(φi, s, t) < 0, i = 1,2, then from (15), (12) we
get ηp,q(ϕ, s, t) = −Mq(−[ηp,q(φ1, s, t)]−,−[ηp,q(φ2, s, t)]−)
which is negative and contradicts the assumption that
η(ϕ, s, t) > 0. It follows that ηp,q(φi, s, t) > 0, i = 1,2. By
the induction hypothesis s ⊧ φi, i = 1,2, and thus s ⊧ ϕ. The
same analysis is applied for the case where ηp,q(ϕ, s, t) <
0. By way of contradiction, assume ηp,q(φi, s, t) > 0,
i = 1,2. From (15), (12) it follows that ηp,q(ϕ, s, t) =
Mp(ηp,q(φ1, s, t), ηp,q(φ2, s, t)) > 0 which is a contradiction.
Thus, we have either ηp,q(φ1, s, t) < 0 or ηp,q(φ2, s, t) < 0 or
both. Again by the induction hypothesis s /⊧ φ1 or s /⊧ φ2,
therefore, s /⊧ ϕ.
Disjunction: Follows similarly to conjunction case.
Globally: Let ϕ = ◻Iφ, and ηp,q(ϕ, s, t) > 0. By way of
contradiction, assume that there is t′′ ∈ t + I such that
ηp,q(φ, s, t

′′) < 0, then from (15), (14) we get ηp,q(ϕ, s, t) =
−M I

q (−[ηp,q(φ, s, t
′)]−) < 0 which contradicts the assumption

ηp,q(ϕ, s, t) > 0. It follows that ηp,q(φ, s, t′) > 0, ∀t′ ∈ t + I .
By the induction hypothesis s(t′) ⊧ φ, ∀t′ ∈ t + I , and thus
s ⊧ ϕ. Similarly, for the case ηp,q(ϕ, s, t) < 0, assume that
for all t′ ∈ t + I , ηp,q(φ, s, t′) > 0. From (15), (14) we have
ηp,q(ϕ, s, t) =M

I
p (ηp,q(φ, s, t

′)) > 0 which is a contradiction.
Thus, we have ηp,q(φ, s, t

′′) < 0 for some t′′ ∈ t+ I . Again by
the induction hypothesis s(t′′) /⊧ φ, thus s /⊧ ϕ.
Eventually and Until: Follow similarly to the globally case.

Soundness can be viewed as a sign consistency between
power mean and traditional robustness scores. The next result
shows how the magnitude of the score changes with the two
parameters of the proposed class.

Theorem 3: For any STL formula φ and signal s, we have
∣ηp,q(φ, s, t)∣ < ∣ηp′,q′(φ, s, t)∣, for any p < p′ and q < q′.

Proof: The claim follows from (5) and Def. 4 by
structural induction over the formula φ.

As opposed to traditional robustness, the proposed class is
maximally satisfied (violated) if this also holds for all its sub-
formulae.

Proposition 3: Let s be a signal, ϕ a STL formula with
horizon I and sub-formulae φi, and p, q ∈ R. If ηp,q(ϕ, s, t) =
ρ⊺, then ηp,q(φi, s, t) = ρ⊺ for all sub-formulae φi and times
t ∈ I as given by (15). If ηp,q(ϕ, s, t) = ρ�, then ηp,q(φi, s, t) =
ρ� for all sub-formulae φi and times t ∈ I in (15).

Proof: The proof is similar to Thm. 2 and holds for any
real value p, q [32, Sec.2.9].

The next result shows that the power mean robustness of
finite order (∣p∣, ∣q∣ <∞) avoids the masking and locality issues
of the traditional robustness in (1).

Theorem 4: For p, q ∈ R, the robustness ηp,q is non-local,
and non-masking with respect to conjunction and disjunction.

Proof: First, consider the non-masking property. Let
φ = φ1 ∧ φ2, s ∈ S, and t ∈ R≥0, such that ηp,g(φ1, s, t) ≤
ηp,g(φ2, s, t). Denote ζi = ηp,g(φi, s, t), i ∈ {1,2}.

Assume that ζ1 > 0. By Def. 4, ηp,q(φ, s, t) = Mp(ζ1, ζ2).
Thus, mini ζi < ηp,q(φ, s, t) < maxi ζi, i ∈ {1,2} unless ζ1 =
ζ2 due to (6). Since the property has to hold for all formulae
φi, i ∈ {1,2}, signals s, and times t ≥ 0, it follows that the
class of power mean robustness is non-masking with respect
to conjunction. Non-masking for disjunction follows similarly.

Next, we show that ηp,q is non-local. Consider φ =
♢[0,T ]s ≥ 0, and a continuous scalar signal s taking positive
values. It follows that inf[0,T ] s(t) > 0, and by Def. 4

ηp,q(φ, s,0) = M
[0,T ]
p (s) = ( 1

T ∫
T
0 (s(t))

p dt)
1
p . The latter

identity shows that ηp,q(φ, s,0) depends on all values of the
signal in the time domain [0, T ]. Thus, the generalized mean
robustness is non-local.

Similar to traditional robustness, the proposed class of
robustness satisfies the following properties.

Proposition 4: The power mean robustness for all orders
p, q ∈ R ∪ {±∞} holds the following properties:
1) Commutativity: ηp,q(φ1 ∧ φ2, s) = ηp,q(φ2 ∧ φ1, s)
2) Idempotence: ηp,q(φ ∧ φ, s) = ηp,q(φ, s)
3) Absolutely scalable: ηp,q(φ,αs) = α ⋅ ηp,q(φ, s), α ∈ R≥0,
4) Monotonicity: ηp,q(φ1 ∧ φ2, s) ≤ ηp,q(φ3 ∧ φ4, s), ∀φi

where ηp,q(φ1, s) ≤ ηp,q(φ3, s), ηp,q(φ2, s) ≤ ηp,q(φ4, s)
5) Continuity of ηp,q(φ1 ∧ φ2, s) in ηp,q(φ1, s) and

ηp,q(φ2, s).
Proof: The claims follow from the symmetry, fixed-point,

absolutely scalable, monotonicity and continuity property of
power mean in Prop. 1. Similarly, the same properties hold
for disjunction ∨ operator.
Similar to traditional robustness, the proposed class of robust-
ness satisfies the following logical properties.

Proposition 5 (Rules of Inference): The following hold for
power mean robustness of all orders p, q ∈ R ∪ {±∞}:
1) Law of non-contradiction: ηp,q(φ∧¬φ, s) < 0 , ∀φ where

ηp,q(φ, s) ≠ 0,
2) Law of excluded middle: ηp,q(φ ∨ ¬φ, s) > 0 , ∀φ where

ηp,q(φ, s) ≠ 0,
3) Double negation: ηp,q(¬(¬φ), s) = ηp,q(φ, s) , ∀φ
4) DeMorgan’s law: ηp,q(φ1∨φ2, s) = ηp,q(¬(¬φ1∧¬φ2), s),

ηp,q(◻Iφ, s) = ηp,q(¬♢I¬φ, s).
5) Modus ponens: if ηp,q(φ1 ⇒ φ2, s) > 0 and ηp,q(φ1, s) > 0

then ηp,q(φ2, s) > 0.
Proof: The proof follows from the properties of Boolean

algebras and soundness of Def. 4 and is omitted.
In the following, we define the generalized mean robustness.
Definition 5 (Generalized Mean Robustness): Let s be a

signal, and φ an STL formula. The generalized mean ro-
bustness ηc,g with continuous and injective functions c, g for
signal s and formula φ at time t is recursively defined similar
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Fig. 2. Power mean robustness for varying values of p in ηp,q(φ1∧⊺, s)
and q in ηp,q(φ1 ∨ ⊺, s)

to (15), where the d-ary and continuum conjunction functions
are defined based on generalized means as

△(x) = {
Fc(x1, . . . , xd) if min(x) > 0

−Fg(−[x1]−, . . . ,−[xd]−) else

△I(h) = {
F I
c (h) if inft∈I{h(t)} > 0

−F I
g (−[h]−) else

(17)

The negation n ∶ D→ D is given by n(x) = −x and disjunction
function is defined by DeMorgan’s law.

Remark 3: Generalized mean robustness is guaranteed to
satisfy Thm. 3, Prop. 3, Prop. 5, properties 1, 2, and 5 from
Prop. 4. Satisfaction of other properties and theorems depends
on the functions c and g.

As before, if we set c(x) = ∣x∣p and g(x) = ∣x∣q , then we
recover the power mean robustness in Def. 4.

B. Performance Properties
The parameters p, q associated with power mean are con-

sidered as design parameters that can be used to tune how
conservative the robustness score is. Assume D = [−1,1], i.e.,
ρ⊺ = 1, ρ� = −1. Consider the conjunction operator φ1 ∧ φ2,
and the case where conjunction of a satisfying signal s with
φ2 = ⊺ is evaluated, i.e., ηp,q(φ1, s) > 0, and ηp,q(φ2, s) = 1.
Fig. 2 shows how changing values of p changes the power
mean robustness ηp,q(φ1 ∧ ⊺, s). Note that for more negative
values of p, ηp,q(φ1∧⊺, s) is closer to the traditional robustness
ρ(φ1∧⊺, s) =min(ρ(φ1, s),1) corresponding to p = −∞ (See
sec. IV-C). Next, consider the disjunction operator φ1 ∨ φ2

with φ2 = ⊺. Fig. 2 shows how changing values of q changes
the power mean robustness ηp,q(φ1∨⊺, s). Note that for more
positive values of q, ηp,q(φ1 ∧⊺, s) is closer to the traditional
robustness ρ(φ1 ∨ ⊺, s) = max(ρ(φ1, s),1) corresponding to
q = ∞ (See Sec. IV-C). It can be seen that the power mean
robustness (for p, q ∈ R) and the generalized mean robustness
for the chosen c, g can tune the locality and masking of the
score. Moreover, both power and generalized mean robustness
scores are bounded by the robustness for p = −∞, q =∞ as in
Thm. 3. The maximum robustness is achieved at ηp,q(φ1, s) =
ηp,q(φ2, s) = 1 independent of p, q according to Prop. 3.

Therefore, similar to the traditional robustness (minimum
and maximum functions), power mean robustness with p, q =
−∞,∞ only considers the most critical time or sub-formula
and is useful for monitoring or control in safety-critical
applications. On the other hand, by changing the values for
p, q of the power mean robustness or the functions c, g in
generalized mean robustness, we can determine the level of
contribution of all the sub-formulae and times in the overall
satisfaction or violation score of a specification.

Example 3: For STL formulae φ1 and φ2 in Ex. 1, we
find the power mean robustness ηp,q for trajectories s1 and s2

shown in Fig. 1. We first discuss the satisfaction case for φ1.
In the table below, power mean robustness ηp,q is calculated
from (15), (12) for different values of p. As discussed earlier,
for p = −∞ (similar to the traditional robustness), power mean
robustness considers the most extreme time point (s1 at t ∈
{1,2,9,10}, s2 at t ∈ {1,10}) leading to an equal robustness
for both signals. However, for p ∈ R, robustness is based on
the power mean of all the satisfying time points, and can
distinguish the performance of the shown trajectories. Same
analysis holds for the violation case considering φ2. Although
s2 violates φ2 for a longer duration than s1 (s1 violates φ2

at t ∈ {5,6,7} while s2 violates it at t ∈ {3,4, . . . ,8}), by
only considering the most violating time (s1(6) and s2(t), t ∈
{4, . . . ,8}), the power mean robustness for q = ∞ for both
trajectories is equal. The table shows power mean robustness
ηp,q calculated for different values of q. Note that for more
negative values of p and more positive values of q the power
mean robustness ηp,q is closer to the traditional robustness.

p for φ1 q for φ2
0 -1 -2 -20 −∞ 1 2 20 +∞

S1 3.21 2.94 2.72 2.09 2.0 -0.40 -0.77 -1.78 -2.0
S2 4.36 3.94 3.53 2.16 2.0 -1.1 -1.45 -1.93 -2.0

Properties 1 (Smoothness and Gradient): The power mean
robustness ηp,q(φ, s, t) is smooth in s ∈ Dn everywhere
except on the satisfaction boundaries where its sign changes.
Moreover, the gradient of ηp,q with respect to the elements
of s that are part of φ’s predicates is non-zero wherever it is
smooth (non-local and non-mask). This property follows by
smoothness and non-zero gradient of the conjunction △ and
disjunction ▽ functions on (D ∖ {0})

d
, and negation n on

D. The cases for the globally, eventually and until operators
follow similarly. The generalized mean robustness is smooth
if the functions c and g are smooth, and the gradient depends
on the functions c and g.

C. Generalized Mean Robustness as a Unified Class
In this section, we show that the generalized mean ro-

bustness defined here is a unified class of robustness scores.
Specifically, it encompasses robustness scores in the litera-
ture including traditional robustness [10], average robustness
[26], smooth robustness [18] and smooth cumulative robust-
ness [27], and arithmetic-geometric mean (AGM) [24] and
arithmetic-geometric integral mean (AGIM) robustness [29].

To show this, we start with the traditional robustness [10].
For p = −∞, q =∞, the power mean robustness is defined as:

△(x) = {
M−∞(x) =min(x) if min(x) > 0

−M∞(−[x]−) = −max(−[x]−) = else

Note that −max(−[x]−) = min([x]−) = min(x) due to the
branch condition. Therefore, △(x) becomes min(x) which is
the conjunction function in traditional robustness. Similarly,
we can show that ▽(x) = max(x). Thus, the power mean
robustness with p = −∞, q = ∞ in (15) is the same as
traditional robustness in (1).
Next, consider the AverageSTL robustness [26], which uses
ρ+ and ρ− for satisfying and violating parts of the signal
to define new averaged operators. Averaged-eventually and
Averaged-always can be formulated as power mean robustness
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with p = 1, q = 1. Consider the power mean robustness for ♢
operator with p = 1, q = 1:

▽I(h) =

⎧⎪⎪
⎨
⎪⎪⎩

M I
1 ([h]+) =

1
∣I ∣ ∫I [h(t)]+ dt if supt∈I{h(t)} > 0

−M I
1 (−h) = −

1
∣I ∣ ∫I −h(t)dt else

Note that the first branch is similar to ρ+AverageSTL in
definition of averaged-eventually in [26]. Based on the
branch condition, we have − 1

∣I ∣ ∫I −h(t)dt =
1
∣I ∣ ∫I h(t)dt =

1
∣I ∣ ∫I [h(t)]− dt and the second branch is also the same
as ρ−AverageSTL in [26]. Averaged-always can be obtained
similarly, therefore, we can build the average robustness [26]
from the power mean robustness η1,1.
We can build the smooth robustness in [18] from the general-
ized mean robustness. Smooth robustness ρ̃ uses approxima-
tions of max and min functions defined based on Logarith-
mic Sum of Exponentials (LSE) [18]: LSEβ(x1, . . . , xd) =
1
β
log (∑

d
i=1 e

βxi), where LSEβ(x) gets close to max(x)

as β → ∞. For g(x) = eβx, the generalized mean ro-
bustness Fg(x1, . . . , xd) is a constant shifted LSE function:
Fg(x1, . . . , xd) = LSEβ(x1, . . . , xd) −

log(d)
β

. Let c(x) =

−e−βx, g(x) = eβx. We define the conjunction function using
generalized means as:

△(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

Fc(x) = −LSEβ(−x) +
log(d)

β min(x) > 0

−Fg(−[x]−) = −LSEβ(−[x]−) +
log(d)

β else

As β →∞, we have:

lim
β→∞

△(x) = {
limβ→∞ −LSEβ(−x) if min(x) > 0

limβ→∞ −LSEβ(−[x]−) else

which is similar to the conjunction function in robustness ρ̃
in [18]. Therefore, the smooth approximation robustness can
be reconstructed from the generalized mean robustness and
we get limβ→∞ ηc,g = limβ→∞ ρ̃ = ρ. Note that this definition
for real values of β is not monotone or scalable. The smooth
cumulative robustness [27] is defined similar to the average
robustness and smooth approximation robustness.

Finally, we show that the AGM and AGIM robustness
in [24], [29] can be defined using the generalized mean
robustness. Let c(x) = ln(1 + x) and g(x) = (1 + x).
The generalized means for c and g functions are Fc(x) =

exp( 1
d ∑

d
i=1 ln(1+xi))−1 = (∏

d
i=1(1 + xi))

1
d −1 and Fg(x) =

( 1
d ∑

d
i=1(1 + xi)) − 1 = 1

d ∑
d
i=1 xi The conjunction function

using the generalized means is

△(x) =

⎧⎪⎪
⎨
⎪⎪⎩

Fc(x) = (∏
d
i=1(1 + xi))

1
d − 1 if ∀i ∶ xi > 0

−Fg(−[x]−) =
1
d ∑

d
i=1[xi]− else

which matches the AGM conjunction function in [24]. The
disjunction function and other temporal operators for the AGM
robustness ηAGM are derived similarly.

The same procedure can be applied to recover the AGIM
robustness [29] in continuous-time based on the continu-
ous definition of generalized means over continuum values,
i.e., F I

c (h) = exp ( 1
∣I ∣ ∫I ln(1 + h(t))dν) − 1 and F I

g (h) =

( 1
∣I ∣ ∫I(1 + h(t))dν) − 1 = 1

∣I ∣ ∫I h(t)dν.

V. CONTROL SYNTHESIS

The power mean robustness is a unified class of robustness
including the well known robustness measures [10], [18], [24],

[26], [28]. Therefore, all the previously defined robustness op-
timization approaches including heuristics, and gradient-based
methods can be used to solve (11). For p, q ∈ {−∞,1,∞},
MILPs can be used. The gradient-based methods are suitable
for general nonlinear dynamical systems and nonlinear STL
predicates, and are shown to be scalable as the complexity of
the formula or its horizon grows.

We first discuss our framework to solve (11) for a fi-
nite discrete-time system of length T . We assume the con-
trol input to be synthesized is defined as a sequence u =
{u(0)u(1) . . .u(T − 1)}. To initialize the gradient-based op-
timization algorithm, a random input sequence u0 ∈ U is
generated, and the resulting trajectory z(z0,u) starting from
initial state z0 is found from the system dynamics (10), which
may violate the STL specification. The optimization procedure
recursively solves (11) to find optimal control policy u∗ =
{u∗(0)u∗(1) . . .u∗(T −1)} which maximizes the generalized
mean robustness for the given STL formula φ with respect to
the system execution z(z0,u) and minimizes the cost. For
a continuous-time system, same optimization algorithm con-
sidering a zeroth-order hold design can be applied [29]. Due
to non-smoothness in ηp,q at the satisfaction boundaries, we
can use non-smooth optimization algorithms such as stochastic
gradient methods or Alternating Direction Method of Mul-
tipliers [36], [37]. In this paper, we solve the optimization
problem (11) using the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method. BFGS is shown to have acceptable perfor-
mance for non-smooth optimization instances [38]. Another
way to enhance the optimization is to first maximize a smooth
robustness to have ϑ ≥ ϵ, where ϑ is any smooth robustness
measure and ϵ is chosen such that soundness holds, i.e.,
ϑ ≥ ϵ ⇒ ηp,q > 0. We can then use this satisfying solution
to initialize the generalized mean robustness optimization. To
further improve the optimization convergence, we replace [f]+
and [f]− with their LSEβ smooth approximations.
All simulations are implemented in Python running on an iMac
with 3.3GHz Intel Core i5 CPU 32GB RAM. BFGS algorithm
and SLSQP from Scipy package are used for optimization [39].

Example 4: Consider a dynamical system given by
x(t + 1) = x(t) + ux(t), y(t + 1) = y(t) + uy(t), and a
STL formula φ3 in which desired regions are required to be
sequentially visited within the associated deadlines:

φ3 = ♢[1,6]Blue ∧ ♢[7,15]Green ∧ ♢[16,18]◻[0,2]Red
∧ ◻[1,20]¬Obstacle ∧ ◻[1,20]Boundary. (18)

Each region is formulated as conjunction over the states in the
2-dimensional plane. For instance, Blue ∶ 7 ≤ x ∧ x ≤ 9 ∧ 1 ≤
y ∧ y ≤ 3. z(t) = [x(t), y(t)] is the state indicating position
and orientation with Boundary Z = [0,10]2 and initial state
z0 = [1,1]. u(t) = [ux(t), uy(t)] is the input vector with U =
[−3,3]2. The formula requires the system to “Eventually visit
Blue between [1,6] steps and eventually visit Green between
[7,15] steps and eventually visit Red between [16,18] and
Always stay in Red for 2 steps and Always avoid Obstacle
and Always stay inside the boundary”.

Fig. 3 shows trajectories satisfying φ3 and optimizing cost
in (11) with T = 20, J = 1

2 ∑
T−1
i=1 ∥u(t)∥

2 and λ = 100,
considering 3 different generalized mean robustness scores,
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(a) p = −∞, q = ∞, (b) c(x) = −e−βx, g(x) = eβx where
β = 10, and (c) p = 0, q = 1, achieved up to the same
termination criteria. The trajectory S5 found by maximizing
η0,1 visits each region at multiple time points (maximum
temporal satisfaction), and visits the centers of all (including
the non-symmetrical) regions since these points correspond to
maximum space satisfaction.

0 2 4 6 8 10
0

2

4

6

8

10

t = 0

Obstacle

S3

S4

S5

Fig. 3. Optimal trajectories satisfying φ3 optimizing different gener-
alized mean robustness scores. (a) S3 : p = −∞, q = ∞, (b) S4:
g(x) = −e−βx, g(x) = eβx, and (c) S5: p = 0, q = 1. η−∞,∞(φ3,S3) =

η−∞,∞(φ3,S4) = η−∞,∞(φ3,S5), ηc,g(φ3,S3) = ηc,g(φ3,S4) =

ηc,g(φ3,S5), η0,1(φ3,S3) < η0,1(φ3,S4) < η0,1(φ3,S5).

VI. CONCLUSION

We defined a general unified class of robustness scores
based on power means and generalized means, parameterized
by two continuous values which act as design parameters.
We demonstrated the advantages of this new definition in
theory and through empirical analysis in simulated trials, and
proposed algorithms for evaluation, and control synthesis of
systems under temporal requirements. Future work will focus
on improving the control synthesis problem by using LP-norm
approximations to smooth the robustness for an approximate
solution, and to provide a toolbox based on updated SQP or
BFGS methods with Gradient Sampling (GS).
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