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Overcoming Exploration: Deep Reinforcement
Learning for Continuous Control in Cluttered

Environments From Temporal
Logic Specifications

Mingyu Cai , Member, IEEE, Erfan Aasi, Calin Belta , Fellow, IEEE, and Cristian-Ioan Vasile

Abstract—Model-free continuous control for robot navigation
tasks using Deep Reinforcement Learning (DRL) that relies on
noisy policies for exploration is sensitive to the density of rewards.
In practice, robots are usually deployed in cluttered environments,
containing many obstacles and narrow passageways. Designing
dense effective rewards is challenging, resulting in exploration
issues during training. Such a problem becomes even more serious
when tasks are described using temporal logic specifications. This
work presents a deep policy gradient algorithm for controlling a
robot with unknown dynamics operating in a cluttered environ-
ment when the task is specified as a Linear Temporal Logic (LTL)
formula. To overcome the environmental challenge of exploration
during training, we propose a novel path planning-guided reward
scheme by integrating sampling-based methods to effectively com-
plete goal-reaching missions. To facilitate LTL satisfaction, our ap-
proach decomposes the LTL mission into sub-goal-reaching tasks
that are solved in a distributed manner. Our framework is shown
to significantly improve performance (effectiveness, efficiency) and
exploration of robots tasked with complex missions in large-scale
cluttered environments.

Index Terms—Formal methods in robotics and automation, deep
reinforcement learning, sampling-based method.

I. INTRODUCTION

MODEL-FREE Deep Reinforcement Learning (DRL) em-
ploys neural networks to find optimal policies for un-

known dynamic systems via maximizing long-term rewards [1].
In principle, DRL offers a method to learn such policies based on
the exploration vs. exploitation trade-off [2], but the efficiency
of the required exploration has prohibited its usage in real-world
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robotic navigation applications due to natural sparse rewards. To
effectively collect non-zero rewards, existing DRL algorithms
simply explore the environments, using noisy policies and goal-
oriented reward schemes. As the environment becomes clut-
tered and large-scale, naive exploration strategies and standard
rewards become less effective resulting in local optima. This
problem becomes even more challenging for complex and long-
horizon robotic tasks. Consequently, the desired DRL-based
approaches for robotic target-driven tasks are expected to have
the capability of guiding the exploration during training toward
task satisfaction.

Related Work: For exploration in learning processes, many
prior works [3], [4], [5], [6], [7] employ noise-based exploration
strategies integrated with different versions of DRLs, whereas
their sampling efficiency relies mainly on the density of specified
rewards. Recent works [8], [9] leverage human demonstrations
to address exploration issues for robotic manipulation. On the
other hand, the works in [10], [11] focus on effectively utilizing
the dataset stored in the reply buffer to speed up the training.
However, these advances assume a prior dataset is given be-
forehand, and they can not be applied to learn from scratch. In
cluttered environments containing dense obstacles and narrow
passageways, their natural rewards are sparse, resulting in local
optimal behaviors and failure to reach destinations.

The common problem is how to generate guidance for robot
navigation control in cluttered environments. Sampling-based
planning methods, such as Rapidly-exploring Random Tree
(RRT) [12], RRT* [13] and Probabilistic Road Map (PRM) [14],
find collision-free paths over continuous geometric spaces. In
robotic navigation, they are typically integrated with path-
tracking control approaches such as Model Predictive Con-
trol (MPC) [15], control contraction metrics [16] and learning
Lyapunov-barrier functions [17]. While these methods are ef-
fective, their control designs are model-based. Model-free path
tracking, which is the focus of this paper, is still an open problem.

Furthermore, this work also considers complex navigation
tasks instead of simple goal-reaching requirements. Motivated
by task-guided planning and control, formal languages are
shown to be efficient tools for expressing a diverse set of
high-level specifications [18]. For unknown dynamics, temporal
logic-based rewards are developed and integrated with various
DRL algorithms. In particular, deep Q-learning is employed
in [19], [20], [21] over discrete action-space. For continuous
state-action spaces, the authors in [22], [23], [24] utilize actor-
critic algorithms, e.g., proximal policy optimization (PPO) [5],
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validated in robotic manipulation and safety tasks, respectively.
All aforementioned works only study LTL specifications over
finite horizons. To facilitate defining LTL tasks over infinite
horizons, recent works [25], [26] improve the results from [27]
by converting LTL into a novel automaton called E-LDGBA, a
variant of the Limit Deterministic Generalized Büchi Automaton
(LDGBA) [28]. To improve the performance for the long-term
(infinite horizon) satisfaction, the authors propose a modular
architecture of Deep Deterministic Policy Gradient (DDPG) [4]
to decompose the global missions into sub-tasks. However,
none of the existing works can address large-scale, cluttered
environments, since an LTL-based reward requires the RL-agent
to visit the regions of interest towards the LTL satisfaction.
Such sparse rewards can not tackle challenging environments.
Sampling-based methods and reachability control synthesis for
LTL satisfaction are investigated in [29], [30], [31], [32]. All
assume known system dynamics. In contrast, our paper proposes
a model-free approach for LTL-based navigation control in
cluttered environments.

Contributions: Intuitively, the most effective way of address-
ing the environmental challenges of learning is to optimize the
density of rewards such that the portion of transitions with
positive rewards in the reply buffer is dramatically increased.
To do so, we bridge the gap between sampling-based planning
and model-free DPGs to solve standard reachability problems.
In particular, we develop a novel exploration guidance tech-
nique using geometric RRT* [13], to design the rewards. We
then propose a distributed DRL framework for LTL satisfaction
by decomposing a global complex and long-horizon task into
individual reachability sub-tasks.

Moreover, we propose an augmentation method to address
the non-Markovianity of the reward design process. Due to
unknown dynamics, we overcome the infeasibility of the ge-
ometric RRT* guidance. Our algorithm is validated through
case studies to demonstrate its performance increase compared
to the distance and goal-oriented baselines. We show that our
method employing geometric path planning guidance achieves
significant training improvements for DRL-based navigation in
cluttered environments, where the tasks can be expressed using
LTL formulas.

Organization: Section II introduces basic concepts of robot
dynamics, Markov Decision Processes (MDP) that capture the
interactions between robot and environment, RL for solving
learning-based control for the MDP model, and LTL for defining
robot navigation specifications. In Section III, we define the
problem and emphasize the challenges. Section IV presents our
approach for addressing simple goal-reaching tasks via reward
design using sampling-based methods over the workspace. In
Section V, we show how to use and extend the proposed ap-
proach to general LTL mission specifications. The performance
of the proposed method is shown in Section VI.

II. PRELIMINARIES

The evolution of a continuous-time dynamic systemS starting
from an initial state s0 ∈ S0 ⊂ S is given by

ṡ = f(s, a), (1)

where s ∈ S ⊆ Rn is the state vector in the compact set S,
a ∈ A ⊆ Rm is the control input, and S0 is the initial set. The
function f : Rn × Rm → Rn is locally Lipschitz continuous
and unknown.

Consider a robot with the unknown dynamics (1), operating
in an environment Env that is represented by a compact subset
X ⊂ Rd, d ∈ {2, 3} as a workspace of the robot. The relation
between S and X is defined by the projection Proj : S → X .
The space X contains regions of interest that are labeled by a set
of atomic propositions AP . We use 2AP to represent the power
set of AP . We denote LX : X → 2AP to label regions in the
workspace. Let L : S → 2AP be the induced labeling function
over S and we have L(s) = LX(Proj(s)). Note that S repre-
sents the robot state space that can be high-dimensional whileX
is the workspace it is deployed in, i.e., two or three-dimensional
Euclidean space.

Reinforcement Learning: The interactions between en-
vironment Env and the unknown dynamic system S
with the state-space S can be captured by a continuous
labeled-MDP (cl-MDP) [33]. A cl-MDP is a tuple M =
(S, S0, A, pS , AP , L,R, γ), where S ⊆ Rn is the continuous
state space, S0 is the set of initial states, A ⊆ Rm is the contin-
uous action space, pS represents the unknown system dynamics
as a distribution, AP is the set of atomic propositions, L :
S → 2AP is the labeling function, R : S ×A× S → R is the
reward function, and γ ∈ (0, 1) is the discount factor. The dis-
tribution pS : B(Rn)×A× S → [0, 1] is a Borel-measurable
conditional transition kernel, s.t. pS(·|s, a) is the probability
measure of the next state given current s ∈ S and a ∈ A over the
Borel space (Rn,B(Rn)), where B(Rn) is the set of all Borel
sets on Rn.

Let π(a|s) denote a policy that is either deterministic, i.e.,
π : S → A, or stochastic, i.e., π : S ×A → [0, 1], which maps
states to distributions over actions. At each episode, the initial
state of the robot inEnv is denoted by s0 ∈ S0. At each time step
t, the agent observes the state st ∈ S and executes an action at ∈
A, according to the policy π(at|st), and Env returns the next
state st+1 sampled from pS(st+1|st, at). The process is repeated
until the episode is terminated. The objective of the robot is to
learn an optimal policy π∗(a|s) that maximizes the expected dis-

counted return J(π) = Eπ
[∑∞

[k=0] γ
k ·R(sk, ak, sk+1)

]
un-

der the policy π.
Linear Temporal Logic (LTL): An LTL formula is built to

describe high-level specifications of a system. Its ingredients
are a set of atomic propositions, and combinations of Boolean
and temporal operators. The syntax of LTL formulas is defined:

φ := true | a |φ1 ∧ φ2 | ¬φ1| © φ |φ1Uφ2 ,

where a ∈ AP is an atomic proposition, true, negation ¬, and
conjunction ∧ are propositional logic operators, and next © and
untilU are temporal operators. Alongside the standard operators
introduced above, other propositional logic operators, such as
false, disjunction∨, and implication→, and temporal operators,
such as always� and eventually♦, are derived from the standard
operators.

For a infinite word o starting from the step 0, let ot, t ∈ N
denotes the value at step t. The semantics of an LTL formula
are interpreted over words, where a word is an infinite sequence
o = o0o1 . . ., with oi ∈ 2AP for all i ≥ 0. The satisfaction of an
LTL formula φ by the word o is denote by o |= φ. More details
about LTL formulas can be found in [18].

In this work, we restrict our attention to LTL formulas that
exclude the next temporal operator, which is not meaningful for
continuous state-action space [32], [34].
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III. PROBLEM FORMULATION

Consider a cl-MDP M = (S, S0, A, pS , AP , L,R, γ). The
induced path under a policy π = π0π1 . . . over M is sπ∞ =
s0 . . . sisi+1 . . ., where pS(si+1|si, ai) > 0 if πi(ai|si) > 0.
Let L(sπ∞) = o0o1 . . . be the sequence of labels associated with
sπ∞, such that oi = L(si), ∀i ∈ {0, 1, 2, . . .}. We denote the
satisfaction relation of the induced trace with φ by L(sπ∞) |= φ.
The probability of satisfying φ under the policy π, starting from
an initial state s0 ∈ S0, is defined as

Pr πM (φ) = Pr πM
(
L (sπ∞) |= φ

∣∣ sπ∞ ∈ Sπ
∞
)
,

where Sπ
∞ is the set of admissible paths from the initial state

s0, under the policy π, and the detailed computation of Pr πM (φ)
can be found in [18]. The transition distributions pS of M are
unknown due to the unknown dynamic S , and DRL algorithms
are employed to learn the optimal control policies.

In this paper, the cl-MDPM captures the interactions between
a cluttered environment Env with geometric space X , and an
unknown dynamic system S . Note that explicitly constructing
a cl-MDP M is impossible, due to the continuous state-action
space. We track any cl-MDP M on-the-fly (abstraction-free)
using deep neural network, according to the evolution of the
dynamic system S operating in Env.

Problem 1: Consider a set of labeled goal regions in Env
i.e.,AP G = {G1,G2, . . .}. The safety-critical specification is ex-
pressed as φ = �¬O ∧ φg, where O denotes the atomic propo-
sition for obstacles.The expression φ = �¬O ∧ φg requires the
robot satisfying a general navigation taskφg , e.g., goal-reaching,
while avoiding obstacles. The objective is to synthesize the
optimal policy π∗ of M satisfying the task φ, i.e., Pr πM (φ) > 0.

Assumption 1: Let Xfree denote the obstacle-free space. We
assume that there exists at least one policy that drives the robot
from initial states toward the regions of interest while always
operating in Xfree. This is reasonable since the assumption
ensures the existence of policies satisfying a given valid LTL
specification.

For Problem 1, typical learning-based algorithms for target-
driven problems only assign positive rewards when the robot
reaches any goal region XGi

toward the LTL satisfaction, result-
ing exploration issues of DRL rendered from the environmental
challenge. This point is obvious even when considering the spe-
cial case of goal-reaching tasks, i.e.,φp = �¬O ∧ ♦Gi, where
the sub-task ♦Gi requires to eventually visit the goal region XGi

labeled as Gi.
Example 1: Consider an autonomous vehicle as an RL-agent

with unknown dynamics that is tasked with specification φ,
shown in Fig. 1(a).For a goal-reaching task as a special LTL
formula φp = �¬O ∧ ♦G1, if the RL-agent only receives a
reward after reaching the goal region G1, it will be hard to
effectively explore using data with positive rewards task and
noisy policies. The problem becomes more challenging for spec-
ifications such as φex = �¬O ∧ φg,ex = �¬O ∧�((♦G1 ∧
♦(G2 ∧ ♦. . . ∧ ♦G4)) that require the robot to visit regions
G1,G2,G3,G4 sequentially infinitely many times.

In Section IV, we show how to learn the control policy of
completing a standard goal-reaching missionφp = �¬O ∧ ♦Gi

in cluttered environments. Then, Section V builds upon and
extends the approach to solve a general safety-critical navigation
task φ = �¬O ∧ φg in a distributed manner.

Fig. 1. Consider an autonomous vehicle operating in a cluttered and large-
scale environment. It is challenging to learn optimal policies as described in
Example 1. The trajectories provide insights of reward design in Section IV.

IV. OVERCOMING EXPLORATION

In Section IV-A, we briefly introduce the geometric sampling-
based algorithm to generate an optimal path for the stan-
dard goal-reaching tasksφp = �¬O ∧ ♦Gi. Subsequently, Sec-
tion IV-B develops a novel dense reward to overcome the explo-
ration challenges and provides rigorous analysis for learning
performance.

A. Geometric RRT*

The standard optimal RRT* method [13] is a variant of
RRT [12]. Both RRT and RRT* are able to handle the path
planning in cluttered and large-scale environments. Due to its
optimality, we choose RRT* over RRT, to improve the learned
performance of the optimal policies. Since the dynamic systemS
is unknown, we use the geometric RRT* method that builds a tree
G = (V,E) incrementally in X , where V is the set of vertices
and E is the set of edges. If V intersects the goal region, we
find a geometric trajectory to complete the task φ. The detailed
procedure of geometric RRT* is described in the Appendix
A of [35]. Here, we briefly introduce two of the functions in
the geometric RRT* method, which are used in explaining our
method in the next sections.

Distance and cost: The function dist : X ×X → [0,∞) is
the metric that computes the geometric Euclidean distance be-
tween two states. The function Cost : X → [0,∞) returns the
length of the path in the tree between two input states.

Steering: Given two statesx andx′, the functionSteer returns
a state xnew such that xnew lies on the geometric line connecting
x to x′, and its distance from x is at most η, i.e., dist(x, x′) ≤ η,
where η is an user-specified parameter. In addition, the state
xnew must satisfy dist(xnew, x

′) ≤ dist(x, x′).
Having the tree G = (V,E) generated by the RRT* method,

if there exists at least one node x ∈ V that is located within
the goal regions, we find the optimal state trajectory satisfying
the task φ as a sequence of geometric states x∗ = x0x1 . . . xNp

,
where xNp

∈ XG and xi ∈ V , ∀i = 0, 1 . . . , Np.

B. Sampling-Based Reward

Here we use the optimal geometric trajectory x∗ and the
properties of the generated tree G = (V,E) to synthesize the
reward scheme. First, let x|x∗ denote a state of x∗, and the
total length of x∗ in the tree G be equal to Cost(xNp

|x∗). We
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define the distance from each state x ∈ x∗ to the destination
xNp

as Dist(x|x∗) = Cost(xNp
|x∗)− Cost(x|x∗). Based on

the distance, we design the RRT* reward scheme to guide the
learning progress towards the satisfaction of φ. Reaching an
exact state in the continuous state space is challenging for
robots. Thus, we define the norm r-ball for each state x|x∗

to allow the robot to visit the neighboring area of the state
as Ballr(x|x∗) = {x′ ∈ X | dist(x|x∗, x′) ≤ r}, where x|x∗

is the center and r is the radius. For simplicity, we select r ≤ η
2

based on the steering function of the geometric RRT*, such
that the adjacent r-balls along the optimal trajectory x∗ do not
intersect with each other.

We develop a progression function D : X → [0,∞) to track
whether the current state is getting closer to the goal region, by
following the sequence of balls along x∗ as:

D(x) =

{
Dist(xi|x∗) if x ∈ Ballr(xi|x∗)

∞ otherwise
(2)

For the cl-MDP M capturing the interactions between S and
Env, the intuition behind the sampling-based reward design is
to assign a positive reward whenever the robot gets geometrically
closer to the goal region, along the optimal path obtained by the
RRT* (Alg.2 of [35]).

During each episode of learning, a state-action sequence
s0a0s1ai . . . st up to current time t is projected into the state
and action sequences st = s0s1 . . . st and at = a0a1 . . . at−1,
respectively. We define

Dmin(st) = min
s∈st

{D(Proj(s))}

as the progression energy that is equal to the minimum distance
along the optimal path towards the destination, up to step t. The
objective of the reward is to drive the robot such that Dmin(st)
decreases. However, employing the function Dmin(st) for re-
ward design that depends on the history of the trajectory results
in a non-Markovian reward function [19], while the policy π(s)
only takes the current state as input and can not distinguish the
progress achieved by the histories st.

To address the issue, inspired by the product MPD [18], given
the history st, we keep tracking the index it ∈ {0, 1 . . . , Np} of
the center state of the visited r-ball regions Ballr(xit |x∗) with
minimum distance Dist(xit |x∗) deterministically, i.e.,

xit = Proj(sit), where sit = argmin
s∈st

{D(Proj(s))}

If none of the r-balls are visited up to t, we set it = 0. Then,
the current state st is embedded with the index it as a product
state s×t = (st, it), which is considered as the input of the policy,
i.e., π(s×t ). Note that we treat the embedded component it as the
state of a deterministic automaton [18]. The relevant analysis can
be found in Appendix B of [35].

Let R : s× → R denote the episodic reward function. We
propose a novel scheme to assign the Markovian reward with
respect to the product state s×t as:

R(s×t ) =

⎧⎪⎨
⎪⎩

R−, if Proj(st) ∈ XO,
R++, if D(Proj(st)) = 0,
R+, if D(Proj(st)) < Dmin(st−1),
0, otherwise,

(3)

where R+ is a positive constant reward, R++ is a boosted
positive constant that is awarded when the robot reaches the
destination, and R− is the negative constant reward that is

assigned when the robot violates the safety task of φ, i.e.,
φsafe = �¬O. Note that if the robot crosses both obstacles
and r-balls, it receives the negative reward R−, which has first
priority. This setting does not restrict selections of the parameter
r (radius of r-balls) for implementations.

Example 2: As shown in Fig. 1(a), we apply the RRT* method
to generate the optimal trajectory (shown in red) in a challenging
environment. Then, we construct the sequence of r-balls along
it and apply the reward design (3) to guide the learning and
overcome exploration difficulties.

Remark 1: Since geometric RRT* does not consider the
dynamic system, the optimal path x∗ may be infeasible for the
robot to follow exactly, with respect to any policy. As a running
example in Fig. 1(b), our RRT* reward is robust such that the
robot is not required to strictly follow all r-balls of the optimal
path. Instead, in order to receive the positive reward, the robot
only needs to move towards the destination and pass through
the partial r-balls Ballr(xi|x∗), i ∈ {0, 1 . . . , Np} along the
optimal path. If we want the robot to reach the goal with desired
orientations, we can add another reward that measures the errors
between the robot’s actual and desired orientations.

By applying the reward design (3), we formally verify the
performance of the reward (3) for the reach-avoid task φp.

Theorem 1: If Assumption 1 holds, by selecting R++ to be
sufficiently larger than R+, i.e., R++ � R+, any algorithm
that optimizes the expected return J(π) is guaranteed to find
the optimal policy π∗ satisfying the goal-reaching task φp, i.e.,
Pr π

∗
M (φp) > 0.
The proof is presented in Appendix C of [35]. Theorem 1

provides a theoretical guarantee for the optimization perfor-
mance, allowing us to apply practical algorithms to find the
approximated optimal policy in continuous space.

Based on Theorem 1 and regarding the continuous control
task, we apply advanced DRL methods, e.g., actor-critic al-
gorithms [4], [5], [7], to find the optimal policy π∗. Consider
a policy πθ(a|s×), parameterized by θ, the learning objective
aims to find the optimal policy via optimizing the parame-
ters θ and maximizing the expected discount return J(θ) =

Eπθ

[∑∞
[k=0] γ

t ·R(s×t )
]
, which minimizes the loss function:

L(θ) = E(s×,a,r,s′×)�D

[
(Q(s, a|ω)− y)2

]
, (4)

where D is the reply buffer that stores experience tuples
(s×, a, R, s′×), Q(s, a|ω) is the state-action valuation function
parameterized by ω, and y = r + γ Q(s′×, a′|ω). As observed
in (4), actor-critics rely on effective data in the replay buffer, or
sample efficiency of the state distribution to minimize the loss
function. Due to its high reward density over geometric space,
the sampling-based reward is easy to explore and improves the
training performance using noisy policies.

Theorem 2: If Assumption 1 holds, by selecting R++ to be
sufficiently larger than R+, i.e., R++ � R+, a suitable DPG
algorithm that optimizes the expected return J(θ), finds the
optimal parameterized policy π∗

θ satisfying the LTL tasks φp,
i.e., Pr π

∗
M (φp) > 0 in the limit.

Theorem 2 is an immediate result of Theorem 1 and the nature
of nonlinear regressions in deep neural networks. In practice, the
number of episodes and steps are limited and training has to be
stopped eventually.
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V. LTL TASK SATISFACTION

Section V-A describes how to generate and decompose the
optimal path of satisfying general LTL task φ in a sequence of
paths of completing goal-reaching missionsφp, and Section V-B
explains how to integrate distributed DPGs with the novel ex-
ploration guidance of Section IV, to learn the optimal policy.

A. Geometric TL-RRT*

Due to the unknown dynamic system, we define the transition
system over the geometric space X , referred as Geometric-
Weighted Transition System (G-WTS).

Definition 1: A G-WTS of Env is a tuple T = (X,x0,→T
, AP , LX , CT ), whereX is the geometric space ofEnv,x0 is the
initial state of robot; →T ⊆ X ×X is the geometric transition
relation s.t. x →T x′ if dist(x, x′) ≤ η and the straight line σ
connecting x to xnew is collision-free, AP is the set of atomic
propositions as the labels of regions, LX : X → AP is the
labeling function that returns an atomic proposition satisfied at
a location x, and CT : (→T ) → R+ is the geometric Euclidean
distance, i.e., CT (x, x

′) = dist(x, x′), ∀(x, x′) ∈→T .
The standard WTS [32], [34] defines the transition relations

x →T x′ according to the existence of model-based controllers
that drive the robot between neighbor regions x, x′. Differently,
we only consider the geometric connection among states in a
model-free manner.

Let τT = x0x1x3 . . . denote a valid run ofT . An LTL formula
φ can be converted into a Non-deterministic Büchi Automata
(NBA) to verify its satisfaction.

Definition 2: [36] An NBA over 2AP is a tuple B =
(Q,Q0,Σ,→B, QF ), where Q is the set of states, Q0 ⊆ Q is
the set of initial states, Σ = 2AP is the finite alphabet, →B⊆
Q× Σ×Q is the transition relation, and QF ⊆ Q is the set of
accepting states.

A valid infinite run τB = q0q1q2 . . . of B is called accept-
ing, if it intersects with QF infinite often. Infinite words τo =
o0o1o2 . . . ,∀o ∈ 2AP generated from an accepting run satisfy
the corresponding LTL formula φ. An LTL formula is converted
into NBA using the tool [37]. As in [30], we prune the infeasible
transitions of the resulting NBA to obtain the truncated NBA.

Definition 3: Given the G-WTS T and the NBA B, the
product Büchi automaton (PBA) is a tuple P = T × B =
(QP , Q

0
P ,→P , Q

F
P , CP , LP ), where QP = X ×Q is the set

of infinite product states, Q0
P = x0 ×Q0 is the set of initial

states; →P⊆ QP × 2AP ×QP is the transition relation defined

by the rule: x→T x′∧qLX (x)→B q′

qP=(x,q)→P q′P=(x,′q′) , where qP →P q′p denotes

the transition (qP , q
′
P ) ∈→P , QF

P = X ×QF is the set of ac-
cepting states, CP : (→P ) → R+ is the cost function defined
as the cost in the geometric space, e.g., CP (qp = (x, q), q′p =
(x,′ q′)) = CT (x, x

′), ∀(qP , q′P ) ∈→P , and LP : QP → AP is
the labelling function s.t. LP (qP ) = LX(x), ∀qP = (x, q).

A valid trace τP = q0P q
1
P q

2
P . . . of a PBA is called accepting, if

it visitsQF
P infinitely often, referred as the acceptance condition.

Its accepting words τo = o0o1o2 . . . ,∀oi = LP (q
i
P ) satisfy the

corresponding LTL formula φ. Let τF denote an accepting
trace, and proj|X : QP → X is a function that projects product
state space into the workspace, i.e., proj|X(qp) = x, ∀qP =
(x, q). Using the projection, we extract the geometric trajectory
τT = proj|X(τF ) that satisfies the LTL formula. More details
are presented in [18]. Therefore, the planning objective is to

Algorithm 1: LTL-RRT*-Distributed DPGs.
1: Input: Env, φ = �¬O ∧ φg, Black-box S;
2: Initialize: Geometric space X , Primitives of

TL-RRT*;
3: Convert φ into NBA B
4: Build the incremental trees for PBA geometrically,

based on definition 1 and definition 3
5: Generate the optimal trajectory τ ∗F = τ ∗pre[τ

∗
suf ]

ω

6: Reformulate the trajectory into the modular form

RF = (R0R1 . . .RK)(RK+1 . . .RK+l)
ω

7: for i = 1, . . . ,K + l do
8: Construct the RRT* reward based on (3) for Ri

9: Assign an actor-critic DPG e.g., DDPG, PPO, for Ri

10: end for
11: Assign the rewards (3) and DPGs for each Ri.
12: Train the distributed DPGs in parallel
13: Extract the optimal policy π∗

i from each DPG Ri

14: Concatenate all optimal policies in the form

π∗
θ = (π∗

0π
∗
1 . . . π

∗
K)

(
π∗
K+1 . . . π

∗
K+l

)ω

find an acceptable path τP of PBA, with minimum cumulative
geometric cost CP .

However, the state space of G-WTS and PBA are both infinite.
Consequently, we are not able to apply a graph search method to a
PBA with infinite states. Thanks to the TL-RRT* algorithm [32]
for providing an abstraction-free method, it allows us to incre-
mentally build trees that explore the product state-space and find
the feasible optimal accepting path. The procedure applies the
sampling-based method over the PBA, and is inspired by the
fact that the accepting run τF admits a lasso-type sequence in
the form of prefix-suffix structure, i.e., τF = τpreP [τ sufP ]ω , where
the prefix part τpreP = q0P q

1
P . . . qKP is only executed once, and

the suffix part τsufP = qKP qK+1
P . . . qK+M

P with qKP = qK+M
P is

executed infinitely often.
Following this idea, we build the trees for the prefix and suffix

paths, respectively. To satisfy the acceptance condition, the set of
goal states of the prefix tree Gpre

P = (V pre
P , Epre

P ) is defined as
Qpre

goal = {qP = (x, q) ∈ Xfree ×Q ⊆ QP | q ∈ QF }, where
Xfree is the collision-free geometric space. After obtaining
the prefix tree, we construct the set Q∗

goal = V pre
P ∩Qpre

goal, and
compute the optimal prefix path τ ∗pre reaching a state q∗P ∈ Q∗

goal

from the root q0P . The suffix tree Gsuf
P = (V suf

P , Esuf
P ) is built

by treating q∗P = (x∗, q∗) as the root, and its goal states are:

Qsuf
goal(q

∗
P ) = {qP = (x, q) ∈ Xfree ×Q ⊆ QP |

x →T x∗ ∧ q
LX(x)→B q∗

}
.

Qsuf
goal(q

∗
P ) collects all states that can reach the state q∗P via

one transition, and this way it ensures the feasible cyclic path
matching the suffix structure. Finally, we search the optimal
suffix path τ ∗suf , by constructing V suf

P ∩Qsuf
goal.
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Fig. 2. Decomposition example. (Left) Truncated NBA B of the LTL formula
φg1 = �♦G1 ∧�♦G2 ∧�♦G3 for φ1,inf = �¬O ∧ φg1 ; (Right) Decom-
posed sub goal-reaching tasks.

B. Distributed DPGs

In this section, we first employ the optimal geometric path
τ ∗F = τ ∗pre[τ

∗
suf ]

ω from Section IV-A, to propose a distributed
reward scheme. Since the policy gradient strategy suffers from
the variance issue and only finds the optimal policy in the
limit (see Theorem 2), instead of directly applying the reward
design (3) for the whole path τ ∗F , we decompose it into sub-tasks.
To do so, we divide τ ∗F into separated consecutive segments,
each of which shares the same automaton components, i.e.,
τ ∗F = τ ∗0τ

∗
1 . . . τ

∗
K [τ ∗K+1 . . . τ

∗
K+l]

ω such that all states of each
sub trajectory τ ∗i have the same automaton components. Each
segment can be treated as a collision-free goal-reaching problem,
denoted as Ri(Gi,O), where Gi is label of the ith goal region.
Specifically, suppose the state trajectory of each Ri(Gi,O) is
τ ∗i = q0P,iq

1
P,i . . . q

Ni

P,i, we select the region labeled as LP (q
Ni

P,i)

containing the geometric state proj|X(qNi

P,i).
We show an example of the optimal decomposition in Fig. 2,

where the LTL task φ1,inf = �¬O ∧ φg1 over infinite horizons
with φg1 = �♦G1 ∧�♦G2 ∧�♦G3 that requires to infinitely
visit goal regions labeled as G1,G2,G3. The resulting truncated
NBA and decomposed trajectories of TL-RRT* are shown in
Fig. 2(a) and 2(b), respectively, where decomposed sub-paths
are expressed as RF = Rred(RblueRpinkRbrown)

ω , such that
the distributed DPGs are applied to train the optimal sub-policies
for each one in parallel.

The lasso-type optimal trajectory is reformulated as: RF =
(R0R1 . . .RK)(RK+1 . . .RK+l)

ω . For the cl-MDP M, we
treat each Ri as a task φRi

= �¬O ∧ ♦Gi solved in Sec-
tion IV-B. In particular, we propose collaborative team of RRT*
rewards in (3) for each sub-task and assign distributed DPGs for
each Ri that are trained in parallel. After training, we extract the
concatenate policy π∗

i of each Ri to obtain the global optimal
policy as π∗

θ = (π∗
0π

∗
1 . . . π

∗
K)(π∗

K+1 . . . π
∗
K+l)

ω . The overall
procedure is summarized in Algorithm 1, and a detailed diagram
with rigorous analysis is presented in Appendix C of [35].
Based on the decomposition properties and Theorem 2, we can
conclude that the concatenated optimal policy of Algorithm 1
satisfies the global LTL specification.

VI. EXPERIMENTAL RESULTS

We evaluate the framework on different nonlinear dynamic
systems tasked to satisfy various LTL specifications. The tests
focus on large-scale cluttered environments that generalize the
simple ones to demonstrate the method’s performance. Ob-
stacles are randomly sampled. We integrate all baselines with

Fig. 3. Baselines comparison of tasksφ2,fin (a) andφ2,inf (b) in the Pybullet
environment.

either DDPG or SAC as DPG algorithms. Finally, we show that
our algorithm improves the success rates of task satisfaction
over both infinite and finite horizons in cluttered environments,
and significantly reduces training time for the task over finite
horizons. Detailed descriptions of environments and LTL tasks
will be introduced.

Recall that ♦ denotes the eventually operator used to specify
feasibility properties (e.g., goal-reaching), while � stand for the
always operator used for safety (e.g., collision avoidance) and
invariance (e.g., geo-fencing) properties.

Baseline Approaches: We refer to our distributed framework
as “RRT*” or “D-RRT*,” and compare it against three base-
lines: (i) The TL-based rewards in [25], [27] referred as “TL,”
for the single LTL task, have shown excellent performance in
non-cluttered environments, which generalizes the cases of finite
horizons in existing literature [22], [23], [24]; (ii) Similar as [38],
[39], for the goal-reading task φ, the baseline referred to as
“NED” designs the reward based on the negative Euclidean
distance between the robot and destination; (iii) For a complex
LTL task, instead of decomposition, this baseline directly apply
the reward scheme (3) for the global trajectory τ ∗F = τ ∗pre[τ

∗
suf ]

ω

referred as “G-RRT*”. Note that we focus on comparing the
baseline “NED” for finite-horizon tasks and the baseline “G-
RRT*” for infinite-horizon and complex tasks.

6.1 Autonomous Vehicle: We first implement the car-like
model of Pybullet1 physical engine shown in Fig. 3.
We consider the sequential LTL task and surveillance
LTL task over both finite and infinite horizons as
φ2,fin = �¬O ∧ ♦(G1 ∧ ♦(G2 ∧ ♦(G3 ∧ ♦Ginit))) and
φ2,inf = �¬O ∧�♦(G1 ∧ ♦(G2 ∧ ♦(G3)), respectively,
where φ2,fin requires the vehicle to visit goal regions labeled as
G1,G2,G3 and initial position sequentially, and φ1,inf requires
to visit initial positions and other goal regions infinitely often.
Fig. 3(a) and (b) show the learning curves of task φ2,fin and
φ2,inf , respectively, compared with different baselines. We
can observe that our framework can be adopted in both DDPG
and SAC to provide better performance than other baselines in
cluttered environments.

6.2 Quadrotor Model: We implement our algorithms in a 3D
environment with Quadrotor2 dynamics shown in Fig. 4, which
shows the capability of handling cluttered environments and
high dimensional systems. We also test two types of LTL speci-
fications as φ1,fin = �¬O ∧ ♦G1 ∧ ♦G2 ∧ ♦G3 and φ1,inf =

1[Online]. Available: https://pybullet.org/wordpress/
2[Online]. Available: https://github.com/Bharath2/Quadrotor-Simulation/

tree/main/PathPlanning
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Fig. 4. Baselines comparison of tasks φ1,fin in (a) and φ1,inf in (b) of the
cluttered 3D quadrotor environment.

Fig. 5. (a), (b) Results of baselines for more complex task φ3,fin and φ3,inf

in cluttered 3D environments; (c) Training time comparison for all tasks over
finite horizons in both environments and dynamic systems.

�¬O ∧�♦G1 ∧�♦G2 ∧�♦G3. The learning results for these
tasks are shown in Fig 4(a) and (b), respectively.

Then, we increase the complexity by random sampling
12 obstacle-free goal regions in the 3D environment and
set the rich specifications as φ3,fin = �¬O ∧ ((♦G1 ∧
♦(G2 ∧ ♦. . . ∧ ♦G12)), and φ3,inf = �¬O ∧�♦G1 ∧
�♦G2 . . . ∧�♦G12. The results are shown in Fig. 5(a)
and (b), and we observe that the “TL” baseline is sensitive to the
environments and has poor performances, and when the optimal
trajectories become complicated in the sense of the complexity
of LTL tasks, “G-RRT*” easily converges to the sub-optimal
solutions.

6.3 Performance Evaluation: Since our algorithm learns to
complete the task faster, it terminates each episode during
learning earlier for tasks over finite horizons. To illustrate the
efficiency, we implement the training process 10 times for tasks
φ, φ1,fin, φ2,fin, φ3,fin in both cluttered environments and dy-
namics, and record the average training time compared with the
baseline modular “TL” [25] and distributed “NED” (D-NED).
The results in Fig. 5(d) show that we have optimized the learning
efficiency and the training time is reduced. In practice, we can
apply distributed computing to train each local DPG of sub-tasks

TABLE I
ANALYSIS OF SUCCESS RATES AND TRAINING TIME

simultaneously for complicated global tasks to alleviate the
training burden.

We statistically run 200 trials of the learned policies for each
sub-task and record the average success rates and training time of
both models, i.e., autonomous vehicle and quadrotor. The results
are shown in Table I. We see that in cluttered environments,
success rates of other all baselines are 0, and our method achieves
success rates of near 100%. As a result, the effectiveness of
the performance has been significantly improved under envi-
ronmental challenges.

VII. CONCLUSION

Applying DPG algorithms to cluttered environments produces
vastly different behaviors and results in failure to complete
complex tasks. A persistent problem is the exploration phase
of the learning process and the density of reward designs that
limit its applications to real-world robotic systems. This paper
provides a novel path-planning-based reward scheme to allevi-
ate this problem, enabling significant improvement of reward
performance and generating optimal policies satisfying com-
plex specifications in cluttered environments. To facilitate rich
high-level specification, we develop an optimal decomposition
strategy for the global LTL task, allowing to train all sub-tasks
in parallel and optimize the efficiency. The main limitation of
our approach is to generalize various environments from a dis-
tribution. Future works aim at shrinking the gap of sim-to-real.
We will also consider safety-critical exploration during learning
and investigate multi-agent systems.
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