
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022 1

Fast Decomposition of Temporal Logic
Specifications for Heterogeneous Teams

Kevin Leahy1, Austin Jones1, and Cristian-Ioan Vasile2

Abstract—We focus on decomposing large multi-agent path
planning problems with global temporal logic goals (common
to all agents) into smaller sub-problems that can be solved and
executed independently. Crucially, the sub-problems’ solutions
must jointly satisfy the common global mission specification.
The agents’ missions are given as Capability Temporal Logic
(CaTL) formulas, a fragment of Signal Temporal Logic (STL)
that can express properties over tasks involving multiple agent
capabilities (i.e., different combinations of sensors, effectors, and
dynamics) under strict timing constraints. We jointly decompose
both the temporal logic specification and the team of agents, using
a satisfiability modulo theories (SMT) approach and heuristics
for handling temporal operators. The output of the SMT is then
distributed to subteams and leads to a significant speed up in
planning time compared to planning for the entire team and
specification. We include computational results to evaluate the
efficiency of our solution, as well as the trade-offs introduced by
the conservative nature of the SMT encoding and heuristics.

Index Terms—Formal Methods in Robotics and Automation,
Multi-Robot Systems

I. INTRODUCTION

MANY potential applications of robotics involve multiple
agents with different capabilities working together to

achieve common goals, such as aerial surveillance drones
working with ground-based manipulators for disaster response.
Temporal logics are increasingly used as a specification lan-
guage for tasking such large heterogeneous teams [1], [2], [3],
[4]. Decomposing the problem into sub-problems for parallel
execution is attractive for improving computation time for
solving such problems, and in some cases may reduce the need
for communication and coordination during mission execution.
This approach carries trade-offs. There is generally a large up-
front computational cost to determine a feasible decomposition
of the task and team, in exchange for faster planning. There
may also be a trade-off in plan optimality. In this work, we
introduce a system for quickly decomposing temporal logic

Manuscript received: September 9, 2021; Revised December 11, 2021;
Accepted January 5, 2022.

This paper was recommended for publication by Editor Lucia Pallottino
upon evaluation of the Associate Editor and Reviewers’ comments.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution
is unlimited. This material is based upon work supported by the Under Secretary
of Defense for Research and Engineering under Air Force Contract No. FA8702-
15-D-0001. Any opinions, findings, conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the
views of the Under Secretary of Defense for Research and Engineering.

1Kevin Leahy and Austin Jones are with Massachusetts Insti-
tute of Technology Lincoln Laboratory, Lexington, MA 02421, USA
kevin.leahy@ll.mit.edu

2Cristian-Ioan Vasile is with Dept. of Mechanical Engineering and Mechan-
ics, Lehigh University, Bethlehem, PA 18015, USA cvasile@lehigh.edu

Digital Object Identifier (DOI): see top of this page.

specifications to allow large teams of heterogeneous agents
to plan in near real-time. This framework serves for a large
class of temporal logic planning problems, including those
with heterogeneous teams, task interdependencies and strict
timing requirements.

This work builds upon [1], which introduced Capability
Temporal Logic (CaTL), a fragment of Signal Temporal Logic
(STL) designed for tasking large teams of heterogeneous agents,
each with varying capability to service requests. CaTL can
specify tasks to be completed by the team, without specifying
which agent should complete which task. More than one agent
(or group of agents) may be able to accomplish the same
task. In [1], a centralized mixed integer linear program (MILP)
generates a plan for the entire team simultaneously from a
given CaTL specification, but scales poorly with specification
length. Indeed, planning problems of this type are known
to be NP-complete [5]. We seek to reduce the computation
time by decomposing the specification and team of agents
into sub-specifications and subteams. Such a decomposition
generates several smaller planning problems that can be solved
in parallel, rather than one large problem. Decomposition also
has potential for decentralized execution of the specification,
by reducing online coordination.

Distributed synthesis has been well-studied in the litera-
ture [6], [7], [8]. For robotics applications, there are many
works that focus on decomposition of linear temporal logic
(LTL) or related untimed logics, e.g., [9], [10], [11]. The
authors of [9] use a product automaton method to decompose
specifications among teams of heterogeneous agents. In [10],
[11], the authors decompose finite LTL specifications into
decomposition sets that capture tasks that can be accomplished
in any order without violating the specification. While these
methods scale reasonably for untimed logics, they do not
scale well for CaTL and other timed logics like STL, whose
satisfaction depends on strict time bounds on task completion.

We perform the task assignment problem concurrently with
the decomposition of the specification. Task assignment can
be solved in a variety of manners, including auction and
optimization-based methods [12], [13], [14]. Auctions and
market-based solutions provide fast agent-to-task pairings, but
they do not consider the interdependencies and coordination
among tasks across the time horizon of a problem. They also
often consider homogeneous agents that are able to service
any task [13]. In our work, agents may only service certain
tasks, multiple agents may be required to service a single task,
and each task might be serviced by different classes of agents.
We jointly consider the requirements of the specification and
the capabilities of each agent when assigning agents to tasks.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

Our contributions are as follows: 1) we present a com-
putational framework for simultaneous decomposition and
assignment, splitting a team of agents and a specification into
corresponding subteams and sub-specifications that can be
solved and executed in parallel; 2) we provide a satisfiability
modulo theories (SMT) approach together with a MILP that
implements this framework; and 3) we perform extensive
simulations that demonstrate our method and characterize its
performance on problems of different scales. We are motivated
by robotics applications with short planning times relative to
the complexity of the planning problem. Therefore, we trade
completeness in exchange for a fast decomposition process,
while still ensuring any solution to the decomposed problem
satisfies the original problem.

We present models and preliminaries in Sec. II and formalize
our problem in Sec. III. The specification and agent assignment
are encoded in an SMT problem [15] (Sec. V). The assignment
is used to transform a syntax tree representation of the
specification, from which a set of sub-specifications and
subteams is extracted (Sec. VI). The sub-specification, subteam
pairs can then be solved in parallel as MILPs using the
methods presented in [1]. Because the MILP problem is NP-
complete, we seek a fast process for decomposition to improve
the tractability of the MILP. Our approach is conservative,
using heuristics for temporal operators. The heuristics encode
sufficient conditions for satisfying the original formula, but may
exclude some solutions, resulting in an infeasible MILP. In that
sense, out method is conservative with respect to completeness.
In the event of infeasibility, feedback from the MILP to the
decomposition process may be necessary to achieve a feasible
decomposition. Here, we focus on encoding and efficiently
solving the decomposition problem. This approach allows us
to focus on increasing the tractability of the planning problem,
while minimizing the computational overhead that we add, and
we leave the question of efficient feedback from the MILP as
future work.

II. MODELS AND SPECIFICATIONS

We consider a team of agents operating in an environment
consisting of a finite set of discrete locations (states) Q and
weighted edges E between states, where the weights represent
positive integer travel times. The states are labeled with atomic
propositions from a set AP . We denote the labeling function
by L : Q → 2AP , with inverse L−1(π) returning the set of
states labeled with π ∈ AP .

We denote the finite set of all agents by J and the finite
set of all agent capabilities1 by Cap. An agent is a tuple
Aj = (q0,j , Capj), where q0,j ∈ Q is the initial state of the
agent and Capj ⊆ Cap is its set of capabilities. As agent
j ∈ J moves about its environment, it induces a discrete-
time trajectory sj : Z≥0 → Q ∪ E such that sj(t) returns the
state or edge occupied by agent j at time t. Agents traverse
edges according to their weights. For example, for an agent
j in state q at time t entering edge e = (q, q′) with weight
W , sj(t′) = e ∀t′ ∈ (t, t + W) and sj(t + W) = q′. The

1In our examples, capabilities correspond to sensing modalities, but the set
Cap can in general capture any important characteristics of the agents.

team trajectory of a set of agents J , denoted by sJ , is the
concatenation of the individual trajectories in J , such that
sJ(t) = [s1(t), s2(t), s3(t), . . .], where t is a global time index.
We denote the number of agents with capability c ∈ Cap at
state q ∈ Q at time t ∈ Z≥0 by nq,c(t) =

∑
j∈J I(sj(t) =

q)I(c ∈ Capj), where I is the indicator.

Example 1. Fig. 1 shows a large farm that grows crops in
different regions. Each color corresponds to a different type
of crop from the set AP = {green, yellow, orange, blue}. Red
regions are obstacles. A fleet of robots with different sensing
modalities must monitor crop health. The fleet as a whole
has visual (Vis), infrared (IR), ultraviolet (UV), and soil
moisture (Mo) sensors. Each of the crops in the field has
distinct monitoring requirements. List 1 shows the tasks that the
team of robots must perform during a 24 hour deployment. For
the tasks in List 1, Cap = {V is, IR, UV,Mo}, corresponding
to the types of sensing required. Individual agents have subsets
of those capabilities, for example, agent 1 may have IR and
UV capabilities (Cap1 = {IR,UV }), and agent 2 may have
UV and V is capabilities (Cap2 = {UV, V is}).

(a) (b)

Fig. 1: (a) Schematic of the precision agriculture problem
from Example 1. Colors of regions correspond to crop types,
and red indicates obstacles. (b) Associated Environment with
colors indicating region labels.

1) Within 10 hours of deployment, two visual and two IR sensors
must remain within each green crop region at the same time for
at least 1/2 hour

2) Half hour soil moisture readings must be made in each of the blue
crop regions every 10 hours

3) Within 4 and 12 hours after deployment, two UV and two visual
sensors must be in the yellow crop region for a half hour

4) Within 1 and 9 hours of deployment and within 10 and 15 hours
of deployment, two visual sensors must be in each of the orange
regions of the environment and remain there for 1 hour

LIST 1: Example list of precision agriculture tasks

The team of agents is tasked with a specification given as
a CaTL formula, a fragment of STL [16], in which the core
units are tasks rather than arbitrary predicates. Here, we define
the syntax and semantics of CaTL.

Definition 1. A counting proposition is a tuple cp = (c,m) ∈
Cap×Z≥0, specifying the number of a given capability required
to accomplish a task.

Definition 2. A task is a tuple T = (d, π, cpT), where d ∈ Z≥1

is a duration of time, π ∈ AP is an atomic proposition labeling

LEAHY et al.: FAST DECOMPOSTION OF TEMPORAL LOGIC SPECIFICATIONS 3

each region in which the task should be satisfied, and cpT
is a set of counting propositions {cpi}i∈IT with index set IT .
(ci,mi) ∈ cpi denotes that at least mi agents with capability
ci ∈ Cap are required for T .

Definition 3. The syntax of CaTL [1] is

φ := T | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1U[a,b)φ2 | ♦[a,b)φ | �[a,b)φ

where φ is a CaTL formula, T is a task, ∧ and ∨ are the
Boolean conjunction and disjunction operators, U[a,b), ♦[a,b),
and �[a,b) are the time-bounded until, eventually, and always
operators, respectively.

Definition 4. The qualitative semantics of CaTL are defined
over team trajectories sJ . At time t,

(sJ , t) |= T ⇔ ∀t′ ∈ [t, t+ d),∀q ∈ L−1(π),
∀cpi ∈ cpT , nq,ci(τ) ≥ mi

(sJ , t) |= φ1 ∧ φ2 ⇔ (sJ , t) |= φ1 and (sJ , t) |= φ2

(sJ , t) |= φ1 ∨ φ2 ⇔ (sJ , t) |= φ1 or (sJ , t) |= φ2

(sJ , t) |= φ1U[a,b)φ2 ⇔ ∃t′ ∈ [t+ a, t+ b)(s, t′) |= φ2

and ∀t′′ ∈ [t, t′)s(t′′) |= φ1

(sJ , t) |= ♦[a,b)φ ⇔ ∃t′ ∈ [t+ a, t+ b)(s, t′) |= φ
(sJ , t) |= �[a,b)φ ⇔ ∀t′ ∈ [t+ a, t+ b)(s, t′) |= φ,

(1)

A team trajectory satisfies a CaTL formula φ, denoted sJ |= φ,
if (sJ , 0) |= φ.

Note that a task T = (d, π, cpT) is semantically equivalent
to the STL formula φT = �[0,d)

∧
q∈L−1π

∧
cpi∈Cap nq,ci ≥

mi), [1]. CaTL allows intuitive, compact encodings of tasks
for an operator deploying a team of robots, and like STL, can
be efficiently encoded in a MILP.

Remark 1. CaTL, unlike STL, does not include negation.
Negating tasks does not have a single well-defined meaning
(i.e., tasks can be false if there are not enough agents in a given
region or if they are not present for a long enough duration).
However, CaTL formulas are in positive normal form [1], [17],
enabling efficient MILP encoding.

Example 2. The CaTL formula for List 1 is written

♦[0,10)T (0.5, green, {(V is, 2), (IR, 2)})
∧�[0,K)♦[0,10)T (0.5, blue, {(Mo, 1)})
∧ ♦[4,12)T (0.5, yellow, {(UV, 2), (V is, 2)})
∧ ♦[1,9)T (1, orange, (V is, 2))

∧ ♦[10,15)T (1, orange, (V is, 2)) ,

(2)

where K is the planning horizon of the entire mission

Definition 5 (Quantitative Semantics (Availability Robustness)).
Availability robustness of a task is computed as

ρa(sJ , t, T) = min
cpi∈cpT

min
t′∈[t,t+d)

min
q∈L−1(π)

nq,c(t
′)− cp(c) (3)

while for the other operators it is computed recursively as for
STL [18].

The availability robustness of a task is the minimum
difference between the available and required number of agents
with a given capability considered over all capabilities and
locations, and entire task duration. In other words, it is the

maximum number of agents that can arbitrarily fail while still
guaranteeing satisfaction of the task. Availability robustness is a
measure of robustness that is therefore semantically meaningful,
which is not necessarily true of STL in general.

III. PROBLEM STATEMENT

We wish to find a set of sub-missions φr and associated
teams Jr to perform them, such that the satisfaction of the
entire mission is guaranteed by the distributed and independent
satisfaction of all φr, and whose solution can be computed more
quickly than finding a trajectory that solves φ for the entire
team. In other words, we would like an offline pre-processing
framework for converting a planning problem into several
smaller planning problems that can be solved and executed in
parallel. Denote by Synth(J, φ) a synthesis method that returns
trajectories sj for all j ∈ J such that the team trajectory sJ
satisfies φ2. We assume that there exists a solution to the
problem for the entire team, i.e., s∗J = Synth(J, φ). We are
now ready to formally state the decomposition problem.

Problem 1. Assuming the synthesis problem is feasible, i.e.,
∃s∗J |= φ, given a set of agents {Aj}j∈J and a CaTL formula
φ, find a team partition R3, and a set of formulas {φr}r∈R
such that the original formula φ is satisfied if each subteam
r satisfies its specification φr.

Problem 1 seeks to find a partition of agents into disjoint
subteams, each with their associated sub-specification, such
that the original specification is satisfied if each subteam
satisfies their sub-specification. No coordination is required
between subteams. To solve Problem 1, we use syntax trees
corresponding to CaTL formulas (Sec. IV). We use SMT to
find an assignment α of agents to tasks that is amenable
to decomposition (Sec. V), and then demonstrate options
for decomposing a specification according to its assignment
(Sec. VI). The resulting decomposed specifications and teams
can each be handled concurrently using Synth. Because the
synthesis problem for each subteam and sub-specification is
smaller than the original problem, we expect that solving them
concurrently will be faster than solving the original problem.
However, we don’t know ahead of time if the synthesis problem
is feasible for each subteam and sub-specification, even if the
original problem is feasible. This infeasibility can arise due
to the spatial configuration of the agents and environment,
if for example, agents in a subteam are unable to travel
between assigned regions in adequate time. Thus, we gain
a computational speedup at the price of potential infeasibility.
We note that the potential for infeasibility exists in the original
problem as well, and it is difficult to determine if a problem
is infeasible without solving the planning problem (whether
or not the proposed decomposition process is used), which is
NP-complete [5].

The decomposition process is outlined in Alg. 1.

2There are many choices for the synthesis method Synth [19], [20]. We
employ a MILP approach similar to [1].

3Here, we use the typical definition of the partition of a set: ∪r∈RJr = J
and Jr1 ∩ Jr2 = ∅ ∀r1, r2 ∈ R.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

Algorithm 1: Solution overview.
Input: Agents {Aj}j∈J , CaTL formula φ
Output: Team partition {Jr}r∈R, Formulas {φr}r∈R

1 α← SolveSMT({Aj}j∈J , φ) // Alg. 2
2 {φr, Jr}r∈R ← DecomposeTree(φ, α) // Alg. 3
3 return {Jr}r∈R, {φr}r∈R

∧

{A1, . . . , A10}[
0 0

]

∨

{A1, . . . , A5}[
1 0

]

T1

{A1, A2, A3}[
1 0

]
T2

{A4, A5}[
0 0

]
U[a,b)

{A6, . . . , A10}[
0 0

]

T3

{A6}[
0 0

]
∧

{A7, . . . , A10}[
0 0

]

T4

{A7, A8}[
1 1

]
T5

{A9, A10}[
0 0

]

Fig. 2: Abstract syntax tree for (4) with assignment in black
and capability excess in red.

IV. SYNTAX TREES AND AGENT ASSIGNMENTS

We use syntax trees to reason about CaTL specifications,
their decomposition, and the assignment of agents to tasks.

Definition 6. A CaTL syntax tree of a CaTL formula φ is
a tuple Tφ = (V, v0, Par), where V is the set of nodes
associated with the operators and tasks of φ, v0 is a root
node, Par : (V \ {v0}) → V ∪ {./} maps each node to its
parent in the tree, and Par(v0) = ./ denotes that the root
has no parent. Each node is labeled from the set of operators
{∧,∨,U[a,b),♦[a,b),�[a,b), T = (d, π, cp)}. For brevity, we
will refer to nodes by their operator. For example, if the root
node v0 is labeled ∧, we will write v0 = ∧. For nodes v1,
v2 ∈ V , we say that v1 is upstream of v2 (and v2 is downstream
of v1) if v1 is on the path from the root node to v2.

Let Ch(v) denote the set of all children of a node v ∈ V ,
and Λ ⊂ V the set of leaf nodes, i.e., nodes without children
Ch(v) = ∅. The leaf nodes exactly correspond to the tasks of
CaTL formulas.

Example 3. Fig. 2 shows the syntax tree for the formula

ψ = (T1 ∨ T2) ∧ ((T3)U[a,b)(T4 ∧ T5))) . (4)

Definition 7. An assignment of agents {Aj}j∈J in a CaTL
syntax tree Tφ is a mapping α : Λ→ 2J .

An assignment α keeps track of agents assigned to tasks.
Agents are assigned to other nodes in the tree according to the
formula structure, such that agents assigned to an intermediate
node v must be assigned to some child node of v. Thus, α is
completely determined by the assignment over the leaves Λ

α(v) =
⋃

v′∈Ch(v)

α(v′) ∀v 6∈ Λ . (5)

Agent c1 c2
A1 1 1
A2 1 0
A3 1 0
A4 1 1
A5 1 1

Agent c1 c2
A6 0 1
A7 1 1
A8 1 1
A9 1 0
A10 0 1

Task cp(c1) cp(c2)
T1 2 0
T2 2 2
T3 0 1
T4 1 1
T5 1 1

TABLE I: Numbers and requirements of capabilities for (4).

We note that an agent may be assigned to multiple tasks, and
a task may have no agents assigned to it, but we require all
agents to be assigned to at least one task.

We further define the notion of capability excess to aid in
evaluating the assignment of agents to tasks.

Definition 8. The capability excess of an assignment α to a
node v ∈ V is defined recursively as

ce(α, v) =



min
cpi∈cpT

naci−mi

|L−1(π)| v = T

max
v′∈Ch(v)

ce(α, v′) v = ∨

min
v′∈Ch(v)

ce(α, v′) v ∈ {∧,U[a,b)}4

ce(α,Ch(v)) v ∈ {�[a,b),♦[a,b)},

(6)

where naci = |{j ∈ α(v) | ci ∈ Capj}| is the number of
agents with capability ci assigned to node v.

Intuitively, an assignment’s capability excess measures how
many extra agents with a given capability are assigned to a
node. A positive capability excess indicates that there are more
than enough agents assigned to a node. A negative capability
excess indicates that there are not enough agents assigned
to the node. Capability excess of zero indicates that there
are exactly as many agents assigned as needed. Our solution
focuses on finding assignments that are eligible at the task
level. Therefore, each task appearing in the specification should
have at least as many agents as necessary to accomplish the
task. The recursive Def. 6 allows us to check the capability
excess for the entire specification by inspecting the root only.
This property is formalized as eligibility in Def. 9 and shown
to be necessary for satisfaction of the specification in Prop. 1.

Example 4. Consider formula (4), with tasks involving two
capabilities Cap = {c1, c2}. The capabilities assigned to each
agent, and the ones required by each task are listed in Table I.
An assignment of agents to tasks and the resulting capability
excess are illustrated in Fig. 2.

Definition 9. An assignment α is eligible for the CaTL syntax
tree Tφ, denoted α |=e Tφ, if

ce(α, v0) ≥ 0 (7)

Proposition 1. For a given team trajectory sJ , let α[sJ] denote
the induced assignment such that Aj ∈ α(λ) if Aj participates
in task λ ∈ Λ. It holds that

sJ |= φ⇒ α[sJ] |=e Tφ (8)

That is, eligibility is a necessary condition for satisfiability.

The proof of Prop. 1 follows from a consideration of
capability excess. It is omitted due to space considerations.

4For φ1U[a,b)φ2, we assume a > 0. Otherwise, we substitute φ1U[0,b)φ2
with φ1U[0,b)φ2 ∨ φ2 to preserve the correctness of the ce computation.

LEAHY et al.: FAST DECOMPOSTION OF TEMPORAL LOGIC SPECIFICATIONS 5

We provide a brief sketch here. If a team trajectory satisfies φ,
then it directly follows from the quantitative semantics of tasks
(Def. 5) that ce(α[sJ], T) ≥ 0 for the tasks that are satisfied.
Therefore ce(α[sJ], T) ≥ 0 =⇒ ρa(sJ , 0, T) ≥ 0 for each
task. By comparing the quantitative semantics of STL [16] or
CaTL [1] with capability excess for the rest of the operators,
it follows that ce(α[sJ], φ) ≥ 0.

V. AGENT ASSIGNMENTS AS SMT

Now, we consider the problem of finding an assignment α
for a given CaTL formula φ such that it can be decomposed.
For each node in the syntax tree T , we encode whether
its assignment is eligible according to Def. 9, and whether
the assignments to its children are independent (i.e., non-
intersecting). We encode the problem using an SMT solver,
allowing us to reason over agents individually. We pair agents
to tasks and efficiently compare the effect of the assignment
on our ability to decompose the formula.

We encode the Boolean variable Ind(·) as presented in Alg. 2
to capture independence under an assignment α as described
above. The variable Ind(α, v) captures whether the assignment
of agents to subtrees rooted at v are non-intersecting, i.e.,
Ind(α, v) = True if α(v′)∩α(v′′) = ∅ for all v′, v′′ ∈ Ch(v).

Alg. 2 presents the encoding of the SMT problem. For leaves
of the T , ce is computed based on the assignment, and Ind is
assigned a value of True (lines 2-4). The values of ce and Ind
for each remaining node in the syntax tree are determined by
that node’s children. Thus, the assignment of agents to tasks
determines the values of ce and Ind for all of the other nodes
in the tree. For the temporal operators eventually (♦[a,b)) and
always (�[a,b)), which each only have one child node, these
properties are inherited directly (lines 11-12). For disjunction
(∨), only one downstream branch need be satisfying, so the
disjunction in line 6 selects a satisfying branch and forces the
other to have an empty assignment. The node inherits ce and
Ind from the satisfying branch accordingly (lines 6-9). The
other branch of the disjunction is forced to have an empty
assignment to reduce the likelihood of agents being assigned to
a branch that is not necessary for satisfaction. Finally, for until
(U[a,b)) and conjunction (∧), the eligibility is the conjunction
of the children, and independence is according to the pairwise
independence of children (lines 14-18).

Top level SMT problem We solve whether

ψ1 ∧ ψ2 ∧ ψ3 (9)

is satisfiable, where

ψ1 = ce(α, v0) ≥ 0 (10)
ψ2 = Ind(α, v0) (11)

ψ3 =
∨
λ∈Λ

Aj ∈ α(λ), ∀j ∈ J , (12)

Eq. (10) ensures an eligible assignment in all downstream nodes,
a necessary condition for satisfiability via Prop. 1. Eq. 11
ensures that the formula can be split into more than one formula.
All agents are assigned to at least one task via (12), because
unassigned agents cannot contribute to satisfaction of a CaTL
formula.

Algorithm 2: SMT encoding of assignment problem
Input: Syntax Tree Tφ
Output: Assignment α

1 for v ∈ V do
2 if v ∈ Λ then
3 ce(α, v)← mincpi∈cpT

naci−mi

|L−1(π)| ;
4 Ind(α, v)← True;
5 else if v = ∨ then
6 α(v′) = ∅ ∨ α(v′′) = ∅ for v′, v′′ ∈ Ch(v);
7 ce(α, v)← maxv′∈Ch(v) ce(α, v

′);
8 v∗ ← v′ ∈ Ch(v) s.t. ce(α, v′) ≥ 0;
9 Ind(α, v)← Ind(α, v∗);

10 else if v ∈ {�[a,b),♦[a,b)} then
11 ce(α, v)← ce(α,Ch(v));
12 Ind(α, v)← Ind(α,Ch(v));
13 else if v ∈ {U[a,b),∧} then
14 ce(α, v)← minv′∈Ch(v) ce(α, v

′);
15 if α(v′)

⋂
α(v′′) = ∅ ∀v′, v′′ ∈ Ch(v) then

16 Ind(α, v)←True;
17 else
18 Ind(α, v)←False;

19 Find α via (9);

Remark 2. As noted in Sec. I, our approach is conservative
with respect to feasibility. Our assignment is based on ca-
pability excess, which is an upper bound on robustness [1].
Decomposition cannot increase capability excess across sub-
teams, and thus can lead to infeasibility of sub-problems, and
suboptimality of overall robustness. Since even the feasibility
problem is hard (NP-complete), we focus on how to speed up
the computation of a team motion plan when one exists, which
is the prevalent case in practice.

VI. FORMULA TRANSFORMATIONS

Next, we discuss how to use an assignment α to determine
a partition R of the set of agents J and formula φ into a
set of subteams and subformulas {Jr, φr}r∈R. We list some
results on modifications to φ that make it more amenable to
decomposition (Sec. VI-A), and then apply the modifications
to φ according to the assignment α (Sec. VI-B).

A. Formula transformations for decomposition

In this section, we list some transformation to CaTL formulas
that can make a formula more amenable to decomposition.
We note that the transformations described in this section
are conservative. The satisfaction of a transformed formula
implies satisfaction of the original formula. The reverse is
not necessarily true. It may therefore be necessary to find a
centralized solution to a formula in the event that a solution
to the decomposed problem cannot be found.

The transformations we describe below are conservative
and non-exhaustive, i.e., there may be other transformations
that apply to this problem. Crucially, these transformations
were chosen because of two properties. First, they potentially
reduce the amount of coordination required. For disjunction,

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

this means pruning one of the subformulas and only requiring
that one subformula be satisfied. For until and conjunction,
temporal operators are moved inside of a conjunction, allowing
the formula to be split into two formulas that can each be
satisfied independently. The second important property is that
transformations cannot introduce new tasks. That is, for a
formula φ transformed to φ′, let T , Λ and T ′, Λ′ be the
corresponding syntax trees and tasks, respectively. Then Λ′ ⊆
Λ. An assignment α induces and assigment α′ on T ′ such that
α′(λ) = α(λ) for all λ ∈ Λ′.

Disjunction ∨ Disjunction of two formulas is satisfied if
at least one of its subformulas is satisfied. Therefore we
may replace a disjunction of two subformulas with either
subformula:

φ1 ∨ φ2 → φi for i = 1 or i = 2 (13)

Until U[a,b) The formula φ1U[a,b)φ2 is in general difficult to
parallelize. However, we can substitute the until operator with
a more conservative formula containing a conjunction whose
subformulas can be independently satisfied:

φ1U[a,b)φ2 → �[0,b)φ1 ∧ ♦[a,b)φ2 (14)

Conjunction ∧ with upstream temporal operators Tempo-
ral operators followed by a conjunction can be transformed to a
conjunction of subformulas. This transformation is conservative
for the eventually, but not for always:

�[a,b)(φ1 ∧ φ2)→ �[a,b)φ1 ∧�[a,b)φ2

♦[a,b)(φ1 ∧ φ2)→ �[a,b)φ1 ∧�[a,b)φ2

(15)

Remark 3. Our choice of transformation for ♦[a,b)(φ1 ∧ φ2)
to a conjunction of always operators (i.e., �[a,b)φ1 ∧�[a,b)φ2)
is one of several choices that satisfy the original formula. It is
also the most conservative. The formula could equivalently be
transformed into ♦[a,b)φ1 ∧ �[a,b)φ2 or �[a,b)φ1 ∧ ♦[a,b)φ2.
We choose the symmetric conjunction of always operators for
simplicity of presentation.

Proposition 2. The transformations presented above transform
the original specification φ into a new specification φ′. It
follows by induction that the language of φ′ is a subset of
the language of φ. Therefore, for a given team trajectory, sJ ,
sJ |= φ′ =⇒ sJ |= φ.

B. Decomposing Specification using Assignment and SMT

Given an assignment from the preceding SMT problem, we
wish to decompose the tree as much as possible, returning a
set of subformulas and subteams. Here we describe how to
obtain these formulas and teams from the SMT solution. Based
on the assignment results, we wish to only modify the formula
as much as necessary. For example, if the same agents are
assigned to both φ1 and φ2, then there is no need to modify
the formula φ1U[a,b)φ2.

We note that any tree T with conjunction at the root (v0 = ∧)
can be split into two trees T ′, T ′′ whose formulas can be
independently satisfied if the assignment of agents to T ′ and
T ′′ are disjoint, i.e., Ind(α, v0) == True. We will denote this

∨

{A8, A9, A10}

T1

∅

T2

{A8, A9, A10}

�[0,b)

{A5, A6, A7}

T3

{A5, A6, A7}

�[a,b)

{A1}

T4

{A1}

�[a,b)

{A2, A3, A4}

T5

{A2, A3, A4}

(a) Assignment and syntax trees for the entire team of agents
{A1, . . . , A10}

T1

{A2, A3}

�[0,b)

{A4}

T3

{A4}

�[a,b)

{A1}

T4

{A1}

�[a,b)

{A5}

T5

{A5}

(b) Assignment and syntax trees for agents {A1, . . . , A5}

∨

{A7, A8}

T1

∅

T2

{A7, A8}

�[0,b)

{A10}

T3

{A10}

♦[a,b)

{A6, A9}

∧

{A6, A9}

T4

{A6, A9}

T5

{A6, A9}

(c) Assignment and syntax trees for agents {A6, . . . , A10}

Fig. 3: Final syntax trees and assignments for varying subsets
of agents {A1, . . . , A10} assigned to the initial abstract syntax
tree in Fig. 2. Note that the assignment α determines the final
structure of the specifications.

process of splitting a tree into its two subtrees by Split(T) =
{T ′, T ′′}.

The process is outlined in Alg. 3. Briefly, the syntax tree
and assignment from the SMT are provided as input. The tree
is pruned at nodes labeled ∨ for any children not selected in
the SMT (lines 1-2). Then, subtrees are substituted at nodes
labeled U[a,b) or ∧ if the assignments to their children are
disjoint (lines 3-5). Finally, the tree is recursively split at the
root (line 6) using the function Subtrees (lines 11-16). The
resulting formulas and corresponding team assignments are
extracted and returned (lines 7-10). They can then be solved
in parallel as a set of MILPs using the method in [1].

Remark 4. If the assignment is eligible but no satisfying
parallel execution exists (because by Prop. 1, we find a
necessary but not sufficient condition for satisfiability), we
must add that information to the SMT problem so that the
solver does not continue to investigate similar solutions that are
unlikely to work. This can be accomplished using the irreducible
inconsistent set (IIS) from the MILP solver, which is computed
by most modern solvers, and provides constraints that can be
used in the SMT. There are several technical issues that need
to be addressed in this process, including converting MILP
constraints to their corresponding SMT constraints. We leave it
as future work. For now, we assume that if the decomposition
solution contains an infeasible MILP, we will instead solve the
centralized synthesis problem upon detecting infeasibility. Since
the decomposition process is much faster than the centralized

LEAHY et al.: FAST DECOMPOSTION OF TEMPORAL LOGIC SPECIFICATIONS 7

Algorithm 3: Decomposition using assignment α∗ from
SMT

Input: Assignment α∗ from the SMT Problem,
Syntax Tree Tφ
Output: Set of formulas {φi}i∈1,...,N ,
Corresponding team partition {Ji}i∈1,...,N

1 for v ∈ V |v = ∨ do
2 transform according to (13);

3 for v ∈ V |v ∈ {U[a,b),∧}and v 6= v0 do
4 if Ind(α, v) = True then
5 transform according to (14) or (15);

6 Trees←Subtrees(T);
7 for Ti ∈ Trees do
8 extract formula φi from subtree Ti;
9 extract subteam Ji from αi;

10 return {φi}i∈1,...,N , {Ji}i∈1,...,N

11 Function Subtrees(T):
12 if v0 = ∧ and Ind(α, v0) = True then
13 {T ′, T ′′} = Split(T);
14 return { Subtrees(T ′),Subtrees(T ′′)};
15 else
16 return T ;

synthesis, doing the two operations in sequence does not add
much overhead in the case of an infeasible decomposition.

VII. SIMULATION AND RESULTS

To validate evaluate our method’s performance, we per-
formed computational experiments. The SMT problem was
coded in Z3 [21]. Synthesis was performed using the Gurobi
solver [22]. Experiments were run in Python 2.7 on Ubuntu
16.04 with a 2.5 GHz Intel i7 processor and 16 GB of RAM.

We evaluated the performance for 10, 20, 30, 40, and 50
agents, with increasing environment size for larger teams of
agents. The environment was a grid, with edge weight of 1 and
randomly assigned region labels. Timeout for the MILP was
set at 120s and for the SMT solver at 60s. In the following,
“feasible” refers to running the MILP to obtain the first
feasible solution without decomposition. “Decompose” refers
to synthesis of the first feasible solution on the decomposed
problem.

We performed simulations with a specification motivated by
our agriculture example, with fifty runs per case. Agents were
randomly generated with 1 or 2 of the following capabilities:
harvest crops 1 (H1), harvest crops 2 (H2), water crops (W),
spray pesticide (S), deter pests (D), and monitor crops (M).
Here we evaluated the specification

φ = φ1 ∧ φ2 ∧ φ3 ∧ φ4 , (16)

where each φi is defined as

φ1 = ♦[15,25)((T1U[5,10)T2) ∨ (T3 ∧ T4)) (17)
φ2 = ♦[15,30)(T5U[5,10)(T6 ∧ T7)) (18)
φ3 = �[15,50)(♦[0,20)(T8 ∧ T9)) (19)
φ4 = ♦[15,30)(T10 ∧ (T11 ∨ T12)) . (20)

TABLE II: Task definitions for (16).

Name Task cpT d π
Spray T1 {(S, 1)} 3 A

Harvest T2 {(H1, 1)} 3 B
Monitor T3 {(M, 1)} 3 C
Spray T4 {(S, 1)} 3 D
Spray T5 {(S, 2)} 5 A

Wet Harvest T6 {(W, 1), (H1, 1)} 3 B
Harvest T7 {(H2, 1)} 3 C
Monitor T8 {(M, 1)} 3 D
Spray T9 {(S, 2)} 3 A
Spray T10 {(S, 1)} 3 B

Deter and Water T11 {(D, 1), (W, 1)} 3 C
Deter T12 {(D, 2)} 3 D

Fig. 4: Run time with and without decomposition for vary-
ing problem sizes with longer specification. Feasible MILP
solutions are in blue and decomposition is in orange.

The tasks are defined in Table II.
Results of the simulation are shown in Figs. 4-5b. From

Fig. 4 it is clear that decomposition leads to a significant
reduction in run time. Table III shows the percentage of overall
runtime spent on decomposition. The majority of the run time is
spent solving the MILP, while the time spent on decomposition
remains fairly constant. Table IV presents statistics on the
subteams and SMT performance. Some smaller problems
returned UNSAT, while larger problems timed out. Since larger
teams are harder for the MILP to solve, these results suggest
decomposition is a tool better suited for problems that a user
expects to be difficult for the MILP to solve in the first place.
Fig. 5a plots run time for identical problem instances with and
without decomposition. These results indicate that for nearly all
individual instances, decomposition reduced run time. Finally,
Fig. 5b plots the MILP size compared to the run time with and
without decomposition, indicating that there is a reduction in
MILP size after decomposition. Interestingly, decomposition
appears to decrease the run time and the variance in run time.

TABLE III: Percentage of total runtime spent on decomposition
for different numbers of agents.

Agents 10 20 30 40 50
Percentage of Runtime 8.8% 15.2% 22.5% 7.2% 10.1%

VIII. CONCLUSION

We have proposed a method for the automatic decomposition
of a team of agents and a formal specification into a set of

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

(a)

(b)
Fig. 5: (a) Run time with and without decomposition. Each
point is an identical problem instance. Points below the
diagonal indicate that the problem was solved faster with
decomposition than without decomposition. (b) Run time
compared to MILP size. Decomposition reduces variance in
run time while reducing MILP size. Purple circle highlights
the data for 50 agents without decomposition and the brown
circle highlights the data for 50 agents with decomposition.

TABLE IV: Statistics for decomposition by numbers of agents.
Number of subteams and subteam size are means.

Env. Subteam SMT
Agents Size Subteams Size Timeout UNSAT

10 5×5 5.18 3.15 0 9
20 5×5 5.40 5.33 0 6
30 6×6 5.90 5.50 1 0
40 7×7 6.00 6.67 0 0
50 8×8 5.90 9.17 1 0

subteams and sub-specifications using SMT. The decomposed
problem can be solved in a distributed manner. This method
significantly reduces the run time over a centralized approach. It
represents a promising first step towards speeding up planning
for large heterogeneous teams.

There are several directions for future work. For a decom-
position assignment with no feasible MILP solution, it may be
possible to use the IIS (see Remark 4) from the MILP solver
in feedback with the SMT problem to remove any infeasible
conditions. We would also like to investigate a decomposition
that considers robustness. Such a system would likely require
re-allocating agents across subteams as a post-processing step

after solving the MILP. We hypothesize that any reduction in
MILP problem size should improve performance. However,
certain aspects of our problem, like length of subformula, lead
to larger reductions in MILP size. Focusing our decomposition
problem on those aspects in particular may further improve
the performance.

REFERENCES

[1] K. Leahy, Z. Serlin, C.-I. Vasile, A. Schoer, A. M. Jones, R. Tron, and
C. Belta. Scalable and robust algorithms for task-based coordination
from high-level specifications (ScRATCHeS). IEEE Transactions on
Robotics, pages 1–20, 2021.

[2] M. Guo and D. Dimarogonas. Multi-agent plan reconfiguration under
local LTL specifications. The International Journal of Robotics Research,
34(2):218–235, 2015.

[3] Y. Kantaros, M. Guo, and M. Zavlanos. Temporal logic task planning
and intermittent connectivity control of mobile robot networks. IEEE
Transactions on Automatic Control, 64(10):4105–4120, 2019.

[4] Y. Sahin, P. Nilsson, and N. Ozay. Multirobot coordination with counting
temporal logics. IEEE Transactions on Robotics, 2019.

[5] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization:
algorithms and complexity. Dover, 1998.

[6] M. Mukund. From global specifications to distributed implementations.
In Synthesis and control of discrete event systems, pages 19–35. Springer,
2002.

[7] A. Ştefănescu, J. Esparza, and A. Muscholl. Synthesis of distributed
algorithms using asynchronous automata. In International Conference
on Concurrency Theory, pages 27–41. Springer, 2003.

[8] M. Karimadini and H. Lin. Guaranteed global performance through local
coordinations. Automatica, 47(5):890–898, 2011.

[9] Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta. Formal approach
to the deployment of distributed robotic teams. IEEE Transactions on
Robotics, 28(1):158–171, 2012.

[10] P. Schillinger, M. Bürger, and D. Dimarogonas. Decomposition of finite
LTL specifications for efficient multi-agent planning. In Distributed
Autonomous Robotic Systems, pages 253–267. Springer, 2018.

[11] C. Banks, S. Wilson, S. Coogan, and M. Egerstedt. Multi-agent
task allocation using cross-entropy temporal logic optimization. In
International Conference on Robotics and Automation, 2020.

[12] A. Khamis, A. Hussein, and A. Elmogy. Multi-robot task allocation:
A review of the state-of-the-art. In Cooperative Robots and Sensor
Networks 2015, pages 31–51. Springer, 2015.

[13] L. Luo, N. Chakraborty, and K. Sycara. Distributed algorithm design
for multi-robot task assignment with deadlines for tasks. In 2013 IEEE
International Conference on Robotics and Automation, pages 3007–3013.
IEEE, 2013.

[14] N. Michael, M. Zavlanos, V. Kumar, and G. J Pappas. Distributed multi-
robot task assignment and formation control. In 2008 IEEE International
Conference on Robotics and Automation, pages 128–133. IEEE, 2008.

[15] C. Barrett and C. Tinelli. Satisfiability modulo theories. In Handbook of
Model Checking, pages 305–343. Springer, 2018.

[16] O. Maler and D. Nickovic. Monitoring temporal properties of continuous
signals. In Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems, pages 152–166. Springer, 2004.

[17] S. Sadraddini. Formal methods for resilient control. PhD thesis, Boston
University, 2018.

[18] A. Donzé and O. Maler. Robust satisfaction of temporal logic over
real-valued signals. In International Conference on Formal Modeling
and Analysis of Timed Systems, pages 92–106. Springer, 2010.

[19] H. Kress-Gazit, M. Lahijanian, and V. Raman. Synthesis for robots:
Guarantees and feedback for robot behavior. Annual Review of Control,
Robotics, and Autonomous Systems, 2018.

[20] C. Belta, B. Yordanov, and E. Gol. Formal methods for discrete-time
dynamical systems, volume 89. Springer, 2017.

[21] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 337–340. Springer, 2008.

[22] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021.

