
984 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Learning an Explainable Trajectory Generator Using
the Automaton Generative Network (AGN)

Xiao Li , Guy Rosman , Igor Gilitschenski , Member, IEEE, Brandon Araki , Cristian-Ioan Vasile ,
Sertac Karaman , Member, IEEE, and Daniela Rus , Fellow, IEEE

Abstract—Symbolic reasoning is a key component for enabling
practical use of data-driven planners in autonomous driving. In
that context, deterministic finite state automata (DFA) are of-
ten used to formalize the underlying high-level decision-making
process. Manual design of an effective DFA can be tedious. In
combination with deep learning pipelines, DFA can serve as an
effective representation to learn and process complex behavioral
patterns. The goal of this work is to leverage that potential. We
propose the automaton generative network (AGN), a differentiable
representation of DFAs. The resulting neural network module can
be used standalone or as an embedded component within a larger
architecture. In evaluations on deep learning based autonomous
vehicle planning tasks, we demonstrate that incorporating AGN
improves the explainability, sample efficiency, and generalizability
of the model.

Index Terms—Learning automata, robot learning, autonomous
systems.

I. INTRODUCTION

W ITH a growing fleet of sensor-equipped vehicles on the
road constantly collecting driving data, developing data-

driven trajectory planners for autonomous driving applications is
becoming increasingly attractive. Data-driven planners have the
potential to learn complex interactive maneuvers that can oth-
erwise be difficult to model. However, policy learning methods
usually require extensive exploration. This is usually infeasible
for safety-critical applications such as safe-driving. It can also
be difficult to develop a single objective that fully describes
the desired behavior. Therefore, developing task-oriented model
structures capable of efficient learning from static datasets can

Manuscript received September 9, 2021; accepted November 22, 2021. Date
of publication December 16, 2021; date of current version December 28, 2021.
This letter was recommended for publication by Associate Editor Aleksandra
Faust and Editor Hanna Kurniawati upon evaluation of the reviewers’ comments.
This work was supported by the Toyota Research Institute.

Xiao Li, Brandon Araki, and Daniela Rus are with the Computer Sci-
ence and Artificial Intelligence Lab, Massachusetts Institute of Technology,
Cambridge, MA 02139 USA (e-mail: xiaoli@mit.edu; araki@csail.mit.edu;
rus@csail.mit.edu).

Sertac Karaman is with the Laboratory for Information and Decision Sys-
tems, Massachusetts Institute of Technology, Cambridge, MA USA (e-mail:
sertac@mit.edu).

Guy Rosman is with the Toyota Research Institute, Cambridge, MA 02139
USA (e-mail: rosman@csail.mit.edu).

Igor Gilitschenski is with the Toyota Research Institute, Cambridge 02139
USA, and also with the Department of Computer Science, University of Toronto,
Toronto, ON M5T 3A1, Canada (e-mail: gilitschenski@cs.toronto.edu).

Cristian-Ioan Vasile is with the Department of Mechanical Engineering
and Mechanics, Lehigh University, Bethlehem, PA 18015 USA (e-mail:
cvasile@lehigh.edu).

Digital Object Identifier 10.1109/LRA.2021.3135940

Fig. 1. The motivation of AGN is to develop a differentiable architecture that
encodes an explainable structure that can be learned from data. In this example,
we want the trajectory generator to not only output the correct behavior but also
exhibit an internal structure that is analyzable.

significantly enhance the practicality and performance of data-
driven planners.

In order to deploy a data-driven planner on a vehicle, we need
to be able to understand its decision-making process. Current
state-of-the-art data-driven planners based on deep neural net-
works are expressive and versatile in the behaviors they exhibit,
but their blackbox nature prevents effective analysis of their
inner workings.

Although we emphasize the potential of learning from data,
we also wish to take advantage of the wealth of human knowl-
edge that we have defined for and accumulated from driving.
Therefore, we need a structured and expressive means of incor-
porating prior knowledge into our learning agent such that it
does not need to start from scratch.

Our goal is to leverage the deterministic finite state automata
(graphical transition models similar to a state machine) and de-
velop a differentiable architecture that is able to extract explain-
able structures from data. In this work, explainability refers to
the network having an interpretable structure which activations
have a clear correspondence to physical world behaviors. A
high-level schematic of such an architecture is shown in Fig. 1.

2377-3766 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 16,2022 at 19:30:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2565-9883
https://orcid.org/0000-0002-9334-1706
https://orcid.org/0000-0001-6426-365X
https://orcid.org/0000-0002-3094-1587
https://orcid.org/0000-0002-1132-1462
https://orcid.org/0000-0002-2225-7275
https://orcid.org/0000-0001-5473-3566
mailto:xiaoli@mit.edu
mailto:araki@csail.mit.edu
mailto:rus@csail.mit.edu
mailto:sertac@mit.edu
mailto:rosman@csail.mit.edu
mailto:gilitschenski@cs.toronto.edu
mailto:cvasile@lehigh.edu

LI et al.: LEARNING AN EXPLAINABLE TRAJECTORY GENERATOR USING THE AUTOMATON GENERATIVE NETWORK (AGN) 985

In this example, we wish to generate a trajectory for a vehicle
approaching a stop sign. The desired behavior can of course
be generated using a fully connected network. Our method in
comparison encodes an interpretable and differentiable repre-
sentation of an automaton and can be used as a component of
a larger architecture. In this paper, we evaluate our method on
autonomous driving tasks. The method is equally applicable to
other robotic tasks where a high-level behavior policy is needed.

To summarize our contributions, we
1) propose the automaton generative network (AGN), which

encodes the definition of an automaton and allows for
learning a high-level planner from driving data;

2) show that by incorporating AGN in existing data-driven
trajectory planners we are able achieve improved explain-
ability, sample efficiency, and generalization;

3) evaluate AGN on a simulated driving environment as well
as a real-world driving dataset.

In the remainder of this paper, we refer to the vehicle con-
trolled by our planner as the ego vehicle and all others as ado
vehicles.

II. RELATED WORK

We focus on a setting where the agent has access to a dataset
but not a reward function and is not allowed to explore. Learning
a data-driven trajectory planner from datasets without explo-
ration falls largely in the topic of imitation learning (IL)/learning
from demonstrations. Within imitation learning, a branch called
behavior cloning (BC) treats policy learning as a supervised
learning problem that tries to find the correct mapping between
states and actions. Recent work in BC includes [1], [2] where the
authors train a convolutional neural network (CNN) based policy
to generate steering commands which are sent to a model-based
controller. BC does not assume the sequential decision-making
nature of trajectory generation and learns to directly map states
to actions. This can lead to problems such as error compounding,
distribution shift and causal confusion [3]. Authors of [4] provide
a summary of issues associated with BC. As alternatives, the
authors of [5] also use a CNN-based network that takes as input a
bird’s-eye view image but outputs a trajectory instead of a single
action. This trajectory is subsequently corrected using a safety
controller. In [6], the authors use a neural network to imitate
a model predictive controller and devise a batch IL objective
which takes into account the multi-timestep nature of the task.
In [7], the authors use a generative adversarial network (GAN)
to learn high-level intentions in terms of a potential map. The
map is passed into a neural trajectory generator to generate a
continuous trajectory. Our method can be used with existing IL
methods to serve as a differentiable and explainable component
within a policy network. Depending on the data available in
the dataset, we can learn from both action and trajectory data
(existing IL methods often require access to expert actions).
As shown in later sections, a policy integrated with the AGN
achieves improved sample efficiency and generalization.

In terms of learning an explainable/automaton-like structure
within a neural network, the authors of [8] proposed a method

to synthesize a deterministic finite automata (DFA) from a dic-
tionary of a formal language using a neural network. However,
their method suffers from vanishing gradients and does not scale
well with the automaton’s complexity. An in-depth review of
active automata learning is provided in [9], [10]. However, this
body of work assumes a ground truth automaton ready for query
and learns in a discrete state space (in terms of atomic propo-
sitions). The authors of [11], [12] propose methods that learn
automata for use as guidance in a hierarchical reinforcement
learning setting. In their work, the edges of the automata are
labeled by propositions representing sub-goals that constitute
the overall task. The automata can be learned from demon-
strations and serve as either a reward function or a high-level
policy. In [13]–[15], the authors were able to learn a finite state
automaton (FSA) along with an imitative policy using discrete
and continuous demonstration signals. Compared with existing
work in automata learning which primarily focuses on learning
from sequences of propositions (discrete features), our method is
able to learn from continuous state/action trajectories and scales
well with the size of the automaton.

III. BACKGROUND

In this section, we briefly introduce the deterministic finite
state automata (DFA) that serve as a basis for our work. For a
detailed exposition, please refer to [16], [17].

Deterministic Finite State Automaton (DFA): The formal
definition of DFA is

Definition 1: A deterministic finite state automaton is a tuple
A = (Q, qinit,Σ, δ, F), where:
� Q is a finite set of states;
� qinit ∈ Q is the initial state;
� Σ is the input alphabet;
� δ : Q× Σ→ Q is the transition function;
� F ⊆ Q is the set of accepting states.
A trajectory of A q0q1 . . . qN is generated by a finite se-

quence of symbols (word) σ = σ0σ1 . . . σN−1, σk ∈ Σ, where
q0 = qinit and qk+1 = δ(qk, σk) for all k ≥ 0. Given a set of
propositions (variables with binary values)Π, the input alphabet
is constructed from the powerset of Π (i.e. Σ = 2Π). A finite
input word σ over Σ is said to be accepted by A if σ generates
a trajectory q of A such that the terminal state is accepting,
i.e., qN ∈ F . The set of input symbols g(q, q′) ⊆ Σ of all tran-
sitions between states q, q′ is the guard of the transition, i.e.,
g(q, q′) = {σ | q′ = δ(q, σ)}.In the remainder of this work, we
will also use the Boolean operators ∧ (and), ∨ (or) and ¬ (not).

Example 1: Consider the scenario in Fig. 2(a), where our
vehicle is approaching an unprotected intersection. Taking an
excerpt from the California driver handbook: “at an intersec-
tion without STOP or YIELD signs, yield to traffic already in
the intersection”. First, we define four propositions Π: { cii -
whether there is a car in the intersection, cs - whether that car
has stopped (sometimes vehicles in the intersection may stop for
our vehicle),F (faster) - our vehicle speeding up,S (slower) - our
vehicle slowing down }. The input alphabet is Σ = {cii ∧ cs ∧
F ∧ S,¬cii ∧ cs ∧ F ∧ S, . . .,¬cii ∧ ¬cs ∧ ¬F ∧ ¬S} which

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 16,2022 at 19:30:42 UTC from IEEE Xplore. Restrictions apply.

986 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Fig. 2. A simulated environment. (a) Our vehicle is navigating through an
unprotected intersection whose high-level policy associated DFA is shown in
(b).

contains all possible combinations of the propositions (the num-
ber of elements in |Σ| = 24). The DFA depicted in Fig. 2(b)
represents a high-level policy that describes the aforementioned
traffic rule.

IV. AUTOMATON GENERATIVE NETWORK (AGN)

The DFA introduced in Section III is constructed using propo-
sitions (binary variables) which is difficult to use in a gradient-
based optimization problem. In this section, we introduce the
AGN that encodes the definition of a DFA into a differentiable
structure whose transition function (edges and guards) can be
learned. The number of nodes is preset and is a hyperparameter.

A. Predicate DFA (Ap)

The DFA in Definition 1 operates over sets of atomic propo-
sition that take binary values. To enable the AGN to learn from
continuous data, we modify the DFA definitions. Instead of
propositions, we use predicates of the form p(s) : fp(s) < c,
where s is a continuous state, c is a constant, and fp is a
real-valued function over s. In Example 1, the predicate for cs
is defined as |v| < ε, where the state s = v is the velocity and
ε is a threshold. The predicate is true iff c− fp(s) > 0 (similar
to the robustness degree in Signal Temporal Logic (STL) [18]).

To allow a DFA to transition on continuous system states
(e.g., vehicle position, velocity), we need to modify its transition
function δ. In the original definition, a transition between two au-
tomaton states occur if the formula guarding their edge evaluates
to true. For example, in Fig. 2(b), q0 transitions to q1 if¬cii ∨ cs
evaluates to true. Since we wish to work with predicates instead
of propositions, we redefine the guards as predicate Boolean
formulas, i.e., predicates connected by Boolean operators. We
denote the predicate Boolean guard formula governing the tran-
sition from qi to qj by b(qi, qj).

Again taking inspiration from STL, we define the robustness
of a predicate guard. Given two predicates p1(s) : fp1(s) < c1
and p2(s) : f

p2(s) < c2, the robustness degree of predicate
guards is defined recursively as

r(s, p) = c− fp(s)

r(s,¬p) = −r(s, p(s))

r (s, p1 ∧ p2) = min(r(s, p1), r(s, p2))

r (s, p1 ∨ p2) = max(r(s, p1), r(s, p2)). (1)

A predicate guard is true at state s iff its robustness degree is
greater than zero at s. We define the predicate transition function
δp such that qi transitions to qj at s iff r(s, b(qi, qj)) > 0. We
refer to the DFA defined over predicates with transition function
δp as the predicate DFA Ap.

B. Constructing an AGN

To construct a differentiable representation of the predicate
DFA, we first describe the representation of a predicate DFA.
Given a set of predicates P = {pi | i ∈ [0, n)}, we construct the
alphabet of the automaton as the powerset of P , i.e. Σ = 2P .
Each symbol σ ∈ Σ is a conjunctive predicate Boolean for-
mula over the predicates in P . Let L : Q× Σ×Q→ {0, 1}
be a labeling function with L(qi, σk, qj) = 1 indicating that σk

constitutes as a component guarding the transition from qi to qj .
The guard of (qi, qj) in Boolean formula form is

b(qi, qj) =
∨

k∈[0,n)
L(qi, σk, qj)σk. (2)

Here the multiplication between an integer and formula σ is
loosely defined such that 1 · σ represents existence and 0 · σ
represents absence in b(qi, qj).

Example 2: Fig. 3 illustrates the automaton construction
process with the predicate set P = {cii, cs}. The alphabet is
Σ = {cii ∧ ¬cs, cii ∧ cs,¬cii ∧ cs,¬cii ∧ ¬cs} that contains
all possible combinations of cii and cs and their negations. For
each σ ∈ Σ, we construct a sub-automaton that contains edges
that only σ has influence on. The final automaton is obtained by
applying Equation (2) to all edges among the sub-automata. Note
that in Fig. 3, the entries in the matrices represent the labeling
function L, where column and row indices represent source and
target automaton states, respectively. They can be interpreted as
transition matrices. Also, for all edges with target state q1, we
have ¬cii ∨ cs = (cii ∧ cs) ∨ (¬cii ∧ cs) ∨ (¬cii ∧ ¬cs) as a
shorthand.

As described in the previous section, transition between nodes
qi and qj withinAp is governed by the robustness r(s, b(qi, qj)).
Plugging Equation (2) into the robustness definition in Equa-
tion (1) results in

r(s, b(qi, qj)) = max
k∈[0,n)

L(qi, σk, qj)r(s, σk) (3)

With the above insights, we proceed to introducing the AGN.
Given the set of predicates P and the number of automaton
nodes N , we represent the current automaton state qt ∈ IRN as
an N -vector with each entry corresponding to the probability of
being in qi. We construct the alphabet vector vΣ with elements
vσ = r(s, σ), σ ∈ Σ, where r is the robustness degree from
Equation (1). Define

WΣ = sigmoid(W L) (4)

where W L is a matrix of size |Σ| ×N ×N that contains
learnable weights. |Σ| is the cardinality of set Σ. An element
wσ

k,i,j of WΣ determines how strong an influence σk has on the

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 16,2022 at 19:30:42 UTC from IEEE Xplore. Restrictions apply.

LI et al.: LEARNING AN EXPLAINABLE TRAJECTORY GENERATOR USING THE AUTOMATON GENERATIVE NETWORK (AGN) 987

Fig. 3. An example construction of DFA from alphabet sub-automata. Here we have a predicate set P = {cii, cs}. The alphabet is Σ = {cii ∧ ¬cs, cii ∧
cs,¬cii ∧ cs,¬cii ∧ ¬cs} that contains all possible combinations of cii and cs. For each σ ∈ Σ, we can construct a sub-automaton that contains edges that only σ
has influence on. The final automaton is obtained by applying Equation (2) to all edges among the sub-automata. Note that in Fig. 3, the entries in the matrices take
values of the labeling function L, where column indices represent source nodes and row indices represent target nodes (can be interpreted as adjacency matrices).

Fig. 4. An example reconstruction of a Ap. (a) Learned weights WΣ for an
AGN of two predicates σ1, σ2 and 2 nodes. (b) The reconstructed Ap with the
inequality expressions on each edge constructed from WΣ using Equation (5).
To recover the predicate guards, we need to set a threshold η, where σk exists on
edge (qi, qj) if wΣ

k,i,j > η. The predicate Boolean formula in square brackets
are obtain with η = 0.15.

transition from qi to qj . Define an N ×N robustness matrix R
such that each element rij ∈ R is calculated from

rij = max
k∈[0,n)

wσ
k,i,jv

σ
k = max

k∈[0,n)
wσ

k,i,jr(s, σk) (5)

(5) is a scaled version of (3). To obtain the edges that are activated
with robustnesses greater than zero, we apply a ReLU activation
of R. Finally, transition from qt to qt+1 is achieved by

qt+1 = softmax (ReLU(R) · qt) . (6)

In order for AGN to have well defined gradients, all max(·)
functions in the equations above are replaced with softmax(·).
Given the vector vΣ as input, AGN functions like a transition
system (state machine), and can be trained recurrently similar
to a recurrent neural network.

Fig. 5 shows a schematic of the AGN and its use within
a trajectory generator. In this architecture, high level features
such as agent positions, velocities, lane representations, goal
poses, etc., serve as states needed to calculate the vector vΣ

for the AGN. The bird-view image is also passed through a
CNN feature extractor to obtain other relevant feature necessary
for effective trajectory generation. The AGN output (i.e., the
automaton state distribution) along with the bird-view features

are passed into a trajectory generation module to generate the
output trajectory. The user is free to choose/design the trajectory
generation module, which can be as simple as an LSTM or
more complex architectures (our choice is an LSTM). The AGN
decoder is used and trained recursively similar to a recurrent
network.

Algorithm 1 describes the process of learning an AGN tra-
jectory generator. On line 2, θAGN = W L. The samples on line
5 consists of x0 - inputs at the current timestep (i.e. bird-view
image, agent poses, velocities, etc); y0 - ego vehicle’s current
positions; y1:T - ego vehicle’s target future trajectory.

C. The Predicate DFA Corresponding to a Learned AGN

Having learned the matrix WΣ, we can reconstruct its cor-
responding Ap. Fig. 4(a) shows a simple example WΣ ma-
trix and Fig. 4(b) shows the reconstructed Ap. The inequality
expression on each edge governs the corresponding transition
and is constructed from WΣ using Equation (5). To compute
the predicate guards, we need to set a threshold η, where σk

exists on edge (qi, qj) if wΣ
k,i,j > η. In Fig. 4(b), the predicate

Boolean formula in square brackets are obtain with η = 0.15.
If the dataset contains only positive examples (expert data), we
recover the accepting automaton states by simply computing the
DFA state trajectory q0, . . ., qn corresponding to each trajectory
in the dataset, and setting qn as an accepting state (Definition 1).

This is under the assumption that all trajectories in the dataset
are accepted by the automaton. In its current state, AGN does
not explicitly use accepting states to affect the model’s behavior.

V. EXPERIMENTS

Simulated Intersection. We use the Highway Environ-
ment [19] as the simulator to construct a synthetic dataset.
The environment is depicted in Fig. 2 and the task is to safely
navigate the ego vehicle through the intersection as described
in Example 1. When constructing the dataset, the ego vehicle
is controlled using the ground truth automaton in Fig. 2(b) to
output a longitudinal velocity which is passed to a low-level
controller that governs the motion of the ego vehicle. The goal
of this environment is to test whether we are able to learn the
ground truth automaton from the synthetic dataset and to study
the characteristics of the learned automaton.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 16,2022 at 19:30:42 UTC from IEEE Xplore. Restrictions apply.

988 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Fig. 5. An example architecture that shows the AGN (in dashed box) and its use within a trajectory generator. In this architecture, high level features such as agent
positions, velocities, lane representations, etc., are extracted from a bird-view image and serve as states needed to calculate the alphabet robustness vector vΣ for
the AGN. The bird-view image is also passed through a CNN feature extractor to obtain other relevant features necessary for effective trajectory generation. The
AGN output (i.e., the automaton state distribution) along with the bird-view features are passed into a trajectory generation module to generate the output trajectory.
The user is free to choose/design the trajectory generation module, which can be as simple as an LSTM or more complex architectures. The AGN decoder is used
and trained recursively similar to a recurrent network.

Algorithm 1: Learning an AGN Trajectory Generator.
1: Inputs: number of AGN nodes N ; the set of

predicates P ; dataset X; number of iterations I; future
trajectory length T ; trajectory generator module TG;
learning rate α

2: θAGN ← InitializeAGN(N) � using (4)-(5)
3: θTG ← θTG

0 � initialize trajectory generator module
4: for i=0 ...I-1 do
5: Sample a minibatch of m data samples

(x0,y0),y1:T � 0 is the current time-step
6: ŷ ← [y0] � initialize generated trajectory with y0

7: f = FeatureExtractor(x0)
8: for t=0 ...T-1 do
9: vΣ

t = AlphabetVector(x0, ŷ[t])
10: qt+1 = AGN(qt,v

Σ
t) � (6)

11: ŷt+1 = TrajectoryGenerator(qt+1,f)
12: ŷ.append(qt+1)
13: end for
14: L = MSE(y1:T , ŷ)
15: (θAGN , θTG)← (θAGN , θTG)− α 1

m∇L
16: end for

NuScenes Dataset. We use the NuScenes dataset [20] for
training and evaluation. The dataset contains 1000 scenes of 20 s
each collected in Boston and Singapore. It also includes rich
semantic information including 23 object classes (pedestrian,
vehicle, etc) and HD maps with 11 annotated layers (lanes,
walkways, etc). Since real-world driving dataset can not provide
a ground truth automaton, our goal here is to show that AGN is
capable of learning an explainable representation that can guide
the ego vehicle.

NuScenes Environment .
Method of Evaluation. The first metric we use is the av-

erage displacement error (ADE) - average L2-norm between

the generated trajectories and ground truth trajectories. ADE
measures how well our model is able to generate trajectories that
mimic those from the human demonstrators in the dataset. Our
second metric is the minimum distance to other agents along the
generated trajectory (also referred to as safety distance). This
measures how well our planner has learned to avoid collisions.
Our third metric is the goal distance, which calculates how close
the planned trajectory is able to reach its goal. Goals are defined
by the end positions of vehicles in the dataset.

Comparison Cases. For the NuScenes experiments, we use 4
different settings - NO AGN: this corresponds to the architecture
in Fig. 5 without the AGN module; AGN - this is nominal setting
in Fig. 5; MTP - this is the architecture proposed in [21]; Cover-
net - this is the architecture proposed in [22]. We reference [20]
for the implementations of MTP and Covernet.

Results And Discussion.
Simulated Intersection . The simulated intersection environ-

ment serves to evaluate the automaton recovery capability and
explainability of AGN. Recall that Fig. 2(b) shows the ground
truth automaton used to generate the synthetic dataset. Fig. 6(a)
shows the learned automaton (recovered from AGN using the
method described in Section IV-C) as a function of learning
epoch. The thickness of the edges corresponds to the strength
of connection. We can observe that at epoch 0 the AGN is
randomly initialized with all edges having similar presence. As
learning progresses, the edges to and from q0 weakens while
those that transition between q1 and q2 (and their self-loops)
strengthens. At epoch 100, q0 becomes a transitional initial
state and most transitions stay within q1 and q2. Even though
weakened, the transitions to q0 do not disappear (unlike the
ground truth automaton) because their corresponding weights
are nonzero. This result shows that instead of exactly recovering
the ground truth automaton, AGN is able to extract its important
functional component.

Fig. 6(b) shows an execution trace of a intersection left turn.
Recall that the q state in the AGN is a 3-vector representing the

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 16,2022 at 19:30:42 UTC from IEEE Xplore. Restrictions apply.

LI et al.: LEARNING AN EXPLAINABLE TRAJECTORY GENERATOR USING THE AUTOMATON GENERATIVE NETWORK (AGN) 989

Fig. 6. Example Execution trace for the simulated intersection environment. (a) The evolution of the learned automaton during training. The automaton starts
out uniformly connected. As training progresses, the transitions between q1 and q2 are strengthened whereas the transitions to and from q0 are weakened. This
shows that q1 and q2 learns to be dominant modes of navigation and q0 is transitional. (b) An example rollout that shows trajectories generated under different
distributions of q.

Fig. 7. A study of learned AGN modes. Plotting the ego vehicle’s velocities
against corresponding q states confirms that AGN learns 2 control modes on q1
and q2. The velocities on q0 are values at initialization.

probability of being in each state. In the automaton shown on the
lower left corner, darker node corresponds to higher probability.
q is initialized at [1,0,0]. It can be observed from the generated
trajectories that q1 serves as a fast moving mode and q2 as a slow
moving (yielding) mode. q shifts to q1 when the intersection
is clear to navigate and to q2 when there are vehicles in the
intersection. Fig. 7 confirms this finding. In this test, we fix
the q-node values throughout a trial run and record the distri-
bution of output velocities (calculated from finite-differencing
the planned trajectories with dt = 0.5 sec). In Fig. 7(Top), we
show the trajectories generated by q-distributions q = [0, 1, 0]
and q = [0, 0, 1], which exhibit distinguishable fast and slow
moving modes. The x-axis of Fig. 7(Bottom) is obtained by
argmax(q). The velocity distribution of q = 0 corresponds
to the initialization velocities (sampled in the range [5, 10]).
Those of q1 and q2 corresponds to 2 navigation modes with

well-separated velocity distributions. With meaningful modes
of operation learned, AGN allows users to interpret its decision
making process and also the conditions that trigger the change
of modes.

NuScenes. Similar to Fig. 6(b), Fig. 8 shows an execution
trace for the NuScenes environment using the model trained with
AGN. The green vehicle is controlled by our planner, the green
dotted trajectory is the ground truth and the black trajectory is
generated by the learned model. The dot-dash line represents the
desired lane center. In this case, our vehicle is making a right
turn and slowing down as it’s approaching the front vehicle.
The interesting phenomenon to observe from the upper right
automaton is that the q distribution shifts from q0 to q1 as the
vehicle is making the turn and back to q0 as the turn finishes. Also
less mass is placed on q2 as the vehicle is slowing down. Fig. 9
confirms this observation. In this figure, we plot the steering
values (interpolated from trajectory) as a function of time (top)
along with the synchronized q-distribution (bottom). We can see
that when the vehicle is driving straight (steering ∼ 0), most of
the probability mass is aggregated on q0. As turning proceeds,
probability mass shifts from q0 to q1. This set of results show that
AGN learns to map the q-states to meaningful steering modes.

Fig. 10 shows a sample efficiency study where all comparison
cases are trained with 25%, 50%, 75%, 100% of the training
set (full validation set is used for evaluation). From the figure
we can observe the general trend that more training data yields
lower ADE scores (better human similarity). Comparing to the
baseline cases (MTP and CoverNet), AGN and NO AGN
achieves much better ADEs at low percentage training data.
Between the later two, AGN performs on par with NO AGN
in most cases but exhibits a shorter tail (above the upper fence
of the box plots). This shows that adding AGN to the network
helps with stabilizing performance across the validation scenes.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 16,2022 at 19:30:42 UTC from IEEE Xplore. Restrictions apply.

990 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Fig. 8. Execution trace for the NuScenes environment. The green vehicle is the ego, the green dotted trajectory is the ground truth and the black trajectory is
generated by the learned model. The dot-dash line represent the desired lane center. Our vehicle (green) is making a right turn and slowing down as it’s approaching
the front vehicle. The upper right automaton shows that the q distribution shifts from q0 to q1 as the vehicle is making the turn and back to q0 as the turn finishes.
Also less mass is placed on q2 as the vehicle is slowing down.

TABLE I
PERFORMANCE METRIC STATISTICS FOR THE NUSCENES DATASET

Bold Highlights the Desirable Outcome.

Fig. 9. q-distribution study. Steering values (interpolated from trajectory) are
plotted as a function of time (top) along with the synchronized q-distribution
(bottom). The figures show that when driving straight (steering ∼ 0), most of
the probability mass is aggregated on q0. As turning proceeds, probability mass
shifts from q0 to q1.

Table I shows the statistics of the evaluation metrics (trained
on the full training set). In this set of experiments, we trained
AGN with 9 nodes. The bold numbers highlight desirable out-
comes (minimum ADE and goal distance, and maximum safety

Fig. 10. Sample efficiency study. All comparison cases are trained with 25%,
50%, 75%, 100% of the training set (full validation set is used for evaluation).
The figure shows that more training data yields lower ADE scores (better human
similarity). Comparing to the baseline cases (MTP and CoverNet), AGN and
NO AGN achieves better ADE scores at low percentage training data. AGN
shows a shorter tail overall compared to NO AGN which translates to better
robustness and generalization over validation scenes.

distance). Out of all comparisons, AGN is able to achieve the
lowest ADE and goal distance. It doesn’t exhibit the highest
safety distance compared to the baseline methods. This is be-
cause AGN needs to make a trade-off between staying very far
away from neighbor vehicles and reaching the goal while driving
similarly to human demonstrators. In many scenarios achieving
the latter means sacrificing some safety distance.

To study how the performance of AGN scales with the number
of q-nodes, we performed a set of experiments with varying
number of q-nodes (from 3 - 45) and plot their performance
distributions in Fig. 11. In the figure, we can see that as the
number of q-nodes increase, performance in general improves
(lower ADE and goal distance). Safety distance also decreases
(undesirable) within a reasonable degree as a trade-off. The

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 16,2022 at 19:30:42 UTC from IEEE Xplore. Restrictions apply.

LI et al.: LEARNING AN EXPLAINABLE TRAJECTORY GENERATOR USING THE AUTOMATON GENERATIVE NETWORK (AGN) 991

Fig. 11. Node scale study where a set of experiments with varying numbers of q-nodes (from 3 - 45) are conducted and their performance distributions plotted. As
the number of q-nodes increase, performance in general improves (lower ADE and goal distance). Safety distance also decreases (undesirable) within a reasonable
degree as a trade-off. The improvement in performance is most significant before 9 nodes and the margin diminishes with a larger number of q-nodes.

improvement in performance is most significant before 9 nodes
and the margin diminishes with a larger number of q-nodes. This
shows that AGN is able to distill the important aspects of tra-
jectory planning into a relatively small number of q-nodes. This
is important as the number of q-nodes trades off explainability,
therefore our goal is to accomplish the planning task with the
least number of q-nodes.

VI. CONCLUSION

In this work, we introduce the automaton generative network
(AGN) that encodes the definition of a predicate deterministic
finite state automaton in a differentiable structure. We demon-
strate the use of AGN in learning a trajectory generator for plan-
ning which results in an explainable high-level structure with
distinctive modes of operation. We also show that by bridging
the gap between temporal logic and neural networks, we can
effectively incorporate logical priors at AGN initialization and
as an auxiliary loss. As AGN is a general architecture not limited
to the autonomous driving domain, in future work, we will also
look at its application in manipulation tasks.

REFERENCES

[1] S. Sharma, G. Tewolde, and J. Kwon, “Behavioral cloning for lateral
motion control of autonomous vehicles using deep learning,” in Proc.
IEEE Int. Conf. Electro/Inf. Technol., 2018, pp. 0228–0233.

[2] T. V. Samak, C. V. Samak, and S. Kandhasamy, “Robust behavioral
cloning for autonomous vehicles using end-to-end imitation learning,”
2020, arXiv:2010.04767.

[3] P. D. Haan, D. Jayaraman, and S. Levine, “Causal confusion in imitation
learning,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 11698–11709.

[4] F. Codevilla, E. Santana, A. M. López, and A. Gaidon, “Exploring the lim-
itations of behavior cloning for autonomous driving,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis., 2019, pp. 9328–9337.

[5] J. Chen, B. Yuan, and M. Tomizuka, “Deep imitation learning for au-
tonomous driving in generic urban scenarios with enhanced safety,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2019, pp. 2884–2890.

[6] Y. Pan et al., “Imitation learning for agile autonomous driving,” Int. J.
Robot. Res., vol. 39, pp. 286–302, 2020.

[7] Y. Wang, D. Zhang, J. Wang, Z. Chen, Y. Wang, and R. Xiong, “Imita-
tion learning of hierarchical driving model: From continuous intention
to continuous trajectory,” IEEE Robot. Automat. Lett., vol. 6, no. 2,
pp. 2477–2484, Apr. 2021.

[8] P. Grachev, I. S. Lobanov, I. Smetannikov, and A. Filchenkov, “Neural
network for synthesizing deterministic finite automata,” Procedia Comput.
Sci., vol. 119, pp. 73–82, 2017.

[9] Y. Li, A. Turrini, Y.-F. Chen, and L. Zhang, “Learning Büchi automata
and its applications,” in Proc. 4th Int. School Eng. Trustworthy Softw.
Syst., 2018, pp. 38–98.

[10] W. Cheng, “A quick survey of active automata learning,” 2018. [Online].
Available: https://wcventure.github.io/Active-Automata-Learning

[11] R. T. Icarte, E. Waldie, T. Q. Klassen, R. Valenzano, M. P. Castro,
and S. A. McIlraith, “Learning reward machines for partially observable
reinforcement learning,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 15523–15534.

[12] D. Furelos-Blanco, M. Law, A. Jonsson, K. Broda, and A. Russo, “Induc-
tion and exploitation of subgoal automata for reinforcement learning,” J.
Artif. Intell. Res., pp. 1031–1116, 2021.

[13] B. Araki, K. Vodrahalli, T. Leech, C. Vasile, M. Donahue, and D. Rus,
“Learning to plan with logical automata,” in Proc. Robot.: Sci. Syst.,
2019, doi: 10.15607/RSS.2019.XV.064.

[14] B. Araki, K. Vodrahalli, T. Leech, C.-I. Vasile, M. Donahue, and D.
Rus, “Deep Bayesian nonparametric learning of rules and plans from
demonstrations with a learned automaton prior,” in Proc. AAAI Conf. Artif.
Intell., 2020, pp. 10026–10034.

[15] B. Araki, X. Li, K. Vodrahalli, J. DeCastro, M. J. Fry, and D. Rus, “The
logical options framework,” 2021, arXiv:2102.12571.

[16] C. Baier and J. Katoen, Principles of Model Checking. Cambridge, MA,
USA: MIT Press 2008.

[17] G. D. Giacomo and M. Y. Vardi, “Linear temporal logic and linear dynamic
logic on finite traces,” in Proc. 23rd Int. Joint Conf. Artif. Intell., AAAI
Press, 2013, pp. 854–860.

[18] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-
valued signals,” in Proc. Int. Conf. Formal Model. Anal. Timed Syst., 2010,
pp. 92–106.

[19] E. Leurent, “An environment for autonomous driving decision-making,”
2018. [Online]. Available: https://github.com/eleurent/highway-env

[20] H. Caesar et al., “nuscenes: A multimodal dataset for autonomous driving,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 11621–
11631.

[21] H. Cui et al., “Multimodal trajectory predictions for autonomous driving
using deep convolutional networks,” in Proc. Int. Conf. Robot. Automat.,
2019, pp. 2090–2096.

[22] T. Phan-Minh, E. Grigore, F. Boulton, O. Beijbom, and E. M.
Wolff, “CoverNet: Multimodal behavior prediction using trajectory
sets,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 14062–14071.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 16,2022 at 19:30:42 UTC from IEEE Xplore. Restrictions apply.

https://wcventure.github.io/Active-Automata-Learning
https://github.com/eleurent/highway-env

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

