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Vehicle Trajectory Prediction Using Generative
Adversarial Network With Temporal Logic

Syntax Tree Features
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Sertac Karaman , and Daniela Rus

Abstract—In this work, we propose a novel approach for inte-
grating rules into traffic agent trajectory prediction. Consideration
of rules is important for understanding how people behave—yet, it
cannot be assumed that rules are always followed. To address this
challenge, we evaluate different approaches of integrating rules as
inductive biases into deep learning-based prediction models. We
propose a framework based on generative adversarial networks
that uses tools from formal methods, namely signal temporal logic
and syntax trees. This allows us to leverage information on rule
obedience as features in neural networks and improves prediction
accuracy without biasing towards lawful behavior. We evaluate our
method on a real-world driving dataset and show improvement in
performance over off-the-shelf predictors.

Index Terms—Autonomous-driving, prediction, temporal logic.

I. INTRODUCTION

PRIORS and structure have received increasing attention
as elements of recent successful prediction models [1].

By designing structure/inductive biases into the model, sam-
ple efficiency and explainability of the model can be consid-
erably improved. Useful priors include interaction with road
agents [2]–[4], vehicle dynamics [5] and structure such as
multi-modality [6]–[9]. While rule-based priors such as traffic
rules and driving best practices are commonly incorporated into
ego-vehicle planning, they are much less thoroughly explored
in the prediction literature.

Vigorous definition of complex rules can be difficult. While
some rules are simple (e.g., “don’t hit the car in front of you,”
“don’t cut in recklessly” [10]), traffic rules in general are more
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Fig. 1. Typical Rule Violation. While the rule “slow down when approaching
pedestrian crossings” is usually satisfied (a), its violation (b) is still common.
In this example, from the NuScenes dataset [13], the vehicle to be predicted
is highlighted in green. The black dotted trajectory shows their ground-truth
trajectory. The red patches represent stop areas (stop sign, pedestrian crosswalk,
etc).

involved. For example, the 2020 Illinois rules of the road [11]
describes a flagger sign as a warning for drivers that a flagger
is ahead. It mandates that a driver should use caution when
approaching a flagger as the individual will be working close
to traffic. It also requires that the driver should slow down
and be prepared to obey the signals of the flagger including
being prepared to stop if signaled to do so. It is here where
compositional formulations of rules, i.e. the ability to combine
simple individual statements into rich behavioral expressions,
can greatly simplify their definition. Without such a structure,
maintaining a large set of rules and have them interact coherently
at scale poses a challenge. We will exploit the structure and
discriminative nature (define what is considered bad driving,
instead of which trajectory should the driver take) of rules in
trajectory prediction.

While traffic rules provide a strong prior on behaviour, they
cannot be used as a hard constraint in prediction approaches
because in certain situations it is common to disobey them. This
is in contrast to planning where it is much more meaningful to
incorporate rules as objectives or constraints. Fig. 1 illustrates
an example where both vehicles to be predicted (in green) are
approaching a pedestrian crossing. Even though it is desirable
to “slow down near pedestrian crossings,” their ground-truth
futures (black dotted trajectory) show that one indeed slows
down (Fig. 1(a)) but the other did not (Fig. 1(b)). This is different
than the situation in planning for the ego-vehicle, where we can
constrain ourselves to trajectories that enforce the satisfaction
of the rules [12].

In this work, we address this problem by using signal tem-
poral logic (STL) [14] as an expressive formalism to encode
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rules. For a given set of STL formulas, a syntax tree of their
conjunction is constructed. This is used to extract features that
represent different stages of rule satisfaction (further discussed
in Section III-A). We observe that judging the usefulness of
rules is similar to a discriminator in a GAN framework as it
relates to how people use rules to reason about the plausibil-
ity of events. Thus, we use a discriminator to incorporate the
extracted rule features into off-the-shelf trajectory predictors to
make them rule-aware. Specifically, our contributions include
(1) introducing features constructed from the sub-formulas of
an STL syntax tree (which we refer to as syntax tree features) as
a means to integrate temporal logic rules into existing trajectory
predictors; (2) evaluation of different approaches to incorporate
rules in a GAN-like prediction model. Specifically, we look at
STL as a set of discriminator features as well as a generator
auxiliary loss; (3) evaluating our architecture on a real world
driving dataset.

II. RELATED WORK

Our work relates to several active topics of research. Recent
advances in vehicle trajectory prediction have explored the
representation of multi-agent interactions [2]–[4], [15]–[17], un-
certainty representation [2], [5], [9], [15], and different modality
representations [16], [18]

Utilizing rules to constrain motion of dynamic systems is
more commonly seen in trajectory planning of the ego vehicle.
Recent work that use temporal logic to learn control policies
in an RL setting include [19]–[21] whereas the authors of [22]
use a differentiable linear temporal logic (LTL) loss in to learn
policies from demonstrations. In [23], the authors transformed
the syntax tree of an STL formula into a computation graph
that can be integrated into existing deep architectures which
we have adopted in this work. The authors of [24] introduce the
RuleBook as a pre-ordered set of rules designed to help maintain
traffic rules and driving heuristics in a explainable and prioritized
manner. In [25], the authors use LTL to integrate rules of the road
into route and trajectory planning. The authors of [26] use STL
to specify safety contracts for evaluation of self-driving systems.
In the more general context of planning, inference of active
constraints can serve as a basis for more efficient learning from
demonstration [27]. In prediction, rules are more commonly
incorporated as feature maps [28] and cost-maps [29]. However,
it is difficult to control the level of rule enforcement in the feature
map approaches as it is determined by the features the network
has extracted. The costmap approach utilizes a MPC (model
predictive control)-like optimization rollout to enforce the costs
onto the predictions. Multiple costmaps are combined using a
weighted sum. The weights can have a significant impact on
the meaning of the rules and hence the predictor’s performance.
Weight tuning can be difficult when the number of costmaps
scales. In comparison, the STL rules we use follow a set of
rigorous syntax and semantics. Our method uses the syntax
tree of STL formulas to compute feature vectors that encode
explicitly the satisfaction level at different stages of the rules
at different time-steps. We introduce tree-level and node-level
dropouts to control the influence of the rules on the predictions.
We are able to make the prediction model rule-aware without ex-
plicitly enforcing predictions to follow the rules (which in certain
cases will neglect rule-violating behaviors of road agents). The
structure our method improves the predictor’s explainability (by

monitoring the satisfaction of the sub-formulas of the syntax tree
with respect to the predicted trajectories).

III. BACKGROUND

A. Signal Temporal Logic (STL)

STL offers a formalism for expressing and reasoning about
rules for cars to follow. Properties expressed in STL capture
rich car behaviors with timing constraints. The syntax of STL
formulas isφ ::= p(s) > 0 | ¬φ | φ ∨ φ | FIφ, where I ⊂ IR≥0
is a bounded time interval, p(s) > 0 (p : IRn → IR) is a pred-
icate over state s ∈ S ⊆ IRn, ¬ (not) and ∧ (and) are Boolean
operators, and F is the eventually operator. It can also involve
other Boolean operators (e.g.,∨,⇒) and the always operator GI
which are defined in the usual way [14].

Let st0:t1 = (st0 , . . ., st1) denote the discrete-time trajectory
from t0 to t1. The finite-horizon trajectory st0:t1 satisfies φ,
denoted by st0:t1 |= φ, if

st0:t1 |= (p(s) > 0) ⇔ p (st0) > 0

st0:t1 |= ¬φ ⇔ ¬(st0:t1 |= φ)

st0:t1 |= φ1 ∧ φ2 ⇔ (st0:t1 |= φ1) ∧ (st0:t1 |= φ2)

st0:t1 |= FIφ ⇔ ∃t′ ∈ t0 + I, t′ < t1, st′:t1 |= φ

For example, STL formula φex = G[t1,t2](u > ε1) ∧
F[t3,t4](v < ε2) means that “ut > ε1 is true for all of t ∈ [t1, t2]
and vt < ε2 holds for at least one of t ∈ [t3, t4]”.

STL admits quantitative semantics called robustness that
assigns degrees (real numbers) of satisfaction or violation to
trajectories with respect to formulas. It is defined by

r(st0:t1 , p(s) > 0) = p (st0)

r(st0:t1 ,¬φ) = −r(st0:t1 , φ)
r (st0:t1 , φ1 ∧ φ2) = min(r(st0:t1 , φ1), r(st0:t1 , φ2))

r (st0:t1 ,FIφ) = max
t′∈(t0+I)∩[t0,t1)

r (st′:t1 , φ) (1)

where max over an empty set is −∞.
A robustness greater than zero signifies that the tra-

jectory satisfies the given formula, i.e. r(st0,t1 , φ) > 0⇒
st0,t1 |= φ. Negative robustness implies violation of the
formula. We define the robustness trace as r̃(st0:t1 , φ) =
[r(st0:t1 , φ), r(st0+1:t1 , φ), . . ., r(st1−1:t1 , φ)].

For any STL formula φ, there is an abstract syntax tree Tφ =
{Nφ, Eφ}, where intermediate nodes N φ correspond to Boolean
and temporal operators, leaf nodes correspond to predicates, and
edges Eφ connect operators to their operands. We identify a node
n ∈ Nφ with the associated sub-formula φn as shown in Fig. 2
(solid arrows) for formula φex.

The robustness (1) can be computed by traversing the syntax
tree. As noted in [30], the recursive computation can be thought
of as a computation graph from predicate states to the root node.
Fig. 2 shows the edges of the computation graph as dash arrows,
and input nodes in blue. We take advantage of this computation
graph to construct features for our prediction models.

B. Generative Adversarial Network (GAN)

A Generative Adversarial Network consists of two neural
networks trained adversarially to each other [31]. A generative
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Fig. 2. Syntax tree for STL formula G[t1,t2](u > ε1) ∧ F[t3,t4](v < ε2)

which denotes “ut > ε1 is true for all of t ∈ [t1, t2] and vt < ε2 holds for at
least one of t ∈ [t3, t4]”. Blue indicates input nodes.

model G that takes in a source distribution and outputs samples
of the target distribution, and a discriminative modelD that takes
in a sample and estimates the probability that it comes from
the target distribution (as oppose to being constructed by the
generator). The generator takes a latent variable z as input (often
from a well-known distribution such as uniform or Gaussian
distribution), and outputs sample s = G(z). The discriminator
D takes in a sample s and outputs D(s) which represents the
probability that it is from the target distribution. The training
process mimics a two-player min-max game with the objective
function:

minG maxD L(G,D)
= Es∼pdata (s)[logD(s)] + Ez∼p(z)

[log(1−D(G(z)))]. (2)

GANs can used for conditional models by providing both the
generator and discriminator with additional input X , yielding
G(X , z) and D(X , s) [2].

IV. STL-GAN

Let X be the input features (semantic maps, state vectors,
etc) to a given prediction model, s0:T be the ground truth future
trajectory of the agent to be predicted (s here is the 2D coordinate
and steering, T is the prediction horizon). Denote s̃0:T and ã0:T
to be the predicted trajectory and controls generated by the
model. We state the prediction problem as: given X generate
samples from the distribution P (s0:T |X ) - the distribution over
trajectory s0:T given input features X .

Let us look at an STL formula φ and s0:T |= φ describing
whether the trajectory obeys the driving rules. We also consider
the sub-formulas of φ given by its syntax tree. While computing
φ does not generate new information, φ is an informative and
compact representation for many of the samples in the dataset.
This poses the question: “what is a good way to leverage φ
as a representation, so that we may capture P (s0:T |X ) more
accurately?”

In this section, we introduce two approaches of integrating
STL rules into trajectory prediction models. Fig. 3 illustrates
our proposed architecture which consists of 3 components —
a generator, a discriminator and a set of syntax tree features.
Each of the components will be discussed in detail in the fol-
lowing sections. It is worth noting that even though our method
is GAN-based, one can replace the base predictor with any
trajectory generator provided that it can be made stochastic
and able to cover the space of trajectories. In our case, we

added a random variable to the input of the base predictor (the
multimodal trajectory predictor [32]) such that samples of the
random variable map to samples of the prediction. Given that
the discriminator serves to incorporate information from the
rules, the generator needs to be trained in conjunction with the
discriminator (can not be pretrained with frozen weights).

Generator: We now describe our generator. We chose a gen-
erator based on dynamics integration rather than direct trajectory
emission similar to [5] as the resulting control signals make it
easier to consistently define rules. Given observation X , noise
feature z drawn from a uniform or normal distribution and a base
predictor BP, a sequence of predicted controls are generated by
ã0:T = BP(X , z).

Here we define controls at time t as ãt = (vt, ωt)where vt, ωt

are the speed and steering rate respectively. The state trajectory
is calculated using the unicycle model

[ẋ, ẏ, ψ̇]� = V(s, a) = [v cos(ψ), v sin(ψ), ω]� . (3)

Let s = (x, y, ψ) be the 2D coordinates and heading respec-
tively. Given the agent’s current state s0 (assumed to be part of
input features X ), controls a0:T and (3), future trajectory can
be calculated by s0:T = Dyn(s0, a0:T ) where st+1 = st +Δt ·
V(st, at), and Δt is the time interval. This way of predicting
first the controls then the state trajectory using a dynamics
model not only allows us to generate dynamically feasible
trajectories, but also gives us access to the controls which will
be useful in defining the STL rules. The generator takes the form
s̃0:T = G(X , z) = Dyn(s0,BP(X , z)).

The generator loss is defined as

LG = E z∼N (0,1)
X∼pdata(X )

[log(1−D(X , G(X , z)))]

+ wMoNLMoN + wBPLBP (4)

where wMoN , wBP are scalar weights, LBP is the loss of the
base predictor, and LMoN is defined as

LMoN = min
k

∥∥s0:T − s̃k0:T∥∥2 . (5)

Here s̃k0:T denotes the kth trajectory sampled from the generator
(by sampling multiple noise terms for a givenX ). Similar to [2],
adding such a loss encourages the generator to produce diverse
samples to increase the chance of covering the ground-truth.

Discriminator. The discriminator takes input X and con-
structs a feature vector fX using a feature extractor (for example
a CNN if X contains images). fX along with the best predicted
trajectory from the generator s̃0:T are passed to an LSTM
encoder (s̃0:T as input, fX used to initialize the hidden state)
to generate feature fenc. fenc can be passed directly to an MLP
to obtain a classification score.

The discriminator loss is defined as

LD = −
[

EX∼pdata(X )
s∼pdata(s)

[logD(X , s)]

E z∼N (0,1)
X∼pdataX

[log(1−D(X , G(X , z)))]
]

(6)

STL Robustness As The Generator’s Auxiliary Loss. We
introduce a simple approach to integrate STL rules with the
generator. We add the weighted absolute value of the robustness
as an additional term to the generator loss in Equation (4). The
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Fig. 3. Architecture for STL-GAN. The generator can be constructed with off-the-shelf trajectory predictors by injecting noise to its inputs. Syntax tree features
are used to enhance the capacity of the discriminator and/or in training costs for the generator.

new loss is defined as

L̄G = LG − wr min {0, r((s̃0:T , ã0:T ), φ)} . (7)

Note that here the robustness takes also the controls as input
arguments, this allows us to design rules such “if pedestrian
crossing then slow down”. Minimizing this loss encourages the
generator to output trajectories that comply with φ (robustness
loss is non-zero if the generated trajectory is rule-violating and
zero otherwise). One caveat to this approach is that depending
onwr, the generator can become overly biased towards the rules
and neglect realistic but rule-violating behaviors.

STL Syntax Tree as Discriminator Features. In order to
avoid biasing predicted trajectories into lawful behaviors, and
have the predictor use the rules as cues, we propose an al-
ternative approach. We use the robustness term of all nodes
in the syntax tree as discriminator features. Given a syntax
tree Tφ = {Nφ, Eφ}, for each node sub-formula φn, n ∈ Nφ,
we define a node feature as the robustness trace of that node
sub-formula

fφn
= r̃((s̃0:T , ã0:T ), φn). (8)

In order to encourage the network to leverage each sub-
expression rather than counting on only the most prominent
ones, at training time we apply dropout to the different node
features, as is often done in multimodal network fusion [7]:

fφ = dT · Concat
n∈Nφ

(dn · fφn
), (9)

where dn, dT ∼ Bernoulli(p) are Bernoulli random variables
with probably of 1 beingpn, pT respectively.pn andpT represent
the dropout probabilities for the syntax tree node features and
the entire tree respectively (which determine the probabilities
that dn, dT take values 1 or 0). dn, dT are added during training
and set to 1 during evaluation. fφ is concatenated with fenc and
passed as input to the MLP classifier. Algorithm 1 provides an
overview of our method.

In Algorithm 1, the gradient descent steps (lines 7, 9, 16,
18) can be realized using any stochastic gradient optimizers.

Algorithm 1: STL-GAN.

1: Inputs: STL formula φ; generator G(X , z|θG)
parameterized by θG; discriminator D(X , s0:T |θD)
parameterized by θD; number of iterations N ; learning
rate α; number of sample trajectories to draw from
generator K; syntax tree feature dropout probabilities
pn, pT .

2: Nφ, Eφ ← ConstructSyntaxTree(φ)
3: for i=0 ...N-1
4: Sample minibatch of m noise z = {z0, .., zm−1}

from normal distribution N (0, 1).
5: Sample minibatch of m data samples

X, s0:T = (X 0, . . .,Xm−1), (s00:T , . . ., s
m−1
0:T )

6: if STL generator loss then
7: θG ← θG − α∇θG

1
m

∑m
j L̄G(X j , zj , φ)

8: else
9: θG ← θG − α∇θG

1
m

∑m
j LG(X j , zj)

10: end if
11: sample K ×m noise terms z̄ from N (0, 1)
12: ã0:T , s̃0:T =

GetMoNTrajectory(θG,X, s0:T , z̄)
13: if STL syntax tree features then
14: fφ ← GetFeature(ã0:T , s̃0:T ,Nφ, pn, pT )

15: θD ← θD − α∇θD
1
m

∑m
j LD(X̃ j , sj0:T |fφ)

16: else
17: θD ← θD − α∇θD

1
m

∑m
j LD(X̃ j , sj0:T )

18: end if
19: end for

The function GetMoNTrajectory on line 12 samples K
trajectories from the generator (for each element in the batch)
and returns the prediction closest to the ground truth. In many
GAN related predictors, randomly generated trajectories are fed
to the discriminator. In practice we found that feeding the MoN
trajectory to the discriminator produces better results when the
syntax tree features are used.
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V. EXPERIMENTS

Dataset. We use the NuScenes dataset [13] for training and
evaluation. The dataset contains 1000 scenes of 20 s each col-
lected in Boston and Singapore. It also includes rich semantic
information including 23 object classes (pedestrian, vehicle, etc)
and HD maps with 11 annotated layers (lanes, walkways, etc).
Our goal is to show that using these semantic information we
can define rules that will improve the performance of existing
predictors.

Rules Used. We define the following rule

φ =
(
G[0,T ] Drive near the center lane

)
∧
(
G[0,T ] Stop areas within 10 meters ahead

⇒ Drive slowly) . (10)

Here T is the prediction horizon. φ takes the form of the
conjunction of a set of sub-rules. Each sub-rule is enforced at all
times within the prediction horizon (one can also define rules that
are enforced at specific time intervals). Details of the predicates
in the rule definitions are as follows
� “Drive near the center lane”: denote dist(s̃t, lanet) as the

distance between the predicted trajectory and its closest
point on the center lane at time t. This predicate is defined
as dist(s̃t, lanet) < εlane where εlane is a rule parameter
that can be manually set or tuned during training. In our
experiments, we set εlane = 2 meters.

� “Stop areas within 10 meters ahead”: a stop area is defined
as a stop sign, pedestrian crossing, turning stop or traffic
light (the red regions shown in Fig. 1). Letdist(s0, sstop area)
denote the distance between the agent (at the current ob-
served time) and the closest stop area in front of it. This
predicate is then defined as dist(s0, sstop area) < 10 meters.

� “Drive slowly”: Let ãt = (ṽt, ω̃t) be the predicted control
at time t. This predicate is defined as |ṽt| < εv where εv
is another rule parameter that defines the speed range the
agent should drive within. We set εv = 1 m/s.

It is worth mentioning that within our training set, 80.4% of
the samples are compliant to the rules above (with robustness
greater than zero). 86% of the samples in the validation set are
rule-compliant. Therefore, the proposed predictor needs to learn
and be rule-aware but not blindly follow the rules in order to be
effective.

Implementation Details. We use the multi-modal trajectory
predictor (MTP) [33] with the MobileNet-V2 backbone [34]
(implemented in [13]) as the base predictor. We modify this
predictor to take in a noise term (drawn from a normal distri-
bution) of dimension 8 as an additional input feature. Doing so
transforms MTP into a generator that we can incorporate in our
GAN structure. For each input feature, we sample 3 trajectories
from the generator and the trajectory with minimum average
displacement error is fed to the discriminator.

We train and test with an observation history of 2 seconds
and prediction horizon of 6 seconds with a frequency of 2 hz.
We use a train batch size of 32 and accumulate gradient for 3
batches. we train for a total of 20 epochs on a cluster using 4
NVidia Tesla V100 GPUs.

Method of Evaluation. As performance metrics, we use
the average displacement error (ADE) - average L2-norm be-
tween prediction and ground truth trajectories; final displace-
ment error (FDE) - L2-norm between the final prediction and
ground truth poses; max distance (MaxDist) - max L2-norm

between prediction and ground truth as performance metrics.
For each set of input features, we use the generator to sam-
ple 3 trajectories and the minimum of the above metrics are
reported. All metrics are in meters. We use a training set of
around 20000 trajectories and a validation set of around 4000
trajectories.

Results And Discussion. We use four training configura-
tions for comparison. Base indicates training with only the
generator and discriminator, no rules are included and the
base predictor outputs directly state trajectory (no dynamics);
BaseDyn is Base with dynamics (which is the generator ar-
chitecture shown in Fig. 3); GLoss indicates using the rules
as a generator auxiliary loss (7); DFeature indicates using
the syntax tree as discriminator features. Note that except
for Base, all other configurations use dynamics (the rules
require controls as part of their definition). In addition, we
have also implemented the policy anticipation network (PAN)
in [29]. In PAN, we designed 2 costmaps corresponding to
“drive near the center lane” and “slow down near stop areas.”
We have also included an integrator kinematics in the cost
function.

Fig. 4 shows the metric histograms for the trained predictors
evaluated on the validation set. We also provide their statistics
in Table I. From this set of results, we can see that between rules
(GLoss and DFeature) and no-rules (Base and BaseDyn), adding
rules can considerably reduce the long-tail error (especially in
max-FDE and max-MaxDist). However, GLoss suffers from
over-correction in the low-error regions as shown by its high
min-ADE and min-FDE (recall that not all the samples in the
data are rule-compliant). This over-correction phenomenon also
slightly affects DFeature compared to the methods without rules.
Using rules as discriminator features provide the predictor with
a set of helpful priors but does not blindly encourage it to follow
the rules in generating predictions. This can be supported by the
low mean-ADE, max-ADE, mean-FDE, max-FDE of DFeature
compared to Base and BaseDyn. It is also noticeable that the
min-ADE/FDE/MaxDist of DFeature are slightly higher than
other methods. This is also due to the fact that the rules encourage
the generator to produce rule-compliant predictions whereas
some of the ground-truths are rule-violating. Such an effect
exists with both GLoss and DFeature but is stronger with GLoss.
Therefore, GLoss is more suitable for rules that are rarely broken
(such as “always drive on a drive-way”) where DFeature should
be used with rules that are more frequently broken (such as
“always drive below the speed limit”). PAN performed worst
of all the comparison cases. The main reason is that PAN’s
encoder module relies only on the pose and velocity history to
predict a behavior without considering other agents or the map
which limits it’s ability to make accurate prediction. PAN is also
sensitive to how the costmaps are scaled when combined into a
single cost function.

As a crude estimate of the spread of the trajectory distribu-
tions, for each scene we generate 20 trajectories. Then we take
the predictions at the last time-step (where spread is largest)
and calculate the covariance and its Frobenius norm. For each
comparison case (except for PAN which is unimodal), we report
the average Frobenius norm over scenes in the validation set
as 1.26, 1.11, 0.67, 0.83 for Base, BaseDyn, GLoss, DFeature
respectively. Intuitively this norm can be seen as an average
distance to the mean of the trajectory distribution. Training
with rule results in distributions concentrated towards the center
lane compared to training without rules. GLoss gives the most
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Fig. 4. Performance metric histograms. The top of each subfigure demonstrate a box plot of each statistic over the validation set examples. The bottom part of
each subfigure demonstrates the binned distribution of each error statistic for each approach. The rule-based predictors reduce both the average and the spread of
each of the error compared to the baseline. The DFeature approach results in the smallest overall spread of error.

TABLE I
PERFORMANCE METRIC STATISTICS. DFEATURE RESULTS IN IMPROVED ADE, FDE AND MAXIMUM DISTANCES COMPARED TO BOTH PREDICTION WITHOUT

RULES AND THE GLOSS APPROACH, IN TERMS OF BOTH MEAN, MAX AND 90TH QUANTILE STATISTICS

Fig. 5. Distribution of ADE versus robustness percentile. Each box plot is produced using predictions with robustness greater than the indicated percentile.

concentrated distribution given that it’s more strict enforcement
of the rules.

Fig. 5 shows distributions of ADE versus the robustness
percentile. To produce this figure, the samples in the validation
set are sorted by their robustness values and each box plot
corresponds to the ADE statistics of samples greater than the
indicated percentile We can see that for methods with rules, as
the robustness of the data increases there is a notable decrease
in ADE. This phenomenon is less apparent in methods without
rules. This result indicates that for DFeature and GLoss, the
predictor has learned to use the rules to improve prediction ac-
curacy. Meanwhile, Base and BaseDyn are not provided with the
rules during training and therefore results in weaker correlation
between ADE and robustness.

Fig. 7 shows example scenarios trained with and without rules.
For each of the sub-figures (a) and (b), the left scene depicts the
prediction distribution from a BaseDyn model whereas the right
depicts that from a DFeature model. Within each scene, the black
dotted trajectory illustrates the agent’s ground truth future; the
dark gray dotted trajectory illustrates the agent’s path history; the
white trajectory distribution depicts 100 predicted trajectories
sampled from the generator; the dot-dash lines represent lane
centers (brown is incoming, yellow is current, white is outgoing).

Fig. 6. Syntax tree dropout analysis. A grid search over the syntax tree
dropout probabilities pn and pT in (9) with the ADE of each combination
reported in the matrix. A probability of 0 indicates no dropout and probability
of 1 indicates full dropout (turning the syntax/node features off).

Fig. 6 shows a grid search over the syntax tree dropout
probabilities pn and pT in (9). The color scale and num-
bers shown in the matrix represent the resulting ADEs. Here
pn, pT = 1 corresponds to the syntax tree features completely
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Fig. 7. Example scenarios of scenes are representative of rules (a) slow down approaching stop areas and (b) drive near the center lane. For each rule, the left
scene depicts the prediction distribution from model BaseDyn and the right scene for that from model DFeature. Black dotted trajectories illustrate the agent’s
ground truth future. Dark gray dotted trajectories illustrate the agent’s path history. White trajectory distributions depict 100 predicted trajectories sampled from
the generator. Dot-dash lines represent lane centers (brown is incoming, yellow is current, white is outgoing). As can be seen, DFeature is able to generate lawful
predictions but also maintains the distribution of unlawful behaviors.

Fig. 8. Robustness analysis for model DFeature. Four example scenes are provided that illustrate the relationship between robustness and prediction accuracy.
These include lawful and well-predicted examples (a,b), and lawful and unlawful prediction errors (c,d respectively).

turned off whereas a value of 0 corresponds to no dropout.
We can observe from the figure that neither extreme values give
satisfactory results and the best result occurs at pn, pT = 0.6.
The optimal values of the dropout values depend on the rules
and the dataset. We expect that a lower value (keeping the tree
features turned on) is more suitable when the dataset conforms
to the given rules and vice versa.

Looking at the left scene of Fig. 7(a) we can observe that
the baseline model failed to capture the fact that the agent has
stopped in front of the stop area. However, training with rules
results in more lawful predictions. Because the rule is provided
as a set of discriminator features (as oppose to being strictly
enforced), the model has learned a spectrum of predictions where
both slowing down before and passing through the stop areas are
possibilities. Fig. 7(b) shows example scenes where the “Drive
near the center lane” takes effect. Compared to the model that
generates the predictions in the left scene (trained without rules),
the model in the right scene is able to generate a trajectory
distribution that conforms to the provided rule and is closer to
the ground truth on average.

Fig. 8 shows a scattered plot of prediction robustness versus
ADE generated from evaluating DFeature on the validation data.
We can observe a general trend that high robustness corre-
sponds to low ADE (most agents drive according to the rules).
In the figure we also show four examples scenes at different
locations of the scatter plot. Scene (a) shows an example for
high-robustness-low-ADE where the agent is driving according
to the rules and the prediction is accurate. Scene (b) shows a
case for low-robustness-low-ADE where the agent is violating

the rules (does not slow down near stop areas and does not
follow the provided lanes) and the model is also able to capture
such behaviors. Scene (c) shows a case for high-robustness-high-
ADE where the prediction abides by the rules but is not accurate
with respective to the ground-truth. In this case, the prediction
closely follows the center lane but fails to predict the correct
driving speed. Scene (d) shows low-robustness-low-ADE which
is the case where the predictor fails to predict rule-abiding agent
behavior.

VI. CONCLUSION

In this letter, we propose two approaches of incorporating
STL rules into a GAN style trajectory predictor. The first is to
use the STL robustness as an auxiliary loss to the generator.
The second is to use the sub-formulas of the STL syntax tree to
calculate features for the discriminator. We show that compared
to enforcing the rules as constraints as is commonly adopted
in planning, our method is able to integrate the rules as soft
priors to the predictor such that rule-violating agent behaviors
can also be captured. Future direction includes exploring the use
of the proposed architecture for ego-vehicle planning as well as
considering rule priorities and trajectory uncertainty.
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