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Abstract. Multi-agent coordination under Signal Temporal Logic (STL)
specifications is an exciting approach for accomplishing complex tempo-
ral missions with safety requirements. Despite significant progress, these
approaches still suffer from scalability limitations. Decomposition into
subspecifications and corresponding subteams of agents provides a way
to reduce computation and leverage modern parallel computing archi-
tectures. In this paper, we propose a rewrite-based approach for jointly
decomposing an STL specification and team of agents. We provide a set
of formula transformations that facilitate decomposition. Furthermore,
we cast those transformations as a rewriting system and prove that it is
convergent. Next, we develop an algorithm for efficiently exploring and
ranking rewritten formulae as decomposition candidates, and show how
to decompose the best candidate. Finally, we compare to previous work
on decomposing specifications for multi-agent planning problems, and
provide computing and energy grid case studies.

1 Introduction

Coordination and control of multi-agent systems from high-level specifications is
a challenging and active area of research. As with many areas of formal methods
and multi-agent systems, scalability is often a limiting factor. Ideally, an oper-
ator would provide a single global specification for a large team of multi-agent
systems, and the system would assign tasks and roles accordingly and synthe-
size a plan and controllers. Here, we aim to formalize a method for analyzing
a signal temporal logic (STL) specification for a principled approach to jointly
decompose and distribute the specification among a team of agents.

Most STL work in multi-agent systems assumes either centralized control
from a global specification [15,11,4] or decentralized control from local specifica-
tions [16,17]. In contrast, several methods for multi-agent planning with linear
temporal logic (LTL) specifications have identified methods for automatically
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decomposing a specification into sub-specifications and assigning agents or sub-
teams of agents to execute those sub-specifications [7,21,2,23].

Unlike LTL, STL has the advantage of specifying concrete timing require-
ments over continuous, real-valued signals, but there has been comparatively
little work focused on decomposition of STL. [6] focused on decomposing an
STL formula given an a priori set of disjoint sub-teams. In this work, we de-
compose the formula and team jointly, in an attempt to achieve a task-based
set of sub-teams. We take inspiration from [14], but our approach is based on
an abstract reduction system, providing guarantees on its convergence. We also
perform formula transformation and assignment as two separate stages, reduc-
ing the search space of the assignment problem to those that are feasible for
a given transformation. Additionally, our approach works for STL in general,
whereas [14] focuses only on a fragment of STL. Another closely related work
is [22], which looks at a multi-agent fragment of STL and assigns sub-formulae
to individual agents. The assignment is an implicit part of their synthesis frame-
work. Here, we focus only on an explicit assignment and decomposition, and we
do not consider the synthesis problem. The method presented in this work could
be used as a pre-processing step for their proposed synthesis and motion planning
work, as well as most other existing multi-agent STL synthesis approaches.
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Fig. 1: Decomposition framework: build a DAG of all possible formula
rewrites (1a, Sec. 3); build an AST for each resulting formula (1b, Sec. 4); score
each node in the DAG according to its AST (1c, Sec. 4.3); and select best node
and evaluate its decomposed specification (1d, Sec. 4.2).

The main contribution of this paper is an algorithm for simultaneous de-
composition of STL formulae and heterogeneous agent subteam assignment con-
sisting of 1) a rewriting system for reasoning about changes to STL formulae,
with proof of termination and confluence; 2) a normal form of decomposed STL
formulae that provides bounds on the ability to decompose a formula; and 3)
an optimization approach for selecting the best decomposition and assignment
based on a directed acyclic graph (DAG) constructed by the rewriting system.
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2 Background and Problem Definition

In this work, we focus on requirements in the form of Signal Temporal Logic
(STL) specifications [18]. The syntax of STL is given in Backus-Naur form as

ϕ := ⊤ | P | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[a,b)ϕ2 , (1)

where ϕ, ϕ1, and ϕ2 are STL formulae; ⊤ is the symbol for logical true; P is a
predicate of the form π(x(t)) ≥ c for x ∈ R→ Rm, π ∈ Rm → R, and c ∈ R; ¬
and ∧ are Boolean negation and conjunction; and U[a,b) is the temporal operator
Until, with a, b ∈ R and a ≤ b. Other operators ∨ (disjunction, ¬(¬ϕ1 ∧ ¬ϕ2)),
♢ (finally, ⊤U[a,b)ϕ), and □ (globally, ¬♢[a,b)¬ϕ) can be defined from the other
operators. We use the notation pred(ϕ) to denote all predicates in ϕ, and conj (ϕ)
for all the top-level conjuncts of formula ϕ.

Example 1. Let Pi be STL predicates, and ϕ := P1U[a,b)P2 ∧□[c,d)(P3 ∧ P4):

pred(ϕ) := {P1, P2, P3, P4}
conj (ϕ) := {P1U[a,b)P2,□[c,d)(P3 ∧ P4)}

Note that although P3 ∧ P4 contains a conjunction, it is not at the top-level.

The semantics of STL with respect to a signal x at time t are defined as

(x, t) |= π(x(t)) ≥ c ⇔π(x(t)) ≥ c
(x, t) |= ¬ϕ ⇔(x, t) ̸|= ϕ

(x, t) |= ϕ1 ∧ ϕ2 ⇔(x, t) |= ϕ1 and (x, t) |= ϕ2

(x, t) |= ϕ1U[a,b)ϕ2 ⇔∃t′ ∈ [t+ a, t+ b]s.t.(x, t′) |= ϕ2 and

∀t′′ ∈ [0, t′](x, t′′) |= ϕ1 .

(2)

In addition to the semantics defined above, STL also has the notion of quan-
titative semantics or robustness degree, ρ. The robustness of a signal x at time t
with respect to formula ϕ is defined as [9]

ρ(x, t, π(x(t)) ≥ c) :=π(x(t))− c
ρ(x, t,¬ϕ) :=− ρ(x, t, ϕ)
ρ(x, t, ϕ1 ∧ ϕ2) :=min(ρ(x, t, ϕ1), ρ(x, t, ϕ2))

ρ(x, t, ϕ1U[a,b)ϕ2) := max
t′∈[t+a,t+b]

(ρ(x, t′, ϕ2), min
t′′∈[t,t′]

ρ(x, t′′, ϕ1))

(3)

The horizon of an STL formula is the maximum execution time before the
satisfiability of the specification can be determined [8]. The formula horizon,
hzn, is defined recursively as:

hzn(π(x(t)) ≥ c) :=0

hzn(¬ϕ) :=hzn(ϕ)

hzn(ϕ1 ◦ ϕ2) :=max (hzn(ϕ1), hzn(ϕ2)) for ◦ ∈ {∧,∨}
hzn(ϕ1U[a,b)ϕ2) :=max (hzn(ϕ1) + b− 1, hzn(ϕ2) + b)

(4)
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Definition 1 (Agent) An agent is a tuple A = (x(t), u), where x(t) ∈ Rn is
its n-dimensional state at time t, and u ∈ Rn serves as an element-wise upper
bound on x(t). The lower bound is assumed to be an n-dimensional zero vector.

The upper- and lower-bounds on x(t) do not change with time. Rather, they
bound x(t) across all time. For convenience, we often drop the explicit depen-
dence of x(t) on t and simply write x. We denote the signal for a team of agents as
x ∈ Rm. This can be obtained via concatenation, summation or other operation
over individual agent signals. We assume this can be done but are agnostic to
how. We use the term agent to be consistent with the related robotics literature,
but agents represent any entities or processes that can be controlled separately.
We say that an agent “services” a predicate if it is responsible for maintaining
a signal that satisfies that predicate (or contributes to its satisfaction).

For a team of agents indexed by set J , we denote the jth agent as Aj , where
j ∈ J . If two agents have the same upper bound u, we consider them to belong
to an equivalence class gu. For a team of agents, we denote the set of all such
equivalence classes as G.

Given a (sub)team of agents A = {Aj}j∈J , we define the robustness upper
bound, ρub, recursively as:

ρub(π(x(t)) ≥ c),A) := (Σa∈Aπ(a.u))− c
ρub(¬ϕ,A) := −ρub(ϕ,A)

ρub(ϕ1 ∧ ϕ2,A) := min(ρub(ϕ1,A), ρub(ϕ2,A))
ρub(ϕ1 ∨ ϕ2,A) := max (ρub(ϕ1,A), ρub(ϕ2,A))

ρub(ϕ1U[a,b)ϕ2,A) := min(ρub(ϕ1,A), ρub(ϕ2,A))

(5)

This is the typical robustness definition evaluated over the agent upper bounds
for every agent in the given team. Note that it no longer depends on x or t. If
the robustness upper bound is negative, there does not exist a synthesized plan
for agents A that satisfies the formula.

Example 2. To illustrate our notion of agents, we consider an example from
computing. For a large computing cluster, each compute node can be modeled
as an agent, with the state x capturing its resource utilization between its CPU,
GPU, and RAM. Different predicates in an STL formula ϕmight request different
combinations of resources. For a node with 16 CPU cores, 800 GPU cores, and
64 GB of RAM, its state is 3-dimensional with upper bound u = {16, 800, 64}
representing 100% utilization. Let the class of this agent be denoted g1. Any other
agent with exactly the same values of u would also belong to g1, otherwise, the
agent would belong to a separate class. The team signal, x, is a concatenation
of the agent signals.

Assumption 1 We assume the existence of a synthesis method, Synth. Given
a team of agents J and an STL specification ϕ, Synth(J, ϕ) synthesizes a plan
for the agent(s) J to satisfy ϕ, if such a plan exists.
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Synthesis is not the focus of this work, and there are many synthesis tools
available depending on the specific problem under consideration. Assumption 1
simply states that a user of our proposed method has an appropriate synthesis
tool available.

We are now ready to state the problem under consideration. We seek a
method for decomposing a synthesis problem, consisting of a team of agents
and an STL specification, into a set of smaller, disjoint subproblems that can
each be solved independently. The goal of this decomposition is to achieve a
faster solution than solving the original problem, without rendering the problem
infeasible in the process of decomposing it. However, there is no known method
for determining the feasibility of a synthesis problem without running the synthe-
sis procedure, which is expensive. Therefore we rely on robustness upper bound,
which is a necessary condition for feasibility.

Problem 1. Given a team of agents {Aj}j∈J and an STL formula ϕ, find a team
partition R and a set of formulae {ϕr}r∈R such that

1. ϕ is satisfied if each subteam r ∈ R satisfies its specification ϕr;
2. Solving the set of synthesis problems Synth(r, ϕr), including the time to

decompose, is faster than Synth(J, ϕ); and
3. Robustness upper bound for all teams is non-negative.

Assumption 2 We assume that the original synthesis problem has a solution.

The focus of this work is on decomposition of a problem into subproblems
whose solution guarantees solution of the original problem. For our analysis,
Assumption 2 restricts us to feasible problems, since every infeasible problem
will yield at least one infeasible subproblem.

Our approach is depicted in Fig. 1. The first step generates various transfor-
mations of the original formula that are easier to decompose. Next, the technique
builds an abstract syntax tree (AST) for each of these formulae, efficiently ex-
plores the possible transformations and scores each rewritten formula. Finally,
it selects the best node and decomposes the specification into subspecifications
and associated subteams. We cover each of these steps in the following sections.

3 An STL Rewriting System

We start by describing a technique for modifying STL formulae to be more
amenable to decomposition, while still guaranteeing satisfaction of the original
formula. We accomplish this by developing a rewriting system for STL. Rewriting
operates on abstract syntax trees (ASTs). Every STL formula can be represented
as an AST with each node representing an operator or predicate. See Dfn. 7 in
the Supplementary Material for a formal definition.

Formulae consisting of top-level conjunctions are the easiest to decompose.
Top-level conjuncts are represented in an AST as the children of the root node,
which is a conjunction operator. Logically, if each top-level conjunct is satisfied,
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then the entire formula is satisfied. There is no logical dependence between any of
the top-level conjuncts. In this section, we provide three formula transformations
that can add top-level conjuncts to facilitate decomposition. Not all of these
transformations produce an equisatisfiable formula. However, we ensure that
the transformation only strengthens the formula. Let ϕ be an STL formula and
τ a transformation operator, then we only consider transformations such that
τ(ϕ) |= ϕ. This ensures that any plan found for the transformed formula is
guaranteed to satisfy the original formula.

Definition 2 (Rewriting System) A rewriting system is a tuple, (T,→), where
T is a set of terms, and →⊆ T × T is a rewriting relation on T . If the terms y
and z are in →, we write y → z.

We now define our rewriting system for STL, (S,→STL), where S is the set
of all STL formulae, and→STL:= {7→□, 7→♢, 7→U} is a collection of rewrite rules
defined below. Let ϕ1 and ϕ2 be STL formulae, and a ≤ b be real-valued time
instances. We consider the following rewriting rules in →STL:

□[a,b)(ϕ1 ∧ ϕ2) 7→□ □[a,b)(ϕ1) ∧□[a,b)(ϕ2) (split-globally)

♢[a,b)(ϕ1 ∧ ϕ2) 7→♢ □[a,b)(ϕ1) ∧□[a,b)(ϕ2) (split-finally)

ϕ1U[a,b)ϕ2 7→U □[0,b)(ϕ1) ∧ ♢[a,b)(ϕ2) (split-until)

Of these rewriting rules, only (split-globally) produces an equisatisfiable for-
mula. The other two entail the original formula as required, but are not satisfied
by every trace that satisfies the original formula.

Remark 1. Our (split-finally) transformation is the most conservative of several
possible choices for splitting ♢ over a conjunction. Both ♢[a,b)(ϕ1) ∧ □[a,b)(ϕ2)
and □[a,b)(ϕ1) ∧ ♢[a,b)(ϕ2) also entail the original formula. We choose the sym-
metric option for simplicity of presentation.

Remark 2. We include two other transformations that produce a formula equi-
satisfiable to the input. If two like temporal operators appear next to each other
in the formula, we adjust their time bounds accordingly. That is,□[a,b)□[c,d)ϕ 7→□□

□[a+c,b+d)ϕ and likewise ♢[a,b)♢[c,d)ϕ 7→♢♢ ♢[a+c,b+d)ϕ. We omit these rewrite
rules from our presentation for simplicity, but all subsequent proofs and analyses
hold for these rewrites as well.

Theorem 1. The rewriting system (S,→STL) terminates.

Proof (Sketch). By Lemma 2.3.3 of [1], a finitely branching rewriting system
(T,→) terminates if there exists a monotone embedding φ from (T,→) into
(N, >). In our case, φ has two components – the sum of distances of conjuncts
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and until operators from the root, and the number of occurrences of conjunction
and until operators in the formula. Namely,

φ =

n∧,U∑
i=1

di + (n∧,U + 1)nU , (6)

where n∧ and nU are the number of conjunction and until operators appearing
in the formula, n∧,U = n∧ + nU , and di is the distance of the ith conjunction or
until from the root in the formula AST. For all replacement rules we consider, φ
is a monotone embedding into (N, >), and our rewriting system terminates. □

Let→ be an arbitrary reduction system containing a nonempty set of reduc-
tion mappings 7→i, and

∗→ be its reflexive, transitive closure. Terms y and w are
joinable, denoted y ↓ w, iff there is a z such that y

∗→ z
∗← w.

Definition 3 (Confluence) A reduction system is confluent if ∀y . w1
∗← y

∗→
w2 =⇒ w1 ↓ w2.

Theorem 2. The reduction system generated by (split-globally), (split-finally),
and (split-until) is confluent.3

Proof (Sketch). To prove confluence, we break our formula rewriting reduction
system into three independent reduction systems:

1. →□:= {7→□}: reduction system for (split-globally)
2. →♢:= {7→♢}: reduction system for (split-finally)
3. →U := {7→U}: reduction system for (split-until)

We prove confluence by proving that each individual reduction system is con-
fluent and commutative, then building up to our full reduction system,→STL:=
{7→□, 7→♢, 7→U}. Each reduction system alone is trivially confluent. We now look
at combinations of reduction systems.
→□ and →♢ act on different temporal operators. Therefore each can be

applied independently, making local changes to non-overlapping regions of the
AST (see Sec. 4), and the final ASTs are the same. This implies that→□♢:=→□

∪ →♢ is confluent. The same logic applies to →□♢ and →U , and therefore
→:=→□♢ ∪ →U=→□ ∪ →♢ ∪ →U is also confluent. □

Complete proofs for Theorems 1 and 2 can be found in the Supplementary
Materials. Because our STL formula rewriting system is terminating and con-
fluent, it is convergent. This implies that any STL formula can be reduced to
a unique normal form through the application of our rewriting rules. We will
call this form decomposition normal form (decNF). Importantly, satisfaction of
a formula in decNF form implies satisfaction of the original formula, but not
vice-versa. The number of top-level conjuncts in an STL formula in decNF is an
upper bound on the number of subteams our method will produce.

3 We assume that there is a global subterm ordering that puts equivalent formulae in
a normal form, i.e., b ∧ a→ a ∧ b so that a ∧ b and b ∧ a are known to be identical.
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3.1 Formula Rewrite DAG

Given (S,→STL) and an STL formula, we can consider all possible formulae
obtained by repeated application of the rewriting rules to subformulae.

Definition 4 (Rewrite DAG) A Formula Rewrite DAG, G := ⟨Φ,E⟩, is a
directed acyclic graph where each node in Φ is an STL formula and each directed
edge in E goes from ϕ1 to ϕ2 such that ϕ1 →STL ϕ2.

We denote the Formula Rewrite DAG for a formula, ϕ, as G(ϕ). For all ϕ,
G(ϕ) has a single source node (in-degree of 0) corresponding to the original
formula, ϕ, and a single sink node (out-degree of 0) corresponding to the decNF
form of ϕ.

Example 3. Let ϕ be the formula from Example 1. One edge in G(ϕ) would
connect ϕ (the root) to P1U[a,b)P2∧□[c,d)P3∧□[c,d)P4. This edge would be tagged
with the transformation→□ and the conjunct it was applied to, □[c,d)(P3 ∧P4).
Fig. 2 shows the complete rewrite DAG.

P1U[a,b)P2 ∧□[c,d)(P3 ∧ P4)

□[0,b)P1 ∧ ♢[a,b)P2 ∧□[c,d)(P3 ∧ P4) P1U[a,b)P2 ∧□[c,d)P3 ∧□[c,d)P4

□[0,b)P1 ∧ ♢[a,b)P2 ∧□[c,d)P3 ∧□[c,d)P4

7→U 7→□

7→□ 7→U

Fig. 2: Example of a rewrite DAG illustrating confluence and termination from
the spec in Example 1. P1, P2, P3, and P4 represent STL predicates. a, b, c,
and d are real-valued time bounds. The initial (root) formula is in the top gray
box. Decomposition normal form is indicated by the double rectangle. Rewrite
operations are indicated on the edges between formulae in the DAG.

Theorem 3. Constructing a rewrite DAG by enumerating all possible formula
transformations terminates with a finite graph.

Proof. This follows directly from Theorem 1.

4 Decomposing STL

Having created a rewrite DAG as described in Sec. 3 above, we now describe
how to analyze the candidate formula at each node in the DAG. For an STL
formula at a given node in the DAG, we wish to assign agents to that formula
in a way that is amenable to decomposition.
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4.1 Agent Assignments

We now define agent assignments, followed by their use in STL decomposition.

Definition 5 (Agent Assignment) An agent assignment for STL formula ϕ
is a mapping α : conj (ϕ)→ 2J .

The mapping records agent assignments to top-level conjuncts of the specifi-
cation. These are the children of the root AST node. The assignment is extended
to all AST nodes by adopting the agent assignment of parent nodes. The root
node agent assignment is defined to be all agents.

4.2 Decomposition

An agent assignment for a given STL specification induces a team partition R
and a set of subspecifications, {ϕr}r∈R. Recall that J is the set of agent indices,
thus R is a set of (nonempty) subsets that partition the agents. Formally, each
element of R is a subset r ⊆ J such that ∀r ∈ R . |r| > 0 and ∀ri, rj ∈ R . i ̸=
j → ri ∩ rj = ∅.

Given an agent assignment, α, R is computed as the largest valid parti-
tion such that ∀r ∈ R ∀c ∈ conj (ϕ) . α(c) ⊆ r ∨ α(c) ∩ r = ∅. Intuitively,
this is computed by starting with agent assignments for each top-level con-
junct, and combining any conjuncts that have overlapping agent assignments.
Letmatch(r, ϕ) := {c|c ∈ conj (ϕ)∧α(c) ∈ r}. This denotes all top-level conjuncts
associated with agent partition r. For each r ∈ R, there is a corresponding sub-
specification, ϕr :=

∧
c∈match(r,ϕ) c. Let a decomposition, DR := ⟨R, {ϕr}r∈R⟩,

be a pair containing the agent partition and corresponding subspecifications.
A decomposition generates |R| synthesis subproblems that can be solved

independently with no coordination between them. Note that
∧

r∈R ϕr ≡ ϕ.
Thus, for ϕ := τ(ψ), if Synth(r, ϕr) returns a valid solution for each subproblem,
then the combined solutions satisfy the original specification ψ.

Remark 3. The decomposition method ensures that satisfied subproblems log-
ically entail the original problem. However, we must also guarantee noninter-
ference between signal generators of different teams, i.e., that two subteams do
not have opposing goals when servicing predicates. This is problem-dependent:
in our experimental results we have one case that avoids this via monotonicity
(all goals are to increase signals), one that avoids it via mutual exclusion (never
driving the same signal), and one that avoids it with an additional constraint
that groups all relevant signals in the same subteam.

4.3 Comparison of Decomposition Candidates

There are many possible decompositions given a team of agents and an STL
specification. Our main algorithm requires a method of ranking these candidate
decompositions. The algorithm is fully parameterized by the choice of a score,
ξ, for each decomposition. Here, we define our choice for this operator.
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Since the robustness upper bound condition is necessary but not sufficient,
we also introduce the costs cap and cpp to produce a principled heuristic method
for decomposition. These costs consist of a startup cost cap : G × pred(ϕ) →
R, capturing the maximum initial cost for an agent of class g ∈ G to begin
servicing a predicate, and a switching cost cpp : G × pred(ϕ) × pred(ϕ) → R,
capturing the cost for switching from servicing one predicate to another. These
costs abstract dynamics or other system properties that influence the feasibility
of the synthesis process. The abstraction provides a way of incorporating some
dynamics information while remaining computationally efficient (i.e., not solving
the full synthesis problem).

For mobile robots, these costs might simply correspond to travel times be-
tween regions of the environment. We opt for this more general concept of costs
to allow flexibility in the type of problem our framework can be applied to. We
assume an analysis procedure that can either exactly or approximately deter-
mine these costs given the agent start state, dynamics, and predicate(s). In our
experiments, costs are either provided explicitly, or agent states are nodes in a
graph, for which we can use standard graph traversal algorithms to determine
both startup and switching costs.

Example 4. Let us revisit the computing scenario from Example 2. Since start-
ing from idle has little overhead, cap can be quite small, representing a few
milliseconds to start any arbitrary computing request. However switching from
a request that uses many GPU resources to one that requests many CPU re-
sources typically has much higher overhead. Therefore cpp would be higher for
switching from GPU-intensive to CPU-intensive tasks or vice-versa.

To design a score, we start by defining the following metrics for a given
decomposition:

1. N - number of subteams: |R| (prefer larger)
2. Cap - maximum startup cost: maximum value of cap over all agents and pred-

icates in the subteam and corresponding subspecification (prefer smaller)
3. Cpp - maximum switching cost: maximum value of cpp over all pairs of pred-

icates in a subspecification (prefer smaller)
4. h - maximum horizon: the maximum subspecification horizon (prefer smaller)
5. ρub - minimum robustness upper bound: minimum over all subproblem ro-

bustness upper bounds; relates predicates to maximum signal value with
given decomposition (prefer larger)

Our primary goal is to maximize the number of subteams. More subteams
results in smaller synthesis subproblems; however, we include the other metrics
(defined in Sec. 2) to discourage “uneven” decompositions that contain subprob-
lems of widely varying difficulty. If one subproblem is nearly as difficult as the
original problem, then it still dominates the synthesis time.

Definition 6 (Decomposition Score) For a given formula ϕ and its decom-
position DR, our heuristic decomposition score, ξ := ⟨N,−Cap,−Cpp,−h, ρub⟩
collects the heuristic scores in a tuple.
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Let D1 and D2 be two possible decompositions for STL specification, ϕ. For
each Di, let our score choice be ξi := ⟨N i,−Ci

ap,−Ci
pp,−hi, ρiub⟩. Given these

metrics, we compare D1 and D2 with ξ1 >L ξ2, where >L is a lexicographic
comparison. Note that metrics which are preferred to be smaller are negated to
prioritize smaller values in the greater-than comparison. We prefer decomposi-
tions with a higher score. A decomposition Di is guaranteed to be infeasible if
ρiub < 0. Beyond a cheap feasibility check, we included ρiub in our decomposition
score to break ties between otherwise equally scored decomposition candidates.

5 Exploring the Formula Rewrite DAG

We now describe an algorithm for decomposing an STL planning task into sub-
specifications and agent subteams. We directly explore all possible formula trans-
formations using a Formula Rewrite DAG and choose the formula that gives the
best decomposition according to heuristic measures. For efficiency, we also avoid
processing nodes of the DAG that do not add a top-level conjunct (and thus can-
not increase the number of subteams). Furthermore, we leverage the following
theorem to prune nodes that are not worth visiting.

Theorem 4. Let ϕ be the formula at a node in a Formula Rewrite DAG such
that conj (ϕ) = N . If ϕ has no decomposition into N subteams (one subteam
per top-level conjunct) with a nonnegative robustness, then its children do not
have decompositions into N + 1 subteams. See the Supplementary Materials for
a proof sketch.

Intuitively, Algorithm 1 explores the Formula Rewrite DAG starting from
the root and attempting to decompose each transformed formula ϕ into conj (ϕ)
subteams. It stops the search at nodes with guaranteed infeasible decompositions
and compares the decomposition candidates using >L.

Lines 1-2 initialize empty data structures used for tracking nodes to process
and infeasible nodes, respectively. Lines 3-4 initialize the candidate to a null
value, and the score to the worst possible score. Line 5 pushes the root node of
the Formula Rewrite DAG as the start of the search. The loop starting at line
6 processes nodes in the DAG in a breadth-first order until all nodes have been
processed or skipped. We assume the queue automatically caches and skips nodes
that have already been processed. Lines 7-9 obtain the next node to process
and skip it if it is known to be infeasible. Lines 10-13 check if the node has
the same number of conjuncts as the parent. If so, it cannot have a greater
number of subteams and is skipped. Note that the number of conjuncts only
stays the same or increases with formula transformations, so we must still process
its children. Line 14 obtains a decomposition assignment and robustness upper
bound for the formula. The number of subteams is the number of top-level
conjuncts, because we assume each conjunct is assigned a unique subteam. The
algorithm still works without this assumption. However, this restriction allows
the algorithm to conclude that a formula and all its descendants are infeasible in
lines 15-18, by leveraging Theorem 4. If the robustness upper bound is negative,
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Algorithm 1 Main decomposition algorithm

Input: Formula Rewrite DAG G, Set of agents A
Output: Decomposition DR

1: Q← empty queue ▷ Nodes to explore
2: D ← ∅ ▷ Set to store dropped nodes
3: c← null ▷ Start with a null candidate
4: ξ ← worst ▷ Initialize score with worst possible values
5: push(Q,G.root)
6: while ¬empty(Q) do
7: n← pop(Q)
8: if n ∈ D then
9: continue ▷ Formula is known to be infeasible
10: if |conj (n)| = |conj (Parent(n))| then
11: push(Q, children(n))
12: push(D,n)
13: continue ▷ Cannot improve on parent

14: Dn, ρ
n
ub ← compute assignment(n,A)

15: if ρnub < 0 then ▷ Infeasibility condition
16: push(D,Descendants(n)) ▷ Descendants are all infeasible
17: push(D,n)
18: continue
19: push(Q,Children(n))
20: ξn ← compute score(Dn,A)
21: if ξn >L ξ then ▷ lexicographic comparison
22: ξ ← ξn

23: c← Dn

return c

all descendants are marked as infeasible to avoid processing them unnecessarily
in case they appear on another path of the DAG. Line 19 adds all the node’s
children onto the end of the queue for future processing and line 20 computes the
heuristic score. Lines 21-23 update the best score and candidate decomposition
if this is the best score seen thus far according to a lexicographic comparison.
Finally, the best decomposition is returned after processing or skipping all nodes
in the Formula Rewrite DAG.

The implementation of compute score is specific to the particular heuristic
score choice. Depending on the score, there could be additional early-stopping
checks before computing the entire decomposition. We efficiently compute the
decomposition and score by solving mixed-integer linear programs (MILPs). We
provide further information on our MILP encodings for compute decomp and
compute score in the Supplementary Material.

Limitations. Our assumption that decomposition assigns a unique subteam
to each top-level conjunct allows us to prune descendants. However, it might
also rule out solutions that combine top-level conjunctions of a more heavily
rewritten formula and achieve a higher number of subteams overall. Although
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we might miss alternative decompositions, it is important that the decomposi-
tion procedure runs quickly. Our goal is to cheaply find a decent decomposition,
and let the synthesis procedure proceed from there. Too much upfront compu-
tation can be counterproductive for the larger synthesis problem. Empirically,
this approach works well.

Despite the computed score, it is still possible that the best decomposition
contains an infeasible subproblem that is only revealed during the synthesis
procedure. In this case, we can return to the DAG and recover a different de-
composition that does not contain the same infeasible subproblem. Future work
can investigate weaker transformations that present less risk of creating infea-
sible problems. Note that between two decomposition options with the same
score, the algorithm will pick the one closer to the root node by design of the
search procedure. This is desirable because transformations only strengthen the
formula, making it harder to satisfy. That is another reason that our restriction
to decomposition assignments with one subteam per conjunct is a reasonable
heuristic. It tends to stop the search earlier in the DAG even if it produces fewer
subteams overall.

Example
Runtime (s)

% Speedup |R| DAG N Decomp Largest
No With Size Agents Time (s) Subproblem

Decomp Decomp Time(s)

Computing 8.05 1.51 81.2 11 5 12 0.59 0.12
Energy Grid 329.37 165.90 49.6 10 128 45 19.74 35.09

Table 1: Results from computing and energy grid case studies. Note that runtime
for decomposition is by solving the resulting synthesis problems serially.

6 Experiments and Results

We now provide evidence that this approach surpasses the state-of-the-art, and
give two case studies of its application in practical domains. Our implemen-
tation is written in Python and encodes MILPs using the PuLP Python linear
programming toolkit [19]. We instantiate Synth with a MILP-based synthesis
approach for STL [3]. All results were obtained on a 2.10GHz Intel Xeon Sil-
ver 4208 with 64GB of memory. We used Gurobi 9.5.1 [12] as the underlying
solver for both decomposition and synthesis. Gurobi had access to 16 physical
cores with hyperthreading. All comparisons include the time to solve all decom-
posed subproblems serially. This is an upper bound on the real time, assuming
in practice some would be solved in parallel. See the Supplementary Material
for more information on our experiments, including an evaluation with the SCIP
optimizer 7.0.3 [10] where decomposition has an even larger impact.
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Fig. 3: Comparison of our approach rw-decomp to the SMT-based CaTL decom-
position approach. Runtime includes the time to decompose and solve each of
the subproblems serially.

6.1 CaTL Example

First, we compare against the decomposition technique of [14] for a fragment
of STL, Capability Temporal Logic (CaTL). Their approach uses a Satisfiabil-
ity Modulo Theories (SMT) solver to find agent assignments, and only makes
formula transformations after obtaining an assignment. We evaluate our algo-
rithm against theirs on the same set of template formulae used in their paper
which vary from 10 to 50 (by tens) randomly-generated agents on a randomly-
generated environment. We run 10 trials for each number of agents seeded with
the trial number (0-9). We use a timeout of 5 minutes. Fig. 3 depicts our results.
Our technique is faster for any value below the diagonal. We define a degenerate
decomposition as a decomposition with only a single subteam. Our approach had
no degenerate solutions and one timeout. The other technique had 2 degenerate
solutions and 15 timeouts.

Their technique is faster to decompose than ours (up to 1s vs. up to 13s), but
finds less desirable decompositions. This is expected because their technique does
not optimize or explore the space of formula rewrites. Both techniques improve
the runtime compared to monolithic synthesis.



Rewrite-Based Decomposition of Signal Temporal Logic Specifications 15

6.2 Case Studies

We now apply decomposition to two case studies. Table 1 summarizes the results.

Computing Example. We consider a computing cluster whose processor nodes
are each equipped with either a CPU or GPU. Each processor has a number of
cores available, and can be assigned to process jobs. There is a startup cost
associated with sending jobs to processors, and a switching cost for switching
from a serial job to parallel and vice versa. The overall formula for a day’s
requests is

ϕcluster = ♢[0,12)ϕbatch ∧□[3,12)ϕadmin, (7)

where ϕbatch captures the overnight batch jobs, ϕadmin captures administrative
events that must be performed periodically. Both ϕbatch and ϕadmin are con-
junctions over sets of individual requests. These requests may specifically ask
for a number of CPU cores, a number of GPU cores, or may specify that the
job can be accomplished with a CPU and/or GPU. We assume that if a job is
running on a node, no other job can start on that node until the previous job
has finished. This mitigates the interference concerns in Remark 3.

Energy Grid. We develop an energy grid problem. There are ten towns and a
daily specification over half-hour increments. There are two energy companies
and each has a power station for each type of energy: coal, natural gas, wind,
nuclear, and solar. The specification ensures that each town receives the required
power along with additional constraints imposed by each town for cost or green
initiatives, such as limiting the amount of coal. Each agent represents 1 GWh
from a particular power plant. Since this specification has both less-than and
greater-than predicates, we must directly mitigate the interference concerns of
Remark 3. We accomplish this with an additional constraint that all signals for
a given town must be grouped in the same subteam. This may require bundling
several top-level conjuncts into a single conjunct by editing the AST. This pre-
vents the situation in which one subteam is trying to increase a signal while
another subteam attempts to decrease it. This specification has a natural geo-
graphic decomposition, but the specification needs to be rewritten so that this is
possible. Due to the predicate grouping constraint, the original formula can only
be decomposed into 3 subteams, but after rewriting we obtain 10 subteams.

7 Conclusions

This work proposed an abstract rewriting system for STL, with proofs of ter-
mination and confluence. The rewriting system forms the basis for a method
of decomposing an STL specification and distributing it among a heterogenous
team of agents. It outperforms a closely related method on a fragment of STL,
and is effective on general STL case studies.

Future work includes investigating refinement of formula time bounds in
the rewriting system, further formalization of the decomposition procedure, and
potential relaxations of the noninterference condition mentioned in Remark 3.
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E., Müller, B., Pfetsch, M.E., Schlösser, F., Serrano, F., Shinano, Y., Tawfik,
C., Vigerske, S., Wegscheider, F., Weninger, D., Witzig, J.: The SCIP Opti-
mization Suite 7.0. Technical report, Optimization Online (March 2020), http:
//www.optimization-online.org/DB HTML/2020/03/7705.html

11. Gundana, D., Kress-Gazit, H.: Event-based signal temporal logic synthesis for sin-
gle and multi-robot tasks. IEEE Robotics and Automation Letters 6(2), 3687–3694
(2021)

12. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022), https:
//www.gurobi.com

13. Jonker, R., Volgenant, A.: A shortest augmenting path algorithm for dense and
sparse linear assignment problems. Computing 38(4), 325–340 (Dec 1987). https:
//doi.org/10.1007/BF02278710, https://doi.org/10.1007/BF02278710

14. Leahy, K., Jones, A., Vasile, C.I.: Fast decomposition of temporal logic specifica-
tions for heterogeneous teams. IEEE Robotics and Automation Letters (2022)

15. Leahy, K., Serlin, Z., Vasile, C.I., Schoer, A., Jones, A.M., Tron, R., Belta, C.:
Scalable and robust algorithms for task-based coordination from high-level speci-
fications (ScRATCHeS). IEEE Transactions on Robotics (2021)

16. Lindemann, L., Dimarogonas, D.V.: Feedback control strategies for multi-agent
systems under a fragment of signal temporal logic tasks. Automatica 106, 284–293
(2019)

https://doi.org/10.1146/annurev-control-053018-023717
https://doi.org/10.1146/annurev-control-053018-023717
https://doi.org/10.1146/annurev-control-053018-023717
https://doi.org/10.1146/annurev-control-053018-023717
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/BF02278710
https://doi.org/10.1007/BF02278710
https://doi.org/10.1007/BF02278710
https://doi.org/10.1007/BF02278710
https://doi.org/10.1007/BF02278710


Rewrite-Based Decomposition of Signal Temporal Logic Specifications 17

17. Liu, S., Saoud, A., Jagtap, P., Dimarogonas, D.V., Zamani, M.: Compositional syn-
thesis of signal temporal logic tasks via assume-guarantee contracts. arXiv preprint
arXiv:2203.10041 (2022)

18. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
pp. 152–166. Springer (2004)

19. Mitchell, S., O’Sullivan, M., Dunning, I.: PuLP: A linear programming toolkit for
python (2011)

20. Munkres, J.R.: Algorithms for the assignment and transportation problems. Jour-
nal of The Society for Industrial and Applied Mathematics 10, 196–210 (1957)

21. Schillinger, P., Bürger, M., Dimarogonas, D.V.: Decomposition of Finite LTL
Specifications for Efficient Multi-agent Planning, pp. 253–267. Springer Interna-
tional Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-73008-0\ 18,
https://doi.org/10.1007/978-3-319-73008-0 18

22. Sun, D., Chen, J., Mitra, S., Fan, C.: Multi-agent motion planning from signal
temporal logic specifications. IEEE Robotics and Automation Letters 7(2), 3451–
3458 (2022)

23. Zhou, Z., Lee, D.J., Yoshinaga, Y., Guo, D., Zhao, Y.: Reactive task allocation and
planning of a heterogeneous multi-robot system. arXiv preprint arXiv:2110.08436
(2021)

https://doi.org/10.1007/978-3-319-73008-0\_18
https://doi.org/10.1007/978-3-319-73008-0\_18
https://doi.org/10.1007/978-3-319-73008-0_18


18 K. Leahy et al.

A Supplementary Material

A.1 Abstract Syntax Tree Formal Definition

Definition 7 (Abstract Syntax Tree) An abstract syntax tree correspond-
ing to an STL formula ϕ is a tuple Tϕ = (V, Par, L), where V is a set of nodes,
Par : V → V ∪ {ϵ} is a parent function, and L : V → Σ is a labeling function.

The parent relationship indicates which node is the unique parent of a given
node. There is exactly one node v0 ∈ V with no parent (i.e., Par(v0) = ϵ),
which is the root of the AST. Each node is labeled with a symbol in σ ∈
Σ, the set of operators and predicates appearing in ϕ, i.e., Σ ⊆ pred(ϕ) ∪
{¬,∧,∨,U[a,b),♢[a,b),□[a,b)}, where a, b ∈ R and a ≤ b.

A.2 AST Examples

For completeness, Fig. 4 shows examples of the ASTs associated with the rewrite
DAG in Fig. 2. These are the same ASTs that are seen in Fig. 1b. Fig. 4a is
the AST associated with the root formula. Note that there are two top-level
conjuncts and thus there is a maximum of two possible sub-formulae. Next,
Figs. 4b and 4c show the result of applying 7→U and 7→□, respectively. Both
ASTs have three top-level conjuncts, and therefore a maximum of three sub-
formulae. Finally, Fig. 4d show the AST for the root formula in decNF. Note
that there are four top-level conjuncts, and therefore, this is the maximally
decomposable form of the original formula.

A.3 Proof of Theorem 1

Proof. By Lemma 2.3.3 of [1], a finitely branching rewriting system (A,→) ter-
minates if there exists a monotone embedding φ from (A,→) into (N, >). In
our case, φ has two components – the sum of distances of conjuncts and until
operators from the root, and the number of occurrences of conjunction and until
operators in the formula. Namely,

φ =

n∧,U∑
i=1

di + (n∧,U + 1)nU , (8)

where n∧ and nU are the number of conjunction and until operators appearing
in the formula, n∧,U = n∧ + nU , and di is the distance of the ith conjunction or
until from the root in the formula AST.

Both (split-globally) and (split-finally) can only reduce the values of di, by
moving a conjunction closer to the root. They both leave n∧, and nU unchanged.
It remains to prove that (split-until) also leads to a decrease in the value of φ.

Examining (split-until), we can see two changes occurring in the formula.
First, an until is replaced with a conjunction. Second, any downstream operators
from that until have their distance to the root increased by one, because of
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(a) Abstract syntax tree for root in Fig. 2
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(b) Abstract syntax tree for node after applying 7→U in Fig. 2
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(c) Abstract syntax tree for node after applying 7→□ in Fig. 2
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(d) Abstract syntax tree for node after applying 7→U and 7→□ in Fig. 2

Fig. 4: Details of abstract syntax trees seen in Fig. 1, created from the rewrite
DAG in Fig. 2.



20 K. Leahy et al.

the insertion of a globally or eventually operator. Put formally, the (split-until)
operation results in the following changes:

nU → nU − 1 (9)

n∧ → n∧ + 1 (10)

n∧,U → n∧,U (11)

di → di + 1 , (12)

where (12) is the worst case change in di. For any conjunctions or until operators
downstream from the (split-until), the distance di is increased by one due to the
insertion of temporal operators into the formula. All other di are unchanged.
Substituting this information into (8), we obtain

φ′ =

n∧,U∑
i=1

(di + 1) + (n∧,U + 1)(nU − 1) . (13)

Expanding and gathering terms yields the following

φ′ =

n∧,U∑
i=1

di +

n∧,U∑
i=1

1 + (n∧,U + 1)nU − (n∧,U + 1) (14)

=

n∧,U∑
i=1

di + n∧,U + (n∧,U + 1)nU − n∧,U − 1 (15)

= φ− 1 . (16)

Therefore, for all replacement rules we consider, φ is a monotone embedding into
(N, >), and our rewriting system terminates. □

A.4 Proof of Theorem 2

To prove Theorem 2, we first provide the following definitions.

Definition 8 (Commutativity) Two reduction systems, →1 and →2 are said

to commute if ∀x . y1
∗←1 x

∗→2 y2 =⇒ ∃z . y1
∗→2 z

∗←1 y2.

For a given reduction system→, let
=→ denote its reflexive closure. The reduction

systems strongly commute if ∀x . y1 ←1 x →2 y2 =⇒ ∃z . y1
=→2 z

∗←1

y2. A special case of strongly commuting is the commuting diamond property,
∀x . y1 ←1 x→2 y2 =⇒ ∃z . y1 →2 z ←1 y2. This property shows that a single
step of each reduction creates a commuting diagram (Fig. 5).

Proof. To prove confluence, we rely on two lemmas from [1]. Lemma 2.7.10 states
that the union of two reduction systems that are confluent and commute, is also
confluent. Lemma 2.7.11 states that two reduction systems commute if they
strongly commute.

We break our formula rewriting reduction system into three independent
reduction systems:
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y1 z
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Fig. 5: Illustration of the commuting diamond property.

1. →□:= {7→□}: reduction system for (split-globally)

2. →♢:= {7→♢}: reduction system for (split-finally)

3. →U := {7→U}: reduction system for (split-until)

Our full formula rewriting reduction system is→STL:=→□ ∪ →♢ ∪ →U . We
will prove confluence by proving these reduction systems confluent and commu-
tative, then building up to our full reduction system. Each individual reduction
system is trivially confluent.

→□ and →♢ have the commuting diamond property: For arbitrary ϕ, we as-
sume the precondition of the commuting diamond property, ϕ1 ←□ ϕ →♢ ϕ2.
The two reduction systems make a local change to the AST. In particular, they
map ◦[a,b](ψ1 ∧ ψ2) 7→ (□[a,b)ψ1 ∧ □[a,b)ψ2), for ◦ ∈ {□[a,b),♢[a,b)}. Note that
subformulae ψ1 and ψ2 are not changed. Since →□ and →♢ operate on differ-
ent temporal operators, they cannot be applied to the same node in the AST.
Furthermore, they must be applied to a temporal operator over a conjunction.
Therefore it is not possible that one rewrite is applied to a direct child of the
subterm of ϕ rewritten by the other. Thus, each can be applied independently,
making local changes to non-overlapping regions of the AST, and the final ASTs
are the same.

The commuting diamond property implies strong commutativity, which im-
plies commutativity. Since,→□ and→♢ are confluent and commute,→□♢:=→□

∪ →♢ is also confluent.

→□♢ and →U have the commuting diamond property: Following the same rea-
soning as above, these two operations must operate on different nodes. Similarly,
for rewrites impacting non-overlapping regions of the AST, the final ASTs are
the same. Unlike above, rewrites can be applied to direct children for nodes of
the form ◦[a,b](ψ1∧ψ2)U[c,d)ψ, or ψU[c,d) ◦[a,b] (ψ1∧ψ2). We handle each of these
cases independently.

Case 1: ◦[a,b](ψ1 ∧ ψ2)U[c,d)ψ is reduced to □[0,c)(□[a,b)ψ1 ∧ □[a,b)ψ2) ∧ ♢[c,d)ψ
for both →□♢ followed by →U and the reverse.

Case 2: ψU[c,d) ◦[a,b] (ψ1 ∧ ψ2) is reduced to □[0,c)ψ ∧ ♢[c,d)(□[a,b)ψ1 ∧□[a,b)ψ2)
for both →□♢ followed by →U and the reverse.

This covers all the cases and proves the commuting diamond property. Since
→□♢ and →U are both confluent and commute, then →:=→□♢ ∪ →U=→□

∪ →♢ ∪ →U is also confluent. □
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A.5 Proof Sketch for Theorem 4

Proof (Sketch). Let there be an edge from ϕ to ϕ′ in the rewrite DAG, conj (ϕ) =
N , and assume ϕ has no decomposition with N subteams and a nonnegative ρub.

Case 1. conj (ϕ′) = conj (ϕ) The formula transformation did not introduce
a new top-level conjunct. Trivially there cannot be N + 1 subteams for ϕ′.

Case 2. conj (ϕ′) = conj (ϕ)+1 The formula transformation introduced a new
top-level conjunct. Let ϕ := ψ1 ∧ · · · ∧ ψk for k ≥ 1. Without loss of generality,
we assume ψk was rewritten by ψk 7→ ψk1∧ψk2. Note that all agent assignments
to ϕ have negative robustness upper bound. Thus, we consider an arbitrary
assignment via universal instantiation. By the definition of robustness upper
bound in (5), at least one of the top-level conjuncts had a negative robustness
upper bound under this assignment. If ψk did not have a negative robustness,
then one of the other conjuncts was the limiting factor and the rewrite will
not change this. If ψk did have negative robustness upper bound, then we must
show that its robustness cannot be improved. Note by (5) that robustness upper
bound is dependent on the assigned agents. For any of the assignments, we
cannot increase the robustness upper bound of ψk := ψk1 ∧ ψk2 by splitting
agents between ψk1 and ψk2 because there will be less assigned agents to each.

A.6 Decomposition Implementation Details

We now describe the individual components of our decomposition algorithm in
more detail. We start with compute assignment . Our implementation splits this
procedure into two steps: class assignment, and individual agent assignment.

Class Assignment We start by describing a general class assignment algo-
rithm, then discuss a restriction which emits useful bounds for pruning the For-
mula Rewrite DAG as described in Theorem 4. The class assignment encoding
computes a decomposition and assignment of number of agents from a given sig-
nal class to each subteam. It assumes that the maximum possible decomposition
is to assign each conjunct to its own subteam. Since this may not be possible, the
encoding must allow for grouping two or more conjuncts in the same subteam.
The class assignment problem is encoded as an ILP.

LetM be the number of top-level conjuncts. We define the following variables:

1. I: a M ×M matrix of indicator variables, where Iij is 1 iff conjunct i is
assigned to subteam j;

2. zgj for 0 ≤ j < M and g ∈ G: an integer between 0 and |A| encoding the
number of agents of class g assigned to subteam j. We refer to all these
variables collectively as z;

3. ρk for 0 ≤ k ≤ ast(ϕ): the robustness upper bound for each node in the
formula AST.

4. N : the number of subteams
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max ρmaxN + ρroot

s.t. N = ΣM
j max i(Iij)

∀j ΣiIij = 1

∀g ∈ G Σjz
g
j = |{a ∈ A|class(a) = g}|

∀k ∈ Tϕ ρk = compute robustness(ϕ, k, I, z)

ρroot ≥ 0

(17)

The ILP encoding given in (17) maximizes the number of subteams and the
robustness upper bound for this assignment at the root. The number of subteams
is multiplied by a (possibly loose) upper bound of ρroot given the available agents,
ρmax , to ensure that increasing the number of subteams has a larger impact on
the objective than increasing robustness upper bound. We prefer the maximum
number of subteams possible as long as the robustness upper bound at the root
is nonnegative. The first constraint encodes the number of subteams using the
indicator variables. The second constraint requires that each conjunct is assigned
to exactly one subteam. The third constraint requires the sum of all subteam
class assignments to equal the expected number of agents of that class. The
fourth constraint encodes robustness upper bound for each AST node according
to the recursive definition. The number of agents of each capability class at a
given AST node is a straightforward function of I, z, and the AST structure
(children inherit the assignment of parent nodes). The fifth constraint requires
that the robustness upper bound be nonnegative.

In practice, we use a restricted version of (17) that is more performant. The
restriction assumes that each subteam corresponds to a single top-level con-
junct and simply aims to maximize the robustness upper bound. Taking this
into account results in a much smaller ILP encoding, and enables us to prune
descendants in the DAG by utilizing Theorem 4. Instead of optimizing over
the number of subteams and the robustness upper bound at the root, we fix
the number of subteams and only search for an assignment that maximizes the
robustness upper bound. If the optimal value is negative, then the problem is
infeasible. This scales much better and is a reasonable approach in many situa-
tions when paired with the rewriting framework that adds top-level conjuncts.
It will simply stop exploring a node’s children when there are more conjuncts
than possible subteams. If the root node already has more top-level conjuncts
than possible subteams, then we can run the class assignment algorithm given
in (17) to obtain a class assignment.

Individual Agent Assignment For each signal class, we solve a separate
MILP to assign individual agents. Each agent has the same set of signals but
can start in separate states. Let N∗ be the optimal number of subteams returned
by the class assignment and Ac be the set of agents for class c. With some abuse
of notation we use Ac(i) to refer to the agents assigned to subteam i. We start
by defining the following variables:
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1. C: a N∗ × |Ac| matrix of constant start up costs for each agent and sub-
specification (maximum agent to predicate cost over all predicates in the
subspecification) as referred to in Sec. 4.3

2. B: a N∗×|Ac| matrix of indicator variables for whether an agent is matched
to a particular subteam and subspecification

The MILP encoding is given by:

min ΣiΣjCijBij

s.t. ΣjBij = |Ac(i)| ∀i
ΣiBij = 1 ∀j

(18)

It minimizes the total assignment cost while ensuring the assignment matches
the class assignment Ac and assigns every agent to a single subspecification. We
solve this MILP for each signal class. Note that we cannot use a polynomial-
time assignment algorithm such as Munkres [20] or JVC [13,5] because each
subspecification can have multiple agents assigned to it.

Compute Score Finally, we describe our implementation of compute score for
the heuristic metrics described in Def. 6. Recall that our overall score was given
by: ξ := ⟨N,−Cap,−Cpp,−h, ρub⟩.

We set N := N∗ and ρub := ρ∗root , the optimal values from the class assign-
ment optimization. The start up cost Cap is the maximum over all objective
values from individual agent assignment. The predicate to predicate cost Cpp

is problem-specific. In all of our experiments and case studies, we had a graph
representation of the environment labelled with predicate symbols or explic-
itly provided costs. Individual predicate-to-predicate costs (represented by the
function cpp) were calculated as maximum weighted shortest path between any
two states labelled with the given predicates in the graph representation. The
predicate-to-predicate cost for a given subspecification was the maximum over
the pairwise costs between all predicates in a subspecification. Then Cpp is de-
fined as the maximum over all the subspecification predicate-to-predicate costs.
The formula horizon h is calculated as defined in Def. 4.

A.7 Case Study Details

Here we provide implementation details related to our specific case studies.

CaTL Example When comparing our method against the decomposition method
in [14], we perform a two-tailed Wilcoxon Signed Rank Test on the runtime dif-
ference for each fixed number of agents (10-50) and obtain test statistics: 10, 10,
6, 1, and 1, respectively. These are all statistically significant for α = 10% and
the last two provide confidence up to α = 0.5%. Timeouts were included with
the timeout value of 5 minutes. Note that the first test statistic (for 10 agents)
is statistically significant, but in favor of the other technique.
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Fig. 6: Comparison of our approach rw-decomp to monolithic synthesis. The
decomposition runtime includes the time to decompose and solve each of the
subproblems serially.

Figure 6 depicts the runtimes of our approach against monolithic (no de-
composition) synthesis. The monolithic approach had 17 total timeouts and our
approach had one. This demonstrates that decomposition has value over solving
the entire problem centrally. The approach of [14] also outperformed monolithic
synthesis.

We also ran these same experiments with SCIP 7.0.3 [10]. Figures 7 and 8
show the results compared to the SMT-based CaTL decomposition approach and
monolithic synthesis, respectively. Monolithic synthesis resulted in 31 timeouts.
The SMT-based approach had two degenerate solutions and 22 timeouts. Our
approach had no degenerate solutions and five timeouts.

Compute Example In this example, each agent is a compute node with either
a CPU (C) or GPU (G), equipped with a certain number of cores that can be
process a job in serial (S) or in parallel (P ). There are two types of jobs that
may get submitted for processing – batch jobs (B) or administrative jobs (A),
and each has its own unique request number. Batch jobs get executed once in
a 12 hour period, while administrative jobs are executed periodically. Every job
requires a certain amount of compute capability for a certain amount of time.
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Fig. 7: Comparison of our approach rw-decomp to the SMT-based CaTL decom-
position approach using SCIP.

For example □[0,2)(A3CP ≥ 16) is an administrative job with request number
3, and it requires at least 16 CPU cores running in parallel for 2 time steps. A
scheduler must assign each job to one or more compute nodes so that the job
can run for the specified period of time. A new job cannot start on a given node
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Fig. 8: Comparison of our approach rw-decomp to monolithic synthesis using
SCIP.

until its previous job has completed. The full specification for this problem is

♢[0,12)

(
□[0,4)(B0CP ≥ 16)∨
□[0,2)(B0GP ≥ 10)

)
∧

♢[0,12)

(
□[0,2)(B1CP ≥ 20)∨
□[0,1)(B1GP ≥ 10)

)
∧

♢[0,12)

(
□[0,4)(B2CS ≥ 8)

)
∧

♢[0,12)

(
□[0,1)(B2GP ≥ 8)∨
□[0,2)(B2GS ≥ 16)

)
∧

♢[0,12)

(
□[0,4)(B4CS ≥ 8)

)
∧

□[3,12)

(
♢[0,3)

(
□[0,1)(A0GS ≥ 8)∨

□[0,1)(A0CS ≥ 8)
)
∧

♢[0,3)

(
□[0,1)(A1CS ≥ 8)

)
∧

♢[0,6)

(
□[0,1)(A2GP ≥ 8)∨

□[0,2)(A2CP ≥ 16)
)
∧

♢[0,6)

(
□[0,1)(A3GP ≥ 8)∨

□[0,2)(A3CP ≥ 16)
)
∧

♢[0,6)

(
□[0,1)(A4GP ≥ 8)∧

□[0,1)(A4CS ≥ 16)
))
.

(19)
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We also ran this problem using SCIP. Without decomposition it took 23.78s
to solve. The decomposition approach took 3.43 to decompose and solve serially,
where computing the decomposition took 1.3s and the longest subproblem took
0.28s to solve.

Energy Grid We have power companies A and B. Each agent in the energy
example contains a signal for referring to overall power P and of a particular type
C=coal, NG=natural gas, W=wind, N=nuclear, and S=solar for each region
i. Thus, each power station can supply power to any region(s). Overall power
and energy type are always applied together. This allows us to specify overall
power requirements while also making statements about the power sources. The
naming scheme for signals used in specifications is ⟨type⟩⟨company⟩⟨region⟩.
For example, CA0, refers to coal from power company A applied to region 0.
The region could request generic power with P0, which does not specify the
source. To avoid conflicting signal generators across subteams (one less than
predicate trying to reduce power, and another trying increase power in different
subteams), we add an additional pass that groups conjuncts such that regions
are not split across more than one subteam. Note that each subteam can still
contain multiple regions. The full energy-grid specification is given by

♢[5,10)(□[0,43)(P0 ≥ 9 ∧ P1 ≥ 4)∧
□[0,43)(P2 ≥ 7 ∧ P3 ≥ 10)∧
□[0,43)(P4 ≥ 3 ∧ P5 ≥ 3)∧
□[0,43)(P6 ≥ 3 ∧ P7 ≥ 2))∧

□[5,46)(♢[0,1)(SA0 ≥ 2 ∨NA0 ≥ 3)∧
♢[0,2)(SA1 ≥ 2 ∨NA1 ≥ 4)∧
♢[0,3)(NGA2 ≥ 2 ∨WA2 ≥ 1)∧
♢[0,4)(NGA3 ≥ 2 ∨WA3 ≥ 2))∧

♢[5,10)(□[2,43)(CA1 ≤ 2))∧
□[5,46)(♢[0,1)(SB4 ≥ 2 ∨NB4 ≥ 3)∧

♢[0,2)(SB5 ≥ 2 ∨NB5 ≥ 4)∧
♢[0,3)(NGB6 ≥ 2 ∨WB6 ≥ 1)∧
♢[0,4)(NGB7 ≥ 2 ∨WB7 ≥ 2))∧

♢[5,10)(□[2,43)(CB4 ≤ 2))∧
♢[5,10)(□[2,43)(SB8 ≥ 1))∧
♢[5,10)(□[2,43)(SB9 ≥ 1 ∨WB9 ≥ 2))∧

(20)

We ran this case study using SCIP as well. Without decomposition, this
problem timed out at 6 hours. With decomposition it took 189.72s to decompose
and solve the subproblems serially, where computing the decomposition took
23.67s and the longest subproblem took 30.96s to solve.
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