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Abstract

Real-time and human-interpretable decision-making in autonomous systems is a significant
but challenging task, which usually requires predictions of possible future events from limited data.
While machine learning techniques have achieved promising results in this field, they lack inter-
pretability and the ability to make online predictions for sequential behaviors. In this paper, we
introduce a time-incremental learning framework to predict the labels of time-series signals that
are received incrementally over time, referred to as prefix signals. These signals are being observed
as they are generated, and their time lengths are shorter than their corresponding time horizons.
We present a novel decision tree-based approach to learn a finite number of Signal Temporal Logic
(STL) specifications from a given dataset and construct a predictor based on them. Each STL
specification serves as a binary classifier of the time-series data and captures a specific part of the
dataset’s temporal properties over time. The predictor is built by assigning time-variant weights to
the STL formulas, which represent their classification impacts. The weights are learned using neu-
ral networks to minimize the misclassification rate of classifying prefix signals with different time
lengths. The predictor is then used to predict the labels of prefix signals by computing the weighted
sum of their robustnesses with respect to the STL formulas. The effectiveness and classification
performance of our algorithm is evaluated on urban-driving and naval-surveillance case studies.
Keywords: Machine Learning, Formal Methods, Decision Trees

1. Introduction

Real-time decision-making for robotic tasks is a challenging problem, which usually requires pre-
diction of possible outcomes in an incremental manner, based on available partial signals over time.
The accuracy of such incremental predictions determines the efficiency of mitigating the occurrence
of undesired behaviors. For example, consider the naval surveillance scenario (Fig. 1) from Kong
et al. (2016). A vessel with normal behavior approaches from the open sea and heads directly to-
wards the harbor, while a vessel behaving anomalously either veers to the island and then heads to
the harbor, or it approaches the other vessels in the passage between the peninsula and the island
and then returns to the open sea.

Predicting the behavior label of the vessels on the fly is of interest for mitigating anomalous be-
haviors and / or minimizing casualties. Suppose the time horizon of the scenario is 7'. In this paper,
we focus on a time-incremental learning framework, where a dataset S = {s, ¢! fvzl, consisting of
N signals s with time length T and their corresponding labels ¢ are provided. For the example
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introduced above, the signals are the recorded trajectories of the vessels over time (e.g., () and
y(t)) and the labels indicate normal and anomalous behaviors. Our goal is to develop a method to
classify (predict) the real-time behavior of a vessel represented by a prefix signal s[0:¢],1 < ¢ < T.
Motivated by the interpretability and readability of temporal logics Clarke et al. (1986), we use
Signal Temporal Logic (STL) Maler and Nickovic (2004) formulas as classifiers.

There is a rich literature on integrating formal methods with
machine learning (ML) to express classifiers of time-series data as i‘s’
temporal logic formulas Bartocci et al. (2014), Mohammadinejad 40
et al. (2020b), Bombara et al. (2016), Xu et al. (2019), Hoxha et al. 3K
(2018), Jha et al. (2019), Ketenci and Gol (2019), Jin et al. (2015), 525
Neider and Gavran (2018), Aasi et al. (2022). Initial attempts in =2
this area focused on finding optimal parameters for fixed formula
structures Bakhirkin et al. (2018), Bartocci et al. (2015) Asarin et al. st Land
(2011), Hoxha et al. (2018), Jin et al. (2015). Learning both formula o 10 20 W,y o
structures and their parameters has been addressed in supervised
classification methods. The work in Kong et al. (2016) is based on Figure 1: Schematic of the
lattice search techniques, while Bombara et al. (2016) uses decision naval surveillance scenario
tree algorithms. The other related approaches are in different infer- Kong et al. (2016).  Nor-
ence frameworks Yan and Julius (2021), Vazquez-Chanlatte et al. mal trajectories are shown
(2017), Bombara and Belta (2017), Baharisangari et al. (2021), Yan 1n green, and the anomalous
et al. (2019), Mohammadinejad et al. (2020a), Linard and Tumova Ones are in blue and magenta.
(2020). None of these existing works focus on predicting the label
of prefix signals. An intuitive solution to this problem is to apply an offline supervised learning
method to the given dataset, learn an STL formula, and construct a monitor Maler and Nickovic
(2004). However, the Boolean or quantitative output of a monitor could be inconclusive for the
prefix signals with time lengths shorter than the horizon of the learned STL formula.

We propose a novel framework to predict the label of prefix signals with different time lengths.
Our framework consists of three main parts: First, we analyze the signals and apply a heuristic
method to find a finite number of time points along the horizon of the signals, called decision times,
which are potentially informative for the classification of prefix signals into two classes. Then, for
each decision time, we generate a decision tree-based classifier Breiman et al. (1984); Ripley (2007)
and describe it by an STL specification. Each STL formula captures the temporal properties of the
prefix signals with time horizons less than the corresponding decision time. Finally, we assign a
time-variant weight distribution to the learned STL formulas using NNs, the weighted conjunction
of the STL formulas is interpreted as a weighted STL (wSTL) formula Mehdipour et al. (2020), and
the predictor is constructed based on that.

The main contributions of the paper are as follows: (a) formulation of the time-incremental
learning problem, where a dataset of signals and their labels is given and the goal is to develop a
method to predict the label of prefix signals that are received incrementally over time; (b) inter-
pretable classification solution to the time-incremental learning problem based on STL, decision
trees, and neural networks; (c) study of the classification and prediction performance of the pro-
posed framework on urban-driving and naval-surveillance case studies.

 Peninsula/ __

2. Preliminaries

Let R, Z, Z>¢ represent the sets of real, integer, and non-negative integer numbers, respectively.
Given a,b € Z>(, we abuse the notation and use [a,b] = {t € Z>o | a <t < b}. A discrete-time
signal s with time horizon T' € Z> is a function s : [0, 7] — R™ that maps each discrete time point
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t € [0,T] to an n-dimensional vector s(¢) of real values. We denote the components of signal s as
sj,7 € [1,n], and the prefix of s up to time point ¢ by s[0:t]. Let ¢ € C' = {C),, C},} denote the label
of a signal s, where C), and C), are the labels for the positive and negative classes, respectively. We
consider a labeled dataset with N data samples as S = {s?, £}V |, where s’ is the i*" signal and
¢¢ € C'is its corresponding label. A prefix dataset S|0 : ti] with horizon ty, is the dataset consisting
of prefix signals with horizon t; and their labels, denoted by {s[0 : #;], ¢}}¥,. The cardinality of
a set is shown by | - |, the empty set is denoted by &, and a vector of zeros is denoted by ) (the
dimension should be clear from the context).

Signal Temporal Logic (STL): STL was introduced in Maler and Nickovic (2004) to handle real-
valued, dense-time signals. Informally, the STL specifications used in this paper are made of pred-
icates defined over signal components in the form of s;(t) ~ m, where 7 € R is threshold and
~€ {>, <}, which are connected using Boolean operators, such as — (negation), A (conjunction),
V (disjunction), and temporal operators, such as G|,y (always) and F], y) (eventually). The seman-
tics of STL are defined over signals. For example, formula ¢y = G[p 551 < 4 means that, for all
times 2,3,4,5, component s; of a signal s is less than 4, while formula ¢ = F[3 1952 > 6 expresses
that at some time between 3 and 10, so(t) becomes larger than or equal to 6.

STL has both qualitative (Boolean) and quantitative semantics. We denote Boolean satisfaction
of a formula ¢ at time ¢ by s(t) = ¢. For the quantitative semantics, the robustness degree Donzé
and Maler (2010), Fainekos and Pappas (2009), denoted by p(¢, s, t), captures the degree of satis-
faction of a formula ¢ at time ¢ by a signal s. For simplicity of notation, we use s = ¢ and p(¢, s)
as short for s(0) = ¢ and p(¢, s, 0), respectively. Boolean satisfaction s |= ¢ corresponds to non-
negative robustness (p(¢, s) > 0), while violation corresponds to negative robustness (p(¢, s) < 0).
The minimum amount of time required to decide the satisfaction of a STL formula ¢ is called its
horizon, and is denoted by hrz(¢). For example, the horizons of the two example formulas ¢; and
¢2 given above are 5 and 10, respectively.

Parametric STL (PSTL): PSTL Asarin et al. (2011) is an extension of STL, where the threshold
m in the predicates and the endpoints a and b of the time intervals in the temporal operators are
parameters. A specific valuation of a PSTL formula ) under the parameter values 6 € © is denoted
by 1y, where O is the set of all possible valuations of the parameters.

Weighted STL (wSTL): wSTL Mehdipour et al. (2020) is another extension of STL with the same
qualitative semantics as STL, but its robustness degree is modulated by the weights associated with
the Boolean and temporal operators. In this paper, we focus on a fragment of wSTL, with weights
on conjunctions only.

3. Problem Statement

First, we provide some definitions used in the problem formulation.

Definition 1 (Predictor) The predictor Pg(s[0:t]) = ((t) € C is a function that maps prefix signal
s[0:t] to a label £(t), which represents the satisfaction prediction of s[0:t] at time t with respect to
the STL formula ®: Py (s[0:t]) = C), if s[0:t] = ®; otherwise, Py (s]0:t]) = C,.

Definition 2 (Timepoint MisClassification Rate (TMCR)) Let Py (s'[0:t]) = (i(t). The Time-
point MisClassification Rate TM CR(Psg,t) of predictor Py at time step t is defined as:

S0 [ (F ()= Cp A 6 =Co) v (F(1) = Cu A £ = )|

Definition 3 (Incremental MisClassification Rate (IMCR)) The Incremental MisClassification
Rate of predictor Py, denoted by IM CR(Pg), is the vector of TMCR values over the time horizon
T,ie., [TMCR(P3,0), TMCR(Ps,1),...., TMCR(Ps,T)].
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We are now ready to formulate the main problem that we consider in this paper:

Problem 1 Given a labeled data set S = {(s', ()}, find an STL formula ® and its correspond-
ing predictor Py such that IM C R(Pg) is minimized.

4. Solution

Our approach to Pb. 1 is illustrated in Fig. 2. It consists of
three main components: (i) Signal Analysis, described in Signal
Sec. 4.1, applies a heuristic signal analysis method on the
given dataset to find a finite number of potentially informa-
tive timepoints, referred as decision times and denoted by ¢ T ={ts}sr
the set T = {t;}X,; (ii) Classifier Learning, described in Classifier

Analysis

5=, P, >

Sec. 4.2, generates an STL formula for each decision time Learning

ti, in T, using a decision tree method. This part learns both K
the structure of the STL formula and its parameters. The ¢ F={#1}im
set of generated STL formulas is denoted by F = {¢y }<_; N Classifier

(iii) Classifier Evaluation, explained in Sec. 4.3, assigns a Evaluation

time-dependent weight distribution to the STL formulas in
F, based on NNs. The weights capture the prediction per-
formance of each STL formula over time. The output of this
part is the wSTL formula ® = A,“* (t)qﬁk and a predictor
Ps based on that.

¢ e = /\wk(t)q»c
k

Figure 2: Schematic of our frame-
work.

4.1. Signal Analysis

Given the dataset S, the role of the Signal Analysis part is to analyze the signals of the dataset
over time and find a finite number of timepoints, referred to as decision times. The decision times,
denoted by t;, are the timepoints that are potentially informative for classifying the prefix dataset
S[0 : tx] into two classes, and they are considered as candidate timepoints for generating classifiers.
Here we propose a metric to formulate an optimization problem to find the decision times.

A commonly used distance function for the case of
multi-dimensional time-series data is the Euclidean dis-
tance Bombara and Belta (2017). For two signals st
and s2, the Euclidean distance is defined as d? (s!, s?) =
> S (sj(t) — s3(t))%. 1In this work, we extend
it to define the time-dependent Euclidean distance as
d? (s',s%t) = > i1 (Sjl(t) - s?(t))2, vt e {0,....,T}. In R R
particular, given the dataset .S, the set of signals with posi- o W @ @ @ % @
tive labels are indexed by h € {1, ..., N, } and with negative
labels by g € {1, ..., N,, }, respectively, with N,,+N,, = N.
Thus, we can formulate the positive-negative distance in
the dataset S as d2,() = Y0, S S0 (sht) —
s9(1))?, vt € {0,..., T}.

To find proper time steps as the decision times, we use d?m as an optimization metric to evaluate
the separation between the positive and negative labeled prefix signals. We compute the decision
times as the informative timepoints where the first- or second-order discrete derivatives of dfm are
zero. The intuition is that at these timepoints, the positive and negative signals are locally at the
furthest or the closest distance from each other (first-order derivatives), or they are the switching

Positive-negative distance in naval scenario
tg

20.0

Normalized Distance

Figure 3: Positive-negative distance
in the naval scenario.
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timepoints for the evolution of the positive-negative distance over time (second-order derivatives).
We also consider the horizon 7' of signals as a decision time. The set of decision times is denoted
by T = {tk}é(:p where Vk € {1, ,K} 1ty € 2207 1<t <T.

Note that a trivial solution to Pb. 1 is to generate classifiers at every timepoint along the hori-
zon of the signals, which is obviously inefficient and computationally expensive. We compare the
efficiency and the prediction accuracy of this trivial solution with our method in Sec. 5.

Example 1 In Fig. 3, the positive-negative distance is depicted over time for the naval surveillance
case study (Sec. 1). The Signal Analysis part finds 8 decision times T = {tk}zzy where t1, 13, t5
and t7 are the timepoints that the first-order discrete derivatives are zero, ta,t4 and tg are the zero
second-order discrete derivatives, and tg is the horizon T of the signals.

4.2. Classifier Learning

The next component, Classifier Learning, takes as input the set of decision times 7 from the
Signal Analysis part, in addition to the dataset S. Classifier Learning is responsible for generat-
ing classifiers at each decision time ¢; on the prefix dataset S[0 : t;]. To provide interpretable
specifications for the classifiers and inspired by Bombara et al. (2016), we use the decision tree
method £ in Alg. 1 to construct the classifiers. For each decision time t;, € 7T, Alg. 1 is used
to grow a decision tree tree; and a corresponding STL formula ¢;. The algorithm has three
meta parameters: 1) PSTL primitives P: the splitting rules at each node are simple PSTL for-
mulae, called primitives Bombara et al. (2016). Here we use the first-order primitives described as
P = {G[to 11(85 ~ ), Fiyo 41)(85 ~ )}, 2) impurity measure J: we use the extended misclassi-
fication gain impurity measure from Bombara et al. (2016) as a criterion to select the best primitive
at each node, and 3) the stopping conditions stop: we stop the growth of the trees when they reach
a given depth.

Alg. 1 is recursive and takes as input (1) the prefix dataset S[0:t] = {s'[0:¢1], £/}, (2) the
path formula to reach the current node ¢P?*"  and (3) the current depth level h. At the beginning,
the stopping conditions are checked (line 4), and if they are satisfied, a single leaf that is assigned
label ¢* € C is returned (lines 5-6), where p(S[0:tx], c; P*") captures the classification quality
based on the impurity measure [J. If the stopping conditions are not satisfied, an optimal STL
formula among all the possible valuations of the first-order primitives is found (line 7), denoted by
¢*, and assigned to a new non-terminal node in the tree (line 8). Next, the prefix dataset S[0:t] is
partitioned according to the optimal formula into satisfying and violating prefix datasets S+ [0:¢]
and S [0:ty], respectively (line 9), and the construction of the tree continues on the left and right
subtrees of the current node (lines 10-11). Each decision tree treey, is translated to a corresponding
STL formula ¢, using the translation method in Bombara et al. (2016). Output of the Classifier
Learning is the set of STL formulas F' = {¢y } |, Vo € F : hrz(¢y) < ty.

Example 2 ((Cont.)) For the naval surveillance scenario, the output of the Signal Analysis block
isT = {tk}izl. Classifier Learning generates a classifier for each decision time ty, trained on the
prefix dataset S[0:ty), and the output of this part is F = {¢y,}3_,. For example, with 3-fold cross
validation and maximum depth = 2 for the trees, the STL formulas learned for the third and fourth
decision times are: (i) t3 =20 : ¢3 = (¢31 A ¢32) V (7 @31 A h33), 31 = G116 (y > 23.33), 30 =
Fiis18/(y < 33.83), ¢33 = Gu131(7 > 42.69); and (i) t4 = 28 b4 = (P41 A ¢a2) V (7 a1 A ¢a3),
a1 = G[7724] (y > 20.88),¢4g = F[7’27] (z < 44.71), Pa3 = 727] (J,‘ > 29.02). Note that hTZ(¢3) =
18 < t3 and hrz(¢4) = 27 < t4. The trajectories of the vessels over time and the learned formulas
are shown in Fig. 4.
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Algorithm 1 Decision Tree Construction Method £

Meta-Parameters: PSTL primitives P, impurity measure .7, stopping conditions stop
Input: prefix dataset S[0 : t;], path formula ¢P%*", current depth level h
Output: sub-tree treey
if stop(¢P?t" h, S[0 : t;]) then
¢* = argmax,c{p(S[0 : tx], c; pP1")}
return lea f(c*)
¢* = argmax,cp geoJ (S[0 : ti], partition(S[0 : t], pg A $P*H))
treey < non_terminal(¢*)
ST10: t], SL[0 : tg] < partition(S[0 : t1], pP*" A ¢¥)
treeg.left < E(STI0 : ti], P A p* b + 1)
. treeg.right < E(S1 [0 : ty], pPUh A =¢* b + 1)
. return treeg

A A S o
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Figure 4: (a), (b) x and y components of naval trajectories over time, up to the decision time t3 = 20,
(c) and (d) the same components, up to decision time ¢4 = 28, respectively. The learned formulas
¢3 and ¢4 are shown, where the thresholds of the always and eventually operators are shown by
solid and dashed lines, respectively.

4.3. Classifier Evaluation

The final component of our framework, Classifier Evaluation, takes as input the given dataset .S
and the set of generated STL formulas F' = {(bk}ff:l. Classifier Evaluation assigns a non-negative,
time-variant weight distribution to the formulas, denoted by w(t) = {wg(t)}X_,, which adjusts the
classification performance of the formulas for classifying prefix signals with different time lengths.
In Alg. 2, we present a method to find the weights of the formulas w(¢) over time. With slight abuse
of notation, we denote the column vector of the weights at time ¢ by w(t), which is a K x 1 array.
In Alg. 2, we desire to find the K x T" dimensional matrix Q = [w(0), w(1), ..., w(7T)] that includes
the vectors of the weights over all timepoints along the horizon of the signals.

First, we introduce some notations: at each time step ¢, the subset of the formulas in F' that have
a horizon less than or equal ¢ is denoted by F=, and the rest of the formulas that have higher horizon
are denoted by F}”. Note that F= N F;” = @ and F= U F;” = F. The reason for this partitioning
is that at each time step ¢ and the prefix signal s?[0:], the formulas in th are able to predict a label
for s¢[0:t], based on their satisfaction or violation with respect to the prefix signal. However, the set
of formulas in F;” may not be conclusive to predict a label and they need more time instances of the
prefix signal. Itis clear that at t = 0, FOS =gand Fy = F,andatt =T, F; =Fand F7 = 2.

Alg. 2 takes as input the dataset S and the set of STL formulas F'. The subsets FOS and Fjy
and the weight vector w(0) are initialized by &, F', and the zero vector (), respectively (line 3).
For each time step ¢ along the horizon of signals (line 4), the subsets of formulas th and Fy” are
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computed by the partition_formulas function (line 5). This function compares the horizons of
the formulas in F' with the current time step ¢, and partitions them into th and F;. If there is no
update in the subset th compared to the previous time step (line 6), the same weight vector from
the previous time step is used for the current time (line 7). If the set th is updated (line 8), first,
we construct the prefix dataset S[0 : ¢] (line 9). Then, the robustness of the prefix signals in S[0:]
are computed with respect to the formulas in th, by the compute_robustness function, and stored
in the robustness matrix RtS (line 10). The dimensions of the RtS are N X ]th |, where the i row
contains the robustness of prefix signal s¢[0:¢] with respect to the formulas in th. The robustness
matrix RtS and the labels of the signals {¢'}¥ | are used to learn the weights of the formulas in th
at time ¢, denoted by the vector w=(t) (line 11), and the weights of the formulas in F;” are set to
zero, denoted by w~ (t) (line 12). The function learn_weights constructs a Neural Network (NN)
to learn the weights of the formulas in th. Using NNs to learn the weights of wSTL formulas
has been explored previously in Yan and Julius (2021). Inspired by Cuturi and Blondel (2017), the
differentiable loss function of our designed NN measures the difference between the predicted label
of the prefix signal s°[0 : ], and its actual label £’ from the dataset S. Finally, the transposed weight
vector w(t) is added as a column vector (line 13), to the weight matrix 2.

Algorithm 2 Learning the weights of the STL formulas

1: Input: dataset S = {s*, ¢}V |, set of STL formulas F = {¢x }< |
2: Output: matrix of the weights )

3: nitialize: Fy + @, Fy” < F, w(0) « 0

4: Fort=1,...,T:

5: FS, F? « partition_formulas(F,t)

6:  if F= = F~ | then

7: wt)y=w(t-1)

8: Otherwise

9: S[0:t] = {s'[0: ¢], 0},

10: RS « compute_robustness(F=, S[0 : t])
11: w=(t) « learn_weights(RE, {(}N.))

12: w”(t)=10

13: w(t) =

The output of the Classifier Evaluation is considered as the weighted conjunction of the STL
formulas in F, denoted by the wSTL formula & = A kw"’(t) ¢r.. The final output of our framework is
considered as the predictor Py, which predicts the label of a prefix signal s°[0 : ] as:

K
Py(s'[0 : t]) = £i(t) = sign (Z wi(t) . p(or, s°0 : 1])). (1)
k=1

Note that our proposed predictor computes the robustness of the prefix signal as the weighted
sum of the robustnesses of each STL formula in ®, which is different from monitoring the wSTL
formula ® and computing its robustness by the methods in Mehdipour et al. (2020); Yan and Julius
(2021). The time-dependent nature of the weights adjusts the predictor, based on the classification
performance of the STL formulas and the time length of the prefix signals. In Sec. 5, we emphasize
the importance of the weight distributions of the STL formulas, by showing the performance of the
predictor, with and without considering the weight distributions.
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Example 3 ((Cont.)) We apply the Classifier Evaluation part in Alg. 2 to the naval scenario ex-
ample over the time interval [20,28). Note that t = 20 and t = 28 are the horizons of formulas
¢3 and ¢4 from Example 2, respectively. Att = 20, the set of formulas with horizon less than or
equal 20 is FQ% = {¢1, P2, @3}, and the set of formulas with longer horizon is Fy) = {¢4, ...}
For the prefix signals s'[0 : 20], the weighted sum of their robustnesses with respect to formulas
in FQS0 are used to predict their labels @i(20). An NN is constructed to find the optimal weights
w=(20) = [w1(20),w2(20),ws(20)] for the formulas in FQSO, to minimize the misclassification rate
of the prefix signals. For the formulas in Fs, their weight vector w” (20) = [w4(20), ..., ws(20)] is
set to zero, and we have w(20) = [w=(20),w>(20)]".

For the timepoints t = 21 to t = 27, there is no update in the set F, S, ie., th = th_l, and the

robustness of the prefix signals with respect to formulas in th are the same as t = 20. Therefore,
we have: ¥21 < t < 27 : w(t) = w(t = 20). Art = 28, the formula ¢4 is included in the set F=.
Since FS # Ff_l, a new NN is constructed to compute the weights w=(t) = [w1§ (1), ...,wf ()],
with respect to prefix signals s'[0 : 28], and w” (t) = [ws(t), ..., ws(t)] is set to zero. The same
procedure is followed for all other timepoints along the signals horizon.

5. Case Studies

We demonstrate the usefulness and classification performance of our approach with two case stud-
ies, i.e., the naval surveillance scenario in Sec. 1 and an urban driving scenario implemented in the
simulator CARLA Dosovitskiy et al. (2017). We compare our framework with two baselines:

(i) Uniform-weights: The main purpose of the uniform-weights baseline is to emphasize on the
importance of considering time-variant weight distributions in the predictor function. In this base-
line, we follow the Signal Analysis and Classifier Learning parts exactly as in our framework, i.e.,
To =T = {tx,}, and F, = F = {¢}I*,, but we consider a uniform distribution for the
weights of the formulas at all decision times and we skip the Classifier Evaluation part. Therefore,
Vk e {l,..,K}and Vt € {1,...,T}, we have wy,,,(t) = 1 and the final output of uniform-weights
baseline is considered as ®,, = /\leqbk;

(ii) All-times: In this baseline, we show the significance of choosing a finite number of decision
times. Instead of choosing a finite number of decision times, we generate classifiers at all timepoints
along the horizon T of signals. Hence, the set of decision times in the all-times baseline is 7, =
{1,2,..., T} and we skip the signal analysis part. For each decision time ¢, , € 7, and prefix dataset
S[0 : tg], we use the Classifier Learning and Classifier Evaluation parts to learn an STL formula
¢k, and weight distribution wy, ,(t). The final output of the all-times baseline is considered as

& — AT Wi,a(t) ¢
a k=1 k,a-

We use Particle Swarm Optimization (PSO) Kennedy and Eberhart (1995) to solve the optimiza-
tion problems in Alg. 1 and the PyTorch Paszke et al. (2019) library for modeling the NNs. The
parameters of the PSO and the NN used in Sec. 4.3, are tuned empirically. We use the same hyper-
parameter initialization for our method and the two baselines. In both scenarios, we evaluate our
framework with a maximum depth of 2 for the decision trees, and with 3-fold cross-validation. The
execution times are measured based on the system’s clock. All computations are done in Python 2,
on an Ubuntu 18.04 system with an Intel Core i7 @3.70 GHz processor and 16 GB RAM.

5.1. Naval scenario

Consider the naval surveillance scenario from Kong et al. (2016) shown in Fig. 1. The dataset
consists of 2000 signals, with 1000 normal and 1000 anomalous trajectories. The signals are the 2-
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dimensional trajectories with planar coordinates (z(t), y(t)) and 61 timepoints. The labels indicate
the type of the vessel’s behavior (normal or anomalous).

Results: The Signal Analysis component of our framework finds 8 decision times (see Fig. 3),
which are: Tvava = {tr oo, = {12,16,20, 28,36, 38,41,60}. Examples of formulas learned by
the Classifier Learning part are presented in Sec. 2. The final wSTL formula learned by our frame-

work is D ygpar = Azzlwk(t)qﬁk, where wy(t) is the time-dependent weight distribution learned by
the Classifier Evaluation part. The total execution time for our method is 739s.

The uniform-weights baseline has the same structure
and formulas as our framework, but with uniform weight ——
distribution for the formulas: @ nqpar,u = /\2:1 ¢r. The i
total runtime of the uniform-weights baseline is 727s. The
difference between the runtime of this baseline and our ap-
proach is due to running the Classifier Evaluation part for
our method, which takes about 12s. For the all-times base-
line, the set of decision times consists of all timepoints
along the signals horizon: 7, = {1,2,...,60}. For each | " nx
decision time, we learn an STL formula and then assign a
weight distribution, which leads to the formula ® yqyq1, = Figure 5: IMCR comparison of our

alt . . . . 1 i
2(11% ( )<Z>k a- The runtime of the all-time baseline is framework with the baseline me,thOdS’
e ’ in the naval surveillance scenario.

9747s, which is noticeably larger than our framework, as
it learns 60 STL formulas and computes their correspond-
ing weight distributions over time.

The incremental misclassification rate (IMCR) (see Sec. 3) of our framework, compared with
the two baselines, is shown in Fig. 5. The IMCR of our approach is better than the uniform-weights
baseline at all timepoints, which shows the significance of considering the time-dependent weights
for the formulas that adjust their classification power over time. For the all-times baseline, its
runtime (9747s) and memory consumption (learning 60 STL formulas and computing their weight
distributions) are noticeably bigger than our method (with a runtime of 739s and learning only 8
STL formulas and their weight distributions). Therefore, as we expected, the IMCR of all-time
baseline is generally better than our approach, at the cost of very large execution time and memory
consumption.

IMCR in Naval Surveillance Scenario

40 50 60

30
t(s)

5.2. Urban-driving scenario

Consider the urban-driving scenario in Fig. 6. It consists of an autonomous vehicle, referred as
ego, a pedestrian, and another car driven by a human driver. Ego and the other car are in different,
adjacent lanes, moving in the same direction on an uphill road toward an intersection with no traffic
light. The vehicles are moving by applying constant accelerations, which are smaller for ego, and
their positions are initialized such that the other car is always ahead of ego. There is an unmarked
cross-walk at the end, and a pothole in the middle of the ramp-shaped road.

There are two possible types (labels) for the behavior of the other car: aggressive or safe. An
aggressive driver keeps the same acceleration while moving in its lane, while a safe driver brakes
slightly when he reaches the pothole, and applies a full-brake to stop before the intersection if the
pedestrian crosses the street. Predicting the behavior label of the human driver in another car is
valuable, especially in the case that ego does not have a clear line-of-sight to the pedestrian. We
implement this scenario in the simulator CARLA. The simulation ends whenever ego gets closer
than 2m to its goal point. We assume ego is able to estimate the relative position and velocity of
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the other car. The dataset of the scenario consists of 300 signals with 477 uniform time-samples per

trace. 150 of the signals are for an aggressive driver and 150 are for a safe driver. The signals are

4-dimensional, which are the relative position and velocity of the other car in y and z axes.
Results: The Signal Analysis part finds 11 decision times

in the dataset of this scenario, which are: T7pan = {tk}i,l:l Ul’hi'imf‘“ 4P "d_es"i““

= {97, 131, 166, 186, 240, 289, 334, 394, 420, 440, 476}.  Other car

An example of the formula learned by the Classifier Learn- Voo,

ing part for the decision time to = 131 is: ¢3 = (¢21 A N

$22) V (=21 A b23), where o1 = Fjiogq3(vy < 1.11), £

P22 = Fluos,124)(y < 12.58), and ¢z = Fjy10,101)(y < 6.81).

For example, ¢2; states that at some timepoint between 122 to

130, the relative velocity of the other car in the y-axis gets less Figure 6: Schematic of the urban-

than or equal to 1.11 m/s. Note that hrz(¢9) = 130 < t,. driving scenario. The initial points

Pothole

The final wSTL formula learned by our approach is ®¢,pen = of ego and other car are denoted by
11 wi(t) . e . . FE4 and O; and the goal point for
k=1 o1, where the weight distribution wy, () is obtained ego is denoted by Fy,

through the Classifier Evaluation part. The total runtime of our
framework for this case study is 812s.

The uniform-weights baseline has the same formulas
with uniform weight distribution: ®ngya1 = /\,lg1 1Pk TMCR in Uhan-Driving Soenario
and its total runtime is 805s. For the all-times baseline, o

the set of decision times is: 7, = {1,2,...,477}, and

—— Ourmethod
—— Uniform-weights
— Alltimes

correspondingly the final wSTL formula is ®ngpara = %3"
izlwk’“(t) ®k,q. The runtime of the all-time baseline is g Reaching Pothole
33158s, which is exponentially larger than our framework,

as it learns 477 STL formulas and their weight distributions
over time. ’ o
The IMCR comparison of our approach with the base-
line methods is shown in Fig. 7. As we expected, the classi-
fication accuracy of our approach is better than the uniform-
weights baseline over the time horizon of the scenario. For
the all-times baseline, its IMCR is generally better than our framework, at the cost of exponentially
larger execution time (33158s) and memory consumption (learning 477 STL formulas and their
weight distributions), which makes it inefficient for large datasets with long time horizons.

400 500

200 300
t(1/60s)

Figure 7: IMCR comparison of our
framework with the baseline methods
in the urban-driving scenario.

6. Conclusion

In this paper, we considered the problem of predicting the labels of prefix signals over time, given a
dataset of labeled signals. Our proposed framework combines temporal logic and neural networks
to construct a predictor based on STL formulas for classifying the prefix signals. The effectiveness
of our method was evaluated in an urban driving and a naval surveillance scenario. In future work,
we will explore advanced signal analysis techniques and formulate optimization problems to find
the decision times. We will also investigate the performance of other machine learning methods,
such as recurrent neural networks and transformers, for time-incremental learning frameworks.
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