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Cancer is a complex and heterogeneous genetic disease. Di®erent mutations and dysregulated

molecular mechanisms alter the pathways that lead to cell proliferation. In this paper, we explore

a method which classi¯es genes into oncogenes (ONGs) and tumor suppressors. We optimize this

method to identify speci¯c (ONGs) and tumor suppressors for breast cancer, lung adenocarci-
noma (LUAD), lung squamous cell carcinoma (LUSC) and colon adenocarcinoma (COAD), using

data from the cancer genome atlas (TCGA).A set of geneswere previously classi¯ed asONGs and

tumor suppressors across multiple cancer types (Science 2013). Each gene was assigned an ONG

score and a tumor suppressor score based on the frequency of its driver mutations across all
variants from the catalogue of somaticmutations in cancer (COSMIC).We evaluate and optimize

this approach within di®erent cancer types from TCGA.We are able to determine known driver

genes for each of the four cancer types. After establishing the baseline parameters for each cancer
type, we identify new driver genes for each cancer type, and the molecular pathways that are

highly a®ected by them. Our methodology is general and can be applied to di®erent cancer

subtypes to identify speci¯c driver genes and improve personalized therapy.

Keywords: Oncogene; tumor suppressor; driver gene; driver mutation; cancer.

1. Introduction

Cancer is a complex disease driven by di®erent genetic, genomic or epigenetic mech-

anisms. A cancer driver gene is activated by driver mutations, but may also contain
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passenger mutations with no e®ect in cancer. Tumor genomes may contain up to

thousands of somatic mutations. However, only few of them drive tumorigenesis.1–5

Several approaches for estimating driver mutations using an uni¯ed analysis of

several tumor types were previously proposed, such as MuSiC,6 OncodriveFM12,7

OncodriveCLUST8 and ActiveDriver.9 A comparison of these methods is presented

in Ref. 1. MutSig10 is a widely used tool which identi¯es genes that were mutated

more often than expected by chance given background mutation processes.

Although the aforementioned methods identify signi¯cant variants in cancer, they

do not assess the general activity of a gene, such as its role as an oncogene or tumor

suppressor. An ONG is a gene that has the potential to cause cancer and it is often

mutated in tumor cells by gain-of-function mutations. A tumor suppressor is a gene

that protects a cell from cancer and may be mutated in cancer by loss-of-function

mutations. Well studied (ONGs) were found to be recurrently mutated at the same

amino acid position, while altered tumor suppressors were found to be mutated

through protein-truncating alterations throughout their length.2 A recurrent mis-

sense or in-frame indel usually indicate an oncogenic driver with a gain-of-function,

while a nonsense, nonstop or frame-shift indel usually indicate a tumor suppressor

with a loss-of-function.2

To the authors knowledge, there are not many general methods in literature

which classify cancer genes as ONGs or tumor suppressors. We are aware of one such

method which was proposed and validated in Ref. 2 and further applied to charac-

terize gene activity in cancer.11,12 The study proposed in Ref. 2 classi¯es a set of 125

cancer genes as ONGs or tumor suppressors, using data from the catalogue of so-

matic mutations in cancer (COSMIC).13 COSMIC database v72 provides over four

million variants across di®erent types of cancers. In this paper, we validate and

optimize the method proposed in Ref. 2, to accurately identify ONGs and tumor

suppressor drivers in reduced size data sets of speci¯c cancer types from the cancer

genome atlas (TCGA).14 Most of cancer studies using patient data are limited in

sample size, therefore currently available cancer data sets which provide somatic

mutation data may bene¯t from the proposed general approach of identifying cancer

speci¯c driver genes. In this study, we use somatic mutation data generated via DNA

sequencing for the following TCGA data sets: breast cancer,15 lung adenocarcinoma

(LUAD),16 lung squamous cell carcinoma (LUSC)17 and colon adenocarcinoma

(COAD).18

We identify potentially active ONGs and tumor suppressors in each of the four

cancer types. These genes could serve as potential drug targets to improve thera-

peutic strategies. In order to develop target speci¯c drugs, it is crucial to understand

the activity of the target genes, such as gain-of-function for the oncogenes or loss-of-

function for the tumor suppressors. Example of clinically available drugs that target

gain-of-function mutations are Erlotinib (EGFR gain-of-function mutation) and

BYL719 (PIK3CA gain-of-function mutation).19,20 Therefore, we propose the

following methodology to identify novel cancer targets and better understand the

activity of known driver genes in di®erent cancer types.
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2. Method

2.1. Classifying genes into oncogenes or tumor suppressors

The 20/20 rule proposed in Ref. 2 is an heuristic algorithm to classify genes into

oncogenes or tumor suppressors. The rule takes into account both the mutation

categories and their frequencies. First, for a given gene, the total number of variants

is computed. Then, each gene is assigned an ONG score and a tumor suppressor gene

(TSG) score which are computed based on the frequency of gain-of-function or loss-

of-function mutations, respectively. Gain-of-function mutations include missense or

in-frame indels which are recurrently mutated at the same aminoacid position, while

loss-of-function mutations include nonstop, nonsense and frame-shift indels.2 For

each gene, the ONG score is the frequency of gain-of-function mutations out of the

total number of variants, while the TSG score is the frequency of all loss-of-function

mutations out of the total number of variants. To validate the method, the authors

in Ref. 2 used data from the COSMIC13 which is a large collection of somatic

mutations from multiple studies of di®erent cancers. They computed the ONG and

TSG rule for 125 known cancer drivers and concluded that if ONG is greater than

20%, then the gene is an oncogene. Similarly, if TSG score is higher than 20%, then

the gene is a tumor suppressor. The 20/20 rule is illustrated in Fig. 1 for an ONG and

a tumor suppressor.

(a)

(b)

Fig. 1. Computation of ONG/TSG scores based on the method proposed in Ref. 2. Missense or in-frame
indels are represented in green, while nonstop, nonsense and frame-shift indels are represented in blue. (a)

Example of an oncogene: the frequency of gain-of-function mutations (recurrent missense/in-frame indels)

is greater than 20% (ONG > 20%), while the frequency of loss-of-function mutations (nonstop/nonsense/
frame-shift indels) is lower than 20% (TSG < 20%). (b) Example of a tumor suppressor: the frequency of

loss-of-function mutations (nonstop/nonsense/frame-shift indels) is greater than 20% (TSG > 20%), while

the frequency of gain-of-function mutations (recurrent missense/in-frame indels) is lower than 20%

(ONG < 20%).
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Some genes may be assigned both ONG and TSG scores greater than 20%. For

example, TP53 tumor suppressor presents similarly elevated values for both ONG

and TSG scores. For TP53 case, missense mutations generally drive the loss-of-

function of the gene,2,21–24 not its oncogenic activity as considered by the 20/20 rule.

However, the 20/20 rule is an heuristics that was successfully validated for most of

the well known ONGs and tumor suppressors.2 In this paper, we will use the scores

for the 125 known ONGs and tumor suppressors2 as a baseline to further explore and

optimize the rule in reduced size data sets of di®erent cancer types.

The results of this paper are based upon data generated by the TCGA Research

Network. Publicly available somatic mutation data (level 2) was downloaded from

TCGA14 for four cancer types: breast cancer (BRCA),15 LUAD,16 LUSC17 and

COAD.18

2.2. Testing the 20/20 rule

First, we compared our implementation of the 20/20 rule using COSMIC mutation

data v72 against the published values from Ref. 2. The authors in Ref. 2 used v61,

however COSMIC data has been updated and it is currently available for download

as v72.

As expected we obtained high correlation values (above 0.9) for both TSG and

ONG scores across the 125 driver genes in Ref. 2 (Fig. 2). We explored di®erent

thresholds for the recurrence level of gain-of-function mutations: more than 2, 5, 10,

100 and 200 variants at the same aminoacid position (Figs. 2(b)–2(f)). The highest

correlation for the ONG scores is obtained for a recurrence threshold of 2. We will

further use this threshold in our analysis.

We did not obtain a perfect correlation of 1 between our computed scores and the

previously published values due to the di®erences in the COSMIC database versions.

Moreover, the authors in Ref. 2 may have ¯ltered out some of the cancer studies from

COSMIC, while we included all the currently available data. However, the correla-

tion values are signi¯cantly high (0.92 for TSG scores and 0.95 for ONG scores) to

validate our implementation of the 20/20 rule. Next, we will evaluate the rule in four

cancer speci¯c data sets.

2.3. Optimizing the 20/20 rule

We hypothesized that the 20% frequency threshold of the 20/20 rule, which indicates

the active state of a gene,2 could be optimized for each data set. Active cancer genes

are speci¯c to each type of cancer, therefore this threshold may be di®erent from one

type of cancer to another. This percentage may also depend on the dimensions of

the data set and may change when a reduced sample size is used. Moreover, the

gene activity may be de¯ned by di®erent thresholds for ONGs than for tumor sup-

pressors.

Therefore, we considered the ONG and TSG scores obtained by the 20/20 rule as

baseline, since they were computed and validated on a large scale data such as
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Correlation between the scores computed in COSMIC data and the published scores in Ref. 2 for

125 known cancer drivers. (a) Loss-of-function (TSG) gene scores (r ¼ 0:92). (b) Gain-of-function (ONG)

gene scores for a recurrence threshold of minimum two samples (r ¼ 0:95). (c) Gain-of-function (ONG)

gene scores for a recurrence threshold of minimum ¯ve samples (r ¼ 0:94). (d) Gain-of-function (ONG)
gene scores for a recurrence threshold of minimum 10 samples (r ¼ 0:91). (e) Gain-of-function (ONG) gene

scores for a recurrence threshold of minimum 100 samples (r ¼ 0:79). (f) Gain-of-function (ONG) gene

scores for a recurrence threshold of minimum 200 samples (r ¼ 0:71).
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COSMIC. Then, we optimized the rule for each cancer type independently. We

tested all possibly frequency thresholds between 1% to 100% and ¯ltered out the

inactive cancer genes from the 125 genes set. We computed the correlation of the

remaining genes with the published scores and compared the results obtained using

the default threshold of 20%. We then identi¯ed the ONG and TSG frequency

thresholds which produced the highest correlation with the selected baseline genes.

To make sure we kept enough genes to estimate the correlation, we restricted our

¯ltering to a minimum of 10% of the baseline genes. Correlation values on less than

12 genes were not considered. Moreover, we only included in the analysis those genes

with a total number of variants higher than the background (the mean of variants

per gene across all genes in the data set). This minimum value is around ¯ve variants

in all the four data sets.

3. Results

3.1. Results of the optimized 20/20 rule in each data set

We optimized the 20/20 rule in four di®erent cancer types: TCGA breast cancer,

LUAD, LUSC and COAD. For each data set, we selected the baseline genes which

validate best. We improved the correlation with the published scores by selecting the

most representative baseline genes. Therefore, we obtained correlation coe±cients of

around 0.9 for both ONG and TSG scores which are greater than the ones obtained

by applying the default 20/20 rule in each data set. For each of the four cancer types,

the selected baseline genes are well known cancer genes that have been previously

associated with:

. breast invasive carcinoma (BRCA), Fig. 3; the genes selected as the baseline

(PIK3CA, KRAS, SF3B1, RET, ERBB2, TP53, MAP3K1, GATA3, CDH1,

RUNX1, RB1, ARID1A) have been previously found as mutated in breast

cancer15,26–28;

. LUAD, Fig. 4; the genes selected as the baseline (EGFR, BRAF, KRAS, PIK3CA,

U2AF1, CTNNB1, ARID1A, RB1, NF1, SETD2, STK11, SMARCA4, ATM)

have been previously found as mutated in LUAD16;

. LUSC, Fig. 5; the genes selected as the baseline (EGFR, PIK3CA, HRAS,

NFE2L2, TP53, PTEN, RB1, TSC1, MLL2, SMAD4, CDKN2A, FUBP1) have

been previously found as mutated in LUSC (except for FUBP1)17;

. COAD, Fig. 6; the genes selected as the baseline (PIK3CA, KRAS, BRAF, NRAS,

AR, TP53, APC, SOX9, FAM123B, ARID1A, CASP8, RNF43) have been pre-

viously found as mutated in COAD.18,29,30

Using the optimized frequency thresholds we identi¯ed novel cancer type speci¯c

ONGs and tumor suppressors which are available in Supplementary ¯le 1. The

correlation coe±cients between the computed and the published scores, along with

the optimized thresholds are shown for each TCGA data set in Table 1.
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Table 1 also provides information about the four TCGA data sets. Note that the

TCGA data sets are much reduced in size compared to the entire COSMIC data that

was used to test the default 20/20 rule. COSMIC v72 provides a total number of

292 571 samples and over four million variants, while each TCGA data set provides

hundreds of patients and thousands of variants.

Moreover, we included in Table 1 a comparison between the driver genes obtained

by the optimized 20/20 rule and MuSiC 6 or MutSig.10 These two methods combined

with manual curation were used by the TCGA papers to identify signi¯cantly mu-

tated genes (MuSiC for BRCA15 and MutSig for LUAD,16 LUSC17 and COAD18).

Both MuSiC and MutSig analyze the mutations of each gene to identify genes that

(a) (b)

(c) (d)

Fig. 3. Comparison between the optimized rule and the default 20/20 rule in TCGA BRCA data set for
the cancer genes in Ref. 2 (green illustrates a higher ONG score, while blue, a higher TSG score). Note that

we exclude from the analysis those genes with a lower number of variants than the background (minimum

six variants in this case). The correlation between the computed scores and the published scores is higher

for the optimized rule. (a) Loss-of-function (TSG) gene scores computed in TCGABRCA by the optimized
rule. (b) Loss-of-function (TSG) gene scores computed in TCGA BRCA by the default 20/20 rule. (c)

Gain-of-function (ONG) gene scores computed in TCGA BRCA by the optimized rule. (d) Gain-of-

function (ONG) gene scores computed in TCGA BRCA by the default 20/20 rule.
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were mutated more often than expected by chance, compared to background. They

do not take into account the semantics of the mutation variants, such as gain-of-

function or loss-of-function activity. Therefore, we do not expect to obtain identical

results by the 20/20 rule compared to MuSiC or MutSig. In addition, the rule

provides a metric to classify the driver genes into ONGs or tumor suppressors.

3.2. Gene drivers are cancer type speci¯c

Figure 7 shows the number of active driver genes identi¯ed in each cancer type.

Interestingly, most of the genes we found to be important ONGs or tumor sup-

pressors are speci¯c to each cancer type. However, we found PIK3CA gene, which is

known to be an active oncogene in many cancers, to present a high activity in all four

(a) (b)

(c) (d)

Fig. 4. Comparison between the optimized rule and the default 20/20 rule in TCGA LUAD data set for

the cancer genes in Ref. 2 (green illustrates a higher ONG score, while blue, a higher TSG score). Note that

we exclude from the analysis those genes with a lower number of variants than the background (minimum

¯ve variants in this case). The correlation between the computed scores and the published scores is higher
for the optimized rule. (a) Loss-of-function (TSG) gene scores computed in TCGA LUAD by the optimized

rule. (b) Loss-of-function (TSG) gene scores computed in TCGA LUAD by the default 20/20 rule. (c)

Gain-of-function (ONG) gene scores computed in TCGA LUAD by the optimized rule. (d) Gain-of-

function (ONG) gene scores computed in TCGA LUAD by the default 20/20 rule.
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cancer types. Moreover, EGFR is highly active in both lung cancer types (LUSC and

LUAD), as expected.

TP53 is a gene known to present both oncogenic and tumor suppressor activities,

most of the times contributing to cancer as a tumor suppressor with loss-of-function.

TP53 is an exception to the 20/20 rule because missense mutations in TP53 often

cause its loss-of-function instead of gain-of-function as considered by the rule. This is

also shown in Ref. 2, where the ONG score is higher than the TSG score for TP53. As

expected, we found TP53 to have elevated scores in BRCA, LUSC and COAD.

However, based on its tumor biology and the fact that it is a known exception to the

20/20 rule, we classi¯ed TP53 as a gene with loss-of-function activity.

(a) (b)

(c) (d)

Fig. 5. Comparison between the optimized rule and the default 20/20 rule in TCGA LUSC data set for the

cancer genes in Ref. 2 (green illustrates a higher ONG score, while blue, a higher TSG score). Note that we

exclude from the analysis those genes with a lower number of variants than the background (minimum ¯ve

variants in this case). The correlation between the computed scores and the published scores is higher for
the optimized rule. (a) Loss-of-function (TSG) gene scores computed in TCGA LUSC by the optimized

rule. (b) Loss-of-function (TSG) gene scores computed in TCGA LUSC by the default 20/20 rule. (c)

Gain-of-function (ONG) gene scores computed in TCGA LUSC by the optimized rule. (d) Gain-of-func-

tion (ONG) gene scores computed in TCGA LUSC by the default 20/20 rule.
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Based on the ONG/TSG scores classi¯cation, we found seven oncogenenes

(PIK3CA, EGFR, KRAS, BRAF, KRTAP5-5, KRTAP9-1, KCNN3) and nine

tumor suppressors with loss-of-function (RB1, ARID1A, SOX9, RNF43, JPH4,

HLA-A, RASA1, ATAD5, TP53) to be active in more than one cancer types. All of

the other identi¯ed driver genes may be cancer speci¯c as shown in Fig. 7.

Next, we evaluated the most mutated pathways by an enrichment analysis using

DAVID.25 For each cancer type, we ran DAVID (v6.7) against the union of the two

lists of ONGs and tumor suppressors. We considered all signi¯cantly enriched

pathways (Benjamini corrected p� value < 0:05), from any available database

(a) (b)

(c) (d)

Fig. 6. Comparison between the optimized rule and the default 20/20 rule in TCGA COAD data set for
the cancer genes in Ref. 2 (green illustrates a higher ONG score, while blue, a higher TSG score). Note that

we exclude from the analysis those genes with a lower number of variants than the background (minimum

seven variants in this case). The correlation between the computed scores and the published scores is

higher for the optimized rule. (a) Loss-of-function (TSG) gene scores computed in TCGA COAD by the
optimized rule. (b) Loss-of-function (TSG) gene scores computed in TCGA COAD by the default 20/20

rule. (c) Gain-of-function (ONG) gene scores computed in TCGA COAD by the optimized rule. (d) Gain-

of-function (ONG) gene scores computed in TCGA COAD by the default 20/20 rule.
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used by DAVID, such as KEGG, PANTHER, etc. The signi¯cantly enriched

pathways are related to multiple di®erent cancer types. This suggests that di®erent

combination of driver genes may activate the same cellular programs in many cancer

types. The signi¯cantly enriched pathways, identi¯ed for all the four gene sets, were:

colorectal cancer, nonsmall lung cancer, myeloid leukemia, endometrial cancer, gli-

oma, prostate cancer, pancreatic cancer, bladder cancer, melanoma cancer, etc. The

most relevant pathways for each of the four cancer types were the following:

. breast invasive carcinoma (BRCA): endometrial cancer (q � value ¼ 0:0014);

progesterone-mediated oocyte maturation (q � value ¼ 0:027); apoptosis

(q � value ¼ 0:026); ErbB signaling pathway (q � value ¼ 0:026); p53 pathway

feedback loops 2 (q � value ¼ 0:039);

Table 1. Results of the optimized rule in TCGA data sets.

BRCA LUAD LUSC COAD

Number of patients 993 230 178 219

Number of variants 90 491 72 542 65 306 114 470

Optimized TSG threshold 59% 40% 30% 62.5%

Optimized ONG threshold 42% 33% 25% 53%

Correlation coe±cient of the baseline tumor

suppressors obtained by the optimized rule

0.93 0.89 0.87 0.93

Correlation coe±cient of the baseline tumor

suppressors obtained by the default

20/20 rule from Ref. 2

0.58 0.41 0.59 0.67

Correlation coe±cient of the baseline oncogenes

obtained by the optimized threshold

0.93 0.88 0.83 0.97

Correlation coe±cient of the baseline oncogenes

obtained by the default 20/20 rule from Ref. 2

0.61 0.71 0.74 0.84

Total number of tumor suppressors in each data
set using the optimized threshold

75 129 119 50

Total number of oncogenes in each data set using
the optimized threshold

138 33 51 105

Total number of driver genes by MuSiC/MutSig 21 18 22 32

Commonly identi¯ed driver genes by MuSiC/

MutSig and the optimized rule

CCND3 ARID1A CDKN2A APC

CDH1 BRAF EGFR BRAF

CDKN1B EGFR HLA-A CASP8

GATA3 KRAS HRAS FAM123B
MAP3K1 MGA KEAP1 KRAS

PIK3CA NF1 MLL2 NRAS

RB1 PIK3CA NFE2L2 PIK3CA
RUNX1 RB1 PIK3CA SOX9

SF3B1 RBM10 PTEN TP53

TP53 RIT1 SMAD4

SETD2 TP53
STK11 TSC1

SMARCA4

U2AF1

Identifying Cancer Type Speci¯c ONGs and Tumor Suppressors
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. LUAD: nonsmall cell lung cancer (q � value ¼ 0:0034); regulation of actin cyto-

skeleton (q � value ¼ 0:024); ErbB signaling pathway (q � value ¼ 0:05);

. LUSC: nonsmall cell lung cancer (q � value ¼ 0:00016); p53 pathway feedback

loops 2 (q � value ¼ 0:025);

. COAD: colorectal cancer (q � value ¼ 0:0079); insulin signaling pathway

(q � value ¼ 0:021); Ras pathway (q � value ¼ 0:023); p53 pathway feedback

loops (q � value ¼ 0:045); ErbB signaling pathway (q � value ¼ 0:023); PDGF

signaling pathway (q � value ¼ 0:034); VEGF signaling pathway (q � value ¼
0:039); signaling by EGFR (q � value ¼ 0:049).

Therefore, we identi¯ed driver genes by assessing the oncogenic and tumor sup-

pressor activity within each data set separately, even under the limitation of the

sample size. Optimizing the 20/20 rule within each data set plays an important role

in identifying the most relevant cancer type speci¯c oncogenes and tumor sup-

pressors. Moreover, we found the mostly mutated cancer pathways in each cancer

type.

4. Limitations of the Optimized 20/20 rule

The 20/20 rule proposed in Ref. 2 provides a way to classify genes into ONGs or

tumor suppressors based on the frequency of their gain-of-function or loss-of-function

variants. This method is an heuristics and it is based on the idea that the gain-of-

function mutations generally include missense/in-frame indels, while the loss-of-

function mutations generally include nonsense/nonstop/frame-shift indels. The rule

(a) (b)

Fig. 7. The overlap of the cancer genes between the four cancer types. (a) Very few active ONGs are
present in multiple cancer types. Most active ONGs are found to be cancer type speci¯c. PIK3CA is the

only active oncogene in all four cancer types. (b) Very few tumor suppressors present loss-of-function in

multiple cancer types. Most tumor suppressors with loss-of-function are found to be cancer type speci¯c.

Note that TP53 is an exception to 20/20 rule because most of missense mutations in TP53 produce the
gene's loss-of-function, not gain-of-function as considered by the rule. Therefore, TP53 is classi¯ed as a

gene with loss-of-function activity.
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has been shown to correctly classify most of the known ONGs and tumor suppressors

(120 of 125 genes, 96%), with few exceptions such as TP53, NOTCH1, FBXW7,

PAX5 and TRAF7.2 To explain these exceptions, the authors in Ref. 2 point out

that it is less likely for ONGs to harbor stop codons. Therefore, if a gene has a

TSGscore > 5% and the ONG is also elevated (ONGscore > 20%), it is more likely

to be a tumor suppressor than an ONG. This assumption is based on the fact that

ONGs rarely harbor stop codons and therefore some of the missense mutations may

actually be loss-of-function mutations. This idea could be used for the optimized rule

as well. In the case of elevated values for both ONG and TSG score, the gene is more

likely to be a tumor suppressor. In this paper, we provided both ONG and TSG

scores for each gene. The ¯nal status of a gene could be determined based on the

ONG/TSG values combined with further assessment of certain types of mutations or

other knowledge from literature. However, besides the TP53 known tumor sup-

pressor, we have not found in the TCGA other exceptions to the optimized rule. Most

genes had either a high ONG and a low TSG, or a high TSG and a low ONG

(Supplementary ¯le 1). NOTCH1, PAX5 and TRAF7 have not been selected as

driver genes in either of the four TCGA data sets; FBXW7 was detected in LUAD

and it was correctly classi¯ed as a tumor suppressor (TSG ¼ 0:6 and ONG ¼ 0).

By improving the thresholds of the 20/20 rule in each cancer type, we selected

those ONGs and tumor suppressors based on previously validated data. It is possible

that some true ONGs or tumor suppressors may be missed by our approach due to

prior knowledge. However, the optimized rule increases con¯dence in the newly

identi¯ed oncogenes and tumor suppressors, by tuning the selection on previously

validated genes.

5. Conclusions

In this paper, we evaluate the 20/20 rule for classifying ONGs and tumor suppressors

(TSGs) proposed in Ref. 2, and optimize it for limited size data sets of speci¯c cancer

types. To the authors knowledge, there are no other general methods in literature

which are able to classify genes into ONGs and tumor suppressors. Most of the

existing methods are focused on identifying driver mutations but they do not provide

an overall ONG/TSG status for each gene. Although the 20/20 rule is a general

approximation of the absolute gene status, the authors in Ref. 2 prove its value and

validate it for most of known driver genes. The impact of this approach is to identify

novel ONGs and tumor suppressors that can be used to further understand cancer

mechanisms and improve targeted therapies.

Therefore, in this paper we propose a new way of optimizing the 20/20 rule by

comparing the results with the baseline gene scores. The scores of well known cancer

drivers were validated using a large sample size from COSMIC database, therefore

these genes were used as baseline. We show that the best ONG and TSG frequency

thresholds are not always equal to 20%, as proposed by Ref. 2, and may depend on
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the cancer type and data size. We conclude that the 20/20 rule validates in reduced

size data sets if it is properly tuned.

We validated our approach by comparing the active baseline driver genes in each

data set with known cancer genes from literature. By using the optimized rule, new

ONGs and tumor suppressors were identi¯ed in each of the four cancer types (breast

cancer, LUAD, LUSC and COAD). Moreover, we found that these driver genes are

implicated in cancer type speci¯c pathways. This explains part of the heterogeneity

between each cancer type, showing that di®erent mutations may lead to cancer

development through di®erent molecular mechanisms.

We plan to further investigate the activity of these genes and the pathways-level

mechanisms by which they contribute to the initiation and proliferation of cancer.

Designing in-vitro experiments would be further necessary to con¯rm the activity of

these genes in each cancer type.

Supporting Information

Supplementary ¯le 1: Active driver genes

The supplementary spreadsheet Drivers.xlsx contains 8 tabs corresponding to the

oncogenes and tumor suppressors identi¯ed within each of the four cancer types. The

computed ONG and TSG scores, as well as the number of gain-of-function muta-

tions, loss-of-function mutations and the total number of mutations are available for

each gene.
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