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Abstract. In this work, we present a novel vision-based solution for operating
a vehicle under Gaussian Distribution Temporal Logic (GDTL) constraints with-
out global positioning infrastructure. We first present the mapping component
that builds a high-resolution map of the environment by flying a team of two
aerial vehicles in formation with sensor information provided by their onboard
cameras. The control policy for the ground robot is synthesized under tempo-
ral and uncertainty constraints given the semantically labeled map. Finally, the
ground robot executes the control policy given pose estimates from a dedicated
aerial robot that tracks and localizes the ground robot. The proposed method is
validated using a two-wheeled ground robot and a quadrotor with a camera for
ten successful experimental trials.

Keywords: Vision-based Localization, Temporal Logic Planning, Air-ground Lo-
calization, Heterogeneous Robot Systems

1 Introduction

In this paper, we propose a solution to the following problem: localize and control a
ground robot under temporal logic (TL) specifications in an environment with no global
positioning infrastructure. Robots operating in the real world typically require accurate
pose estimates to compute effective control actions, but in many cases, such as dense
urban environments [1], GPS may be unavailable or unreliable. Furthermore, it is advan-
tageous to consider an aerial robot for on-the-fly tracking of the ground robot because it
can aid in terms of localization as well as obstacle avoidance, leaving the ground robot
dedicated to other tasks. In this work, we present a vision-based, GPS-denied solution
to this problem and demonstrate it experimentally with a sensor-deprived ground robot
that performs a persistent monitoring task specified by TL, while being localized by a
camera-equipped autonomous aerial vehicle (quadrotor). The solution is split into three
major components: map building in unknown environments, control synthesis under TL
constraints, and localization during the mission. We use vision-based formation control
to build the map from multiple aerial vehicles because we obtain a high fidelity mosaic
map image without requiring SLAM or other complex mapping algorithms. Our algo-
rithm synthesizes the ground robot’s control policy based on a labeled version of the
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map and a TL specification. Finally, the ground robot executes the control policy while
an aerial robot provides pose measurements.

Consider a robot that must perform the following task in an outdoor disaster site:
“Periodically collect soil samples from the forest, then the beach. Deliver samples to
researchers. Go to a charging station after tasks are complete. Always avoid known
obstacles and restricted zones. Ensure that the uncertainty (measured by variance) of
the robot’s pose is always below 1 m2.” Such a task may be specified using Gaussian
distribution TL (GDTL) [2], a specification language that incorporates the robot’s de-
sired position as well as uncertainty. Unfortunately, the initial position of the robot is
completely unknown and common methods to synthesize a control policy for the robot,
even while operating under observation noise, will not be sufficient. Our solution al-
ternatively requires the deployment of a small network of quadrotors with cameras to
first map the space, prior to computing a control policy. Human operators then label
the resulting map to capture the properties expressed in the specification. This process
is known as grounding. Afterwards, our algorithm generates a feedback control policy
to satisfy the temporal and uncertainty constraints encoded in the specification. With
a map image and ground robot control policy, one quadrotor tracks and monitors the
ground robot, providing it with pose information that it uses to execute the mission.

This work also considers the cooperation between ground and air vehicles and lever-
ages their heterogeneous capabilities to jointly carry out a mission. While other research
exists for cooperation among mixed teams of ground and air vehicles, existing research
assumes the presence of GPS on either the ground vehicles [3] or on the aerial vehi-
cles [1, 4]. We, on the other hand, assume the robots are working in an environment
with no external positioning framework whatsoever. Other work that has focused on
planning without GPS, such as [5], uses the visual capabilites of an aerial vehicle to
enhance a map built by a ground vehicle. In this work, we assume the map is built by
a team of aerial vehicles using their high vantage point so that the ground vehicle can
perform a specific task based on the resulting map. Further, unlike these works, in our
work, the mission to be carried out is specified using GDTL, allowing for the encoding
of much more complex missions, including specifying the uncertainty of the ground
vehicle’s localization.

Map building and localization in unknown environments could be formulated as in
SLAM [6], where a robot uses its onboard sensor data—perhaps only vision [7]—to
refine an estimation of its pose while building a map of the environment. Unfortu-
nately, these algorithms are typically computationally demanding and require one or
more sensing technologies which may not be feasible to include on a ground robot
due to cost, weight, or hardware limitations. Using vision-based solutions from aerial
cameras, on the other hand, allows for accurate pose estimation in complicated envi-
ronments while only employing cheap, readily-available RGB cameras. For example,
homography-based visual servoing methods provide accurate localization with only the
use of camera data [8]. In this work, we make use of homography-based consensus con-
trol methods [9] for the aerial vehicles to build a mosaic map, and monitor the ground
robot with a Position-Based Visual Servoing (PBVS) control method designed to keep
the robot in the field of view at all times while guaranteeing sufficient overlap with the
map.
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2 Technical Approach

We propose an end-to-end framework (see Fig. 1) that includes a specialized, two-
wheeled ground robot and a team of aerial robots, i.e., N quadrotors, each equipped
with a downward facing camera and an altimeter. The team of quadrotors are first re-
sponsible for building the map of the unknown environment using their onboard camera
images. Then the ground robot operates under the computed optimal control policy with
the measurements provided by a single quadrotor tracking it from above. The entire
framework is divided into three sequential phases that include the following:

1. Generate a mosaic map image of the unknown environment using purely vision and
homography-based formation control [9] with multiple quadrotors.

2. Label the generated map and define the mission specification (to be completed by
human operator) and then automatically synthesize a satisfying control policy for
ground robot using GDTL-Feedback Information RoadMaps, or GDTL-FIRM [2].

3. Simultaneously track and localize the ground robot with a single aerial vehicle us-
ing a homography-based pose estimation and position-based visual servoing con-
trol method.

Satisfying 
Mission	

Map 
Building 

Control 
Synthesis Control Map	

Tracking and 
Localization Map Labels	

Specification	

Control 
Policy	

Real Time 
Images	

Labeled Map	 Pose Estimation	

N Quadrotors	 Ground Robot	

1 Quadrotor	

Fig. 1. The proposed framework includes three major components: 1) mapping in unknown envi-
ronments, 2) control synthesis, and 3) online tracking and localization of a ground robot.

2.1 Inter-Image Homography

Map building and ground robot pose estimation rely on the inter-image homography,
Hij ∈ R3×3, which defines the linear transformation between co-planar three-dimensional
(3D) points described in two different coordinate frames, i.e., Pi = HijPj , where
Pi ∈ R3 and Pj ∈ R3. The perspective projection of these 3D points yields the
measured image features, pi ∈ R2 and pj ∈ R2, that are given by the cameras i
and j, respectively. These two image features are related by the following homogra-
phy, pi = H̃ijpj , where H̃ij = KHijK

−1 is estimated using standard least squares
estimation [10] with at least four matched image feature points, and K is the known
calibration matrix of the identical cameras. In this work, we assume that all quadrotors
are flying at a sufficiently high altitude to justify the co-planar requirements of points
on the ground. Further, we assume that the cameras are always parallel to the ground
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– as with a hovering quadrotor. In this case, the rectified homography describes the
transformation between two parallel, calibrated camera poses,

Hr
ij =

 cos(ψij) − sin(ψij) −xij

zj

sin(ψij) cos(ψij) − yij
zj

0 0 1− zij
zj

 , (1)

where [xij , yij , zij , ψij ]
T ∈ R4 is the estimated parallel pose of camera j in the

frame of camera i. In practice, we guarantee the parallel camera assumption by re-
moving the roll and pitch effect of a translating quadrotor from the acquired image,
i.e., Hr

ij = RθiRφi
K−1H̃ijKRT

φj
RT
θj

, given the roll, φ, and pitch, θ, of each quadro-
tor. We extract the relative position from the last column of Hr

ij , given the altitude of
the cameras provided by the altimeter, and the relative orientation from the upper 2×2
block of Hr

ij .

2.2 Homography-based Formation Control

Homography-based formation control [9] drives the team of quadrotors that generates
the high fidelity mosaic map image, which is a composite image of the quadrotors’
onboard images while in formation. The consensus-based kinematic control laws that
drive the formation of quadrotors to their desired relative pose, [x∗i,j , y

∗
i,j , ψ

∗
i,j ]

T , are
functions of the computed rectified homography from equation (1), i.e.,

wzi = Kw

∑
j∈Ni

(
arctan

[
[Hr

ij ]21

[Hr
ij ]11

]
− ψ∗ij

)
, (2)

[
vxi

vyi

]
= Kv

∑
j∈Ni

([[
Hr
ij

]
13[

Hr
ij

]
23

]
−
[
x∗ij
y∗ij

])
, (3)

vzi = Kv

∑
j∈Ni

(
1− [Hr

ij ]33
)
, (4)

where [vxi
, vyi , vzi ]

T is the translational velocity control and wzi is the rotational ve-
locity control about the z-axis of the quadrotor, i.e., its yaw. Note that the element in
row a and column b of Hr

ij is denoted by [Hr
ij ]ab. The relative yaw does not affect zij ,

therefore, the relative altitude can be controlled towards zero using [Hr
ij ]33. The team

produces the mosiac map of the environment when the quadrotors reach the chosen
formation that yields sufficient image overlap for accurate pose estimation and large
enough field of view to cover the region of interest in the environment. It is worth not-
ing that this component of our solution framework could be omitted if given a high
resolution map, such as a satellite image.

2.3 GDTL-FIRM

The GDTL-FIRM algorithm computes the optimal control action for the ground robot
under a GDTL specification given that the previously computed map has been labeled
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and the specification has been provided. We assume that a human operator labels the
map built by the aerial vehicles. Alternately, this labeling could be accomplished au-
tomatically by a segmentation and classification algorithm. We utilize the work of [2]
to synthesize the control polices for the ground robot with temporal and uncertainty
constraints. In brief, the sampling-based algorithm generates a transition system in the
belief space and uses local feedback controllers to break the curse of history associated
with belief space planning. The algorithm is based on Feedback Information RoadMaps
(FIRMs), where points are sampled directly in the state space and feedback controllers
are used to stabilize the system about nodes in the roadmap, thus inducing a roadmap
in the belief space. A product Markov Decision Process (MDP) between the transition
system and the Rabin automaton encoding the GDTL task specification is used to com-
pute the switching control policies. Finally, the MDP is queried for the existence of
satisfying control policies of high enough probability.

2.4 Robot Tracking and Localization

The ground robot executes its mission in the environment by traversing the transition
system generated in the previous phase while employing an Extended Kalman Filter
(EKF) to estimate its position with measurements provided by the dedicated aerial ve-
hicle. A localization marker on the ground robot includes two distinctly colored patches
that aid in estimating its planar position and orientation in the environment frame. Dur-
ing localization, the quadrotor first localizes the centroid of each patch in the quadro-
tor’s image frame as two image features, (pq1,p

q
2). The quadrotor simultaneously calcu-

lates the rectified homography between the quadrotor’s image frame (q) and the mosaic
map image frame (m), i.e., Hr

qm, to estimate the relative pose between the quadro-
tor and the map. The quadrotor projects the robot’s pose in the image frame (pq1,p

q
2)

to the map frame (pm1 ,p
m
2 ) using Hr

qm. The quadrotor finally computes the ground
robot’s final pose in the environment frame (e), given by (x, y, θ), by linearly interpo-
lating (pm1 ,p

m
2 ) with the dimensions of the map image – in pixels – and the known

dimensions of the environment – measured in meters. The centroid of the projected fea-
tures yields the position, (x, y), while the orientation, θ, is calculated using the line that
connects the two projected features.

Meanwhile, a 2D kinematic PBVS controller maneuvers the aerial robot to track
the ground robot while simultaneously keeping sufficient overlap with the mosaic map
image for an accurate homography estimation. Recall that the field-of-view of the indi-
vidual cameras is not sufficient to view the entire environment, hence the requirement
for the composite map image. Homography-based control drives the quadrotor into a
desired position above the environment that is defined by the estimated position of
the ground robot, (x, y). The quadrotor’s position is further constrained to a rectangle,
R = [xmin, xmax] × [ymin, ymax], where the boundaries of R affect the amount of
desired overlap with the mosaic image. For example, setting the boundaries equal to the
dimensions of the environment will drive the quadrotor directly over the ground robot,
thus degrading the homography estimate when hovering near the environment’s edges.
Conversely, setting the boundaries equal to zero would keep the quadrotor coincident
with the mosaic image frame and will lose coverage when the ground robot is near
the edge of the environment. The ideal boundary values for a downward facing camera
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allows the camera to move just far enough to see the entire environment, i.e.,[
xmin
ymin

]
= −

[
xmax
ymax

]
=

[
we−ewq

2
he−ehq

2

]
, (5)

where (we, he) are the width and height of the environment in meters, (ewq, ehq) are
the dimensions of the quadrotor’s image frame, (wq, hq), after being projected into the
environment frame. This projection is computed as, ewqehq

A

 = AK−1

wqhq
1

 , (6)

given the camera’s altitude, A, and camera calibration matrix, K. The ideal rectangle
size for our camera (640×360) at the desired experiment altitude of 1.8 meters is ap-
proximately 0.85 × 1.45 meters. Unfortunately, our camera is not downward-facing,
therefore we expand R to 0.85 × 2.0 meters to ensure proper coverage. Finally, we
introduce an optional offset, xoffset, that measures the center of mosaic map image’s
virtual position in space with respect to the quadrotor’s frame. We use an offset 0.75
meters in the positive x-direction of the local quadrotor frame (see Fig. 2) to account
for the forward-facing camera.

The final controller is similar to the homography-based formation controller in Sec-
tion 2.2. In fact, the yaw controller of equation (2) and the altitude controller of equa-
tion (4) remain the same with a desired relative pose equal to zero. The planar control
vector is calculated as the following,[

vx
vy

]
= Kv

([[
Hr
qm

]
13[

Hr
qm

]
23

]
−
[
linint(x, (0, we), (xmin, xmax))− xoffset
linint(y, (0, he), (ymin, ymax))− yoffset

])
, (7)

where linint(·) is the linear interpolation function that transforms the ground robot’s
environmental position into the quadrotor’s desired position within R.

3 Results and Experiments

We validate all three phases of this framework by executing a complete mission ex-
periment with a heterogeneous team of autonomous robots. The phases are completed
in the order specified in Section 2 due to the dependence on the results from previous
phases. We first detail our map building results with a mosaic map that is generated us-
ing the homography-based formation control and two quadrotors with cameras that do
not have access to GPS. GDTL-FIRM synthesizes the control policy for a ground robot
with nonlinear unicycle dynamics in the environment for a GDTL specification over
belief states associated with the measurement of the robot’s position. Finally, a quadro-
tor successfully tracks and localizes the ground robot while it completes the previously
defined mission.
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Fig. 2. Coordinate frame definitions for the PBVS controller from equation (7) include the: envi-
ronment frame, mosaic map image frame, quadrotor image frame, mosaic map frame center, and
quadrotor frame. The quadrotor estimates the ground robot’s pose (x, y, θ) by transforming the
pose in the quadrotor image frame to the environment frame. The quadrotor manuevers within
R based on the ground robots’s pose in the environment frame. The quadrotor local frame and
mosaic map frame center are defined with the same orientation as the environment frame.

3.1 Experimental Setup

We perform experiments in the Boston University Robotics Laboratory. We use a map
of Boston University’s campus, located in Boston, MA, USA, that includes parts of
Charles River, Massachusetts Turnpile, Fenway Stadium, and BU Central campus. We
utilize the real landmarks in this map to formulate our specification. This map is chosen
because it has sufficient detail and texture to allow for adequate feature matching (e.g.,
white buildings at the bottom of the map) as well other minimal feature regions (e.g.,
the Charles River). The physical map is printed on a 12×16 ft2 vinyl banner. We utilize
an Optitrack motion capture system 1 for obtaining ground truth measurements.

The ground robot is a two-wheeled DrRobot X80Pro 2 with no onboard sensing.
We fit the ground robot with an identifying marker composed of two uniquely col-
ored patches in the YUV color space for planar position and orientation localization
(see Fig. 5). Parrot Bebop quadrotors 3 are the aerial vehicles used for map building,
and later, tracking. The Bebop is an off-the-shelf quadrotor platform with a suite of
sensors that include an Inertial Measurement Unit (IMU), a downward-facing pinhole
camera for optical flow stabilization, an ultrasonic sensor for altitude measurements,
and a 180◦ wide-angle 14 megapixel forward-facing camera. The large forward-facing
camera produces a 640×360 pixel stabilized video feed that can be ‘steered’ within the

1Natural Point Optitrack: https://www.optitrack.com
2DrRobot X80Pro: http://www.drrobot.com/products item.asp?itemNumber=x80pro
3Parrot Bebop: http://www.parrot.com/products/bebop-drone/
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field-of-view of the wide-angle lens to produce a ‘virtual camera’ video feed. We po-
sition the virtual camera at the maximum angle of θbebop measured about the y-axis of
the quadrotor (see Fig. 3(a)), where θbebop ≈ 50◦, and rectify the image for this angle.

The Robot Operating System (ROS) [11] handles all communication on a local area
network via Wi-Fi. We control the quadrotors from a base station computer running
the ROS Bebop Autonomy package [12] which incorporates Parrot’s open-source SDK.
The computer also acquires and processes image frames from the quadrotors’ real-
time video stream via the OpenCV libraries [13]. Independent ROS nodes handle the
individual quadrotors for the formation flight, demonstrating the distributed control.
Independent ROS nodes also handle the quadrotor and ground robot control during the
tracking phase. In this phase, separate quadrotor nodes handle the image processing for
robot localization, pose estimation via homography, and the control. The ground robot
node executes the local control and EKF estimation of the ground robot given its pose
estimate and nonlinear dynamics. All vision computations are performed on an Ubuntu
14.04 machine with an Intel Core i7 CPU at 2.4 GHz and 8GB RAM.

3.2 Formation Control and Map Generation

We utilize a team of two quadrotors to reach a desired formation where, y∗1,2 = −y∗2,1 =
1.2 m, and all other desired relative poses are set to zero (see Fig. 3(a)). This formation
is carefully chosen because it ensures the pair of aerial cameras have enough overlap
for accurate relative pose estimation while guaranteeing a complete view of the envi-
ronment. All quadrotors are flown to a desired height of 1.8 meters. The quadrotors
reach the desired formation (Fig. 3(c)) from the initial conditions (Fig. 3(b)) in approx-
imately 15 seconds. From this point, the user has the ability to control one vehicle in
the formation to fine tune the result of the online mosaic map, which is displayed at
approximately 2.5Hz. In this experiment, the operator maneuvers quadrotor 1 until the
left edge of the map is completely visible and then releases it to autonomous control
again. Meanwhile, the formation control law in Section 2.2 controls quadrotor 2. The
onboard images at the final desired formation (Figs. 3(d)- 3(e)) were used to generate
the final mosaic map image shown in Fig. 3(f).

3.3 GDTL-FIRM

The specification for the ground robot is encoded with GDTL and is given as the fol-
lowing: “Always avoid all obstacles, i.e., Charles river and Massachusetts Turnpike.
Always eventually visit Kenmore Square, Marsh Plaza, Audubon Circle, and Fenway
Stadium. From Kenmore Square or Marsh Plaza, Bridge2 (St Mary’s St) can not be
used to visit Audubon Circle or Fenway Stadium. From Audubon Circle or Fenway
Stadium, Bridge1 (Beacon Ave or Brookline Ave) can not be used to visit Kenmore
Square or Marsh Plaza. Always keep uncertainty about the robot’s pose below 0.9 m2,
and on bridges, the uncertainty must be below 0.6 m2, where uncertainty is measured as
the trace of the estimation pose covariance matrix.” Fig. 4(a) shows the resulting tran-
sition system and control policy, computed by the algorithm from [2]. The transition
system has 35 nodes and 226 edges while the product automaton has 316 nodes and
3274 edges. The algorithm executed in approximately 62.24 seconds.
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Fig. 3. Final mosaic map result using the homography-based formation control method. Note that
quadrotor and camera coordinate systems are only labeled once in Fig. 3(a) for clarity.

3.4 Pose Estimation and Mission Execution

The ground robot executes the mission using the previous control policy and quadrotor
for localization. Initially, the quadrotor takes off from a position where the camera’s
field of view is facing towards the ground robot. The homography-based localization
and quadrotor control (Section 2.4) begin once the ground robot’s marker has been
detected. The ground robot localization estimates update at approximately 3.5Hz. We
show an example of the robot tracking and pose estimation for three time steps in Fig. 5.
It is clear that the control method tracks the ground robot during its route with enough
image resolution to detect the robot’s patches and also maintains the required overlap
with the mosaic map image.

Fig. 5 also illustrates the final pose estimation in the mosaic map frame. It is im-
portant to note that the ground robot sits 0.2 meters above the map, therefore projecting
the image features of the ground robot’s marker directly into the map frame would add
significant error to the final estimation. The image features are instead offset to the map
plane before projecting the features to the mosaic map to satisfy the homography’s pla-
nar assumption. We determine this offset by measuring the pose estimation error at the
extremes of the map and interpolating for the correction as a function of the estimated
pose.

We ran the mission five times due to the limitations of the quadrotor battery, yielding
ten complete laps of the environment and four partial laps, all of which satisfied the
GDTL specification. We show an example run of 2.5 laps in Fig. 4(b) that displays the
ground robot’s ground truth pose, estimated pose, measured pose, and uncertainty. We
check for satisfaction by inspecting the ground truth of all experimental runs to ensure
the robot has reached each region appropriately while avoiding obstacles (Fig. 4(c)).
Moreover, the covariance of the robot’s estimate for all experimental runs is safely
below the minimum 0.6 requirement, thus satisfying the specification (Fig. 4(d)).
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(c) Ground truth for ten laps
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Fig. 4. FIRM-GDTL results plotted over the ground truth environment image. Fig. 4(a) shows the
transition system in white and the policy in orange. Fig. 4(b) shows the ground truth in green, the
measurement in yellow, the estimated pose in red, and the covariance ellipses in blue. Fig. 4(c)
shows the ground truth in green for all runs. Fig. 4(d) shows the covariance for all runs. The spikes
in covariance indicate the beginning of a new run after a quadrotor battery had been replaced. We
initialize the covariance to an arbitrarily large value at time step 0 that drastically decreases with
the first pose measurement from the quadrotor at time step 1.

4 Conclusion

The main experimental insight gained from this work is how to feasibly break the depen-
dence on external positioning information while controlling robots under TL specifica-
tions. Specifically, we are interested in studying the satisfaction of GDTL specifications
by (ground) robots operating under uncertainty. Encoding specifications with GDTL is
advantageous because it defines performance goals for the uncertainty of the system,
allowing us to complete high-level missions under noisy measurements. This work also
gives insight into the formulation of a mobile vision-based sensing method for control
under TL specifications.
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(a) Pose estimate at time = 814 seconds
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(b) Top view

(c) Pose estimate at time = 892 seconds

Quadrotor	
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(d) Top view
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Fig. 5. Pose estimation results of live tracking and localization are shown in Figs. 5(a,c,e) with
onboard images (left) and the mosaic map image (right). The corresponding top views of the
experiment is shown in Figs. 5(b,d,f), respectively. The image matches and pose estimations are
drawn for visualization purposes.

Another technical insight stems from the effects of using off-the-shelf equipment
in this framework since airborne cameras are a cheap, light weight sensor solution that
allow for high fidelity 3D pose estimation. We show that inexpensive and widely avail-
able ground and aerial robots can be used to perform complex missions with TL and
uncertainty constraints, therefore adding flexibility in future applications. Moreover, we
consider a simple dynamic sensor that is far more reconfigurable than a fixed-camera
network alternative.

The experimental setup for vision-based control with aerial vehicles also provided
valuable experimental insight. The lighting conditions of the flying space proved to be
critical and had to be carefully modified to reduce glare from the reflective vinyl ban-
ner material. The oblique angle of the quadrotor’s onboard camera also complicated
the control strategies since we could not rely on the standard down-ward facing cam-
era assumptions. Lastly, this vision-based technique does encounter pose estimation
innacuracies when the quadrotor cameras have very poor resolution compared to the
map. Further, the entire pipeline depends on the success of feature matching that en-
counters problems at drastic resolution differences. However, these experiments show
that our framework is well suited for remote outdoor scenarios where aerial vehicles or
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satellite imagery could serve as the map and only camera-outfitted aerial vehicles are
required for localization.
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