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Abstract— Sampling-based methods have advanced the state
of the art in robotic motion planning and control across
complex, high-dimensional domains. With few exceptions, such
approaches only admit simple constraints and objectives, such
as collision-avoidance and reaching a goal state. In this work
we leverage the best of two worlds: the scalability of sampling-
based motion planning and the precise formal guarantees of
temporal logic. We present an incremental sampling-based
algorithm that synthesizes a motion control policy satisfying
a bounded Signal Temporal Logic formula over properties
of a given environment. Our key insight is that we can bias
the selection of samples using a quantitative measure of how
well the best path in the current tree of samples satisfies the
specification. This allows us both to converge to a path that
satisfies the specification, and to improve upon an existing path,
i.e. to satisfy the specification with maximum robustness. We
illustrate the performance of our method in several case studies.

I. INTRODUCTION

Sampling-based methods have advanced the state of the
art in robotic motion planning across complex and high-
dimensional domains. The goal is usually to find a controller
that drives the robot from a start state to a goal state. However,
as robots become more capable and versatile, the tasks we
assign to them become more complex, and may be better
specified using richer formalisms such as domain-specific lan-
guages, finite state machines, and temporal logic. Motivated
by the burgeoning complexity of motion tasks assigned to
robots, in this work, we apply sampling-based methods to pro-
duce controllers that solve temporal logic planning problems.

Temporal logic specifications are expressive and precise
formalisms for describing desirable properties of a system
that evolves over time.[1], [2], [3]. There exist rich theory
and practical tools for synthesis from temporal logics, and
recent research in robotics and control has brought these
methods to bear on motion planning and control for a vari-
ety of systems across several domains [4], [5], [6], [7], [8],
[9], [10]. These works leverage a variety of temporal logics,
including Linear Temporal Logic (LTL) [3], Metric Temporal
Logic (MTL) [11], Signal Temporal Logic (STL) [12], Time
Window Temporal Logic (TWTL) [13], and syntactically co-
safe LTL (scLTL) [14]. In this work, we focus on the problem
of generating a control policy such that a system satisfies a
Signal Temporal Logic (STL) specification.
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A key advantage of STL as a specification language is that
there is also rich body of work on quantitatively monitor-
ing the satisfaction of STL formulae on system behavior in
hybrid (discrete and continuous) domains, for both discrete
and continuous time semantics [12], [15]. The idea is to
be able to assess not just whether an execution satisfies the
desired properties, but how much of the property is satisfied
(or violated). For STL, such quantitative semantics have been
successfully used for optimization-based synthesis [16], and
methods developed for efficiently assessing satisfaction over
system behavior in both offline [17] and online [18] settings.

Our contribution in this paper is the definition of a class
of specification-based heuristics, and their use in sampling-
based control synthesis for temporal logic specifications.
These heuristics are not just helpful for finding an initial
solution quickly, but can also be applied to improve upon an
existing solution. More precisely, given a formula, we define
the Direction of Increasing Satisfaction (DIS), and propose
a class of heuristic functions based on the DIS to capture
the most promising direction of exploration to improve the
quantitative satisfaction given a partial trajectory. The role of
these heuristics is to provide a gradient-like information for
exploration algorithms, which may be of independent interest
beyond the use in this paper. For instance, these may be used
in conjunction with optimization-based planning and learning
algorithms to speed them up. We show that our algorithm is
asymptotically optimal: in the limit of sampling it yields a
solution that maximizes quantitative satisfaction of the tem-
poral logic formula. In addition to the theoretical results, we
demonstrate the effectiveness of our approach experimentally.

Sampling-based methods for planning have already proven
useful in a variety of contexts, including temporal logic con-
troller synthesis. Extensions of Rapidly Exploring Random
Trees (RRT) [19] and their optimal version, RRT∗[20], have
been proposed to incorporate specifications in µ- calculus
[21], [22] and LTL [23], [24]. Probabilistic Roadmaps (PRMs)
[25] have also been exploited for temporal logic synthesis
[26], [27]. However, ours is the first approach to explicitly
use bounds on the quantitative satisfaction of a formal spec-
ification as a heuristic to guide sampling. Additionally, since
we use STL, unlike previous approaches, we do not need
an expensive discrete abstraction of the system in order to
evaluate satisfaction of the specification.

Another related body of work is that of automata or
language-guided synthesis [28], [29], where an automaton
representing a temporal logic specification is used to guide a
sequence of reachability problems, resulting in a hybrid solu-
tion to the motion planning problem. Our approach is similarly
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guided by a temporal logic specification, but we avoid the
construction of an explicit automaton, and instead rely on the
quantitative semantics of the logic to guide sampling.

Our approach is for general dynamical systems and STL
specifications, but inspired by robotic motion planning tasks.
We therefore demonstrate its applicability with case studies on
a double integrator and a rear wheel car.

II. PRELIMINARIES

Let R be the set of real numbers and t ∈ R. We denote
the interval [t,∞) by R≥t. Given interval I = [a, b], the
interval [t + a, t + b] is denoted by t + I . The uniform and
Bernoulli distributions are denoted by Unif (S) and Ber(p),
respectively, where S is a set and p is a bias. Missing values
in algorithms are denoted by ./ .

Let (M,d) be a compact metric space with M ⊂ Rn, n ≥
1, and S = {s : R≥0 →M} the set of all infinite-time signals
inM . The components of a signal s ∈ S are denoted by si, i ∈
{1, . . . , n}. The set of all linear functions over Rn is denoted
by F = {π : Rn → R}. Let δτ : S → S be the time-shift
operator acting on signals in S with τ ≥ 0, i.e., δτs(t) =
s(t+ τ) for all t ≥ 0.

The syntax of STL is defined as follows [12]:

φ ::= > | pπ(x)∼µ | ¬φ | φ1 ∧ φ2 | φ1U〈a,b〉φ2 ,

where > is the Boolean true constant; pπ(x)∼µ is a predicate
over Rn parameterized by π ∈ F , µ ∈ R and an order relation
∼∈ {≥, >,≤, <} of the form pπ(x)∼µ = π(x) ∼ µ; ¬ and
∧ are the Boolean operators for negation and conjunction,
respectively; and U〈a,b〉 is the bounded temporal operator
until, where 〈 ∈ { [, ( } and 〉 ∈ { ], ) }.

The semantics of STL is defined over signals in S recur-
sively as follows [12]:

s |= > ⇔>
s |= pπ(x)∼µ ⇔ π(s(0)) ∼ µ
s |= ¬φ ⇔¬(s |= φ)

s |= (φ1 ∧ φ2) ⇔ (s |= φ1) ∧ (s |= φ2)

s |= (φ1U〈a,b〉φ2) ⇔ ∃tu ∈ [a, b) s.t.
(
δtus |= φ2

)
∧
(
∀t′ ∈ [0, tu) δt′s |= φ1

)
where a, b ∈ R, a < b. A signal s ∈ S is said to satisfy
an STL formula φ if and only if s |= φ. The Boolean value
false ⊥≡ ¬> and additional operations (i.e., disjunction, im-
plication, and equivalence) are defined in the usual way. Also,
the temporal operators eventually and globally are defined as
♦〈a,b〉φ ≡ > U〈a,b〉φ and �〈a,b〉φ ≡ ¬♦〈a,b〉¬φ, respectively.

The Abstract Syntax Tree (AST) of an STL formula is
a tree with predicates for leaves and operators for internal
nodes, such that its inorder traversal yields the formula.
Fig. 1 shows the AST for the formula (�[t1,t2]pπ1(x)∼µ1

∧
�[t3,t4]pπ2(x)∼µ2

)⇒ ♦[0,t5]pπ3(x)∼µ3

The language associated with an STL formula φ is the set
of all signals in S that satisfy φ. This language is denoted by
L(φ) = {s ∈ S | s |= φ}.

⇒

∧

�[t1,t2]

pπ1(x)∼µ1

�[t3,t4]

pπ2(x)∼µ2

♦[0,t5]

pπ3(x)∼µ3

Fig. 1. Example of an Abstract Syntax Tree

The time horizon of an STL formula [30] is defined as

‖φ‖ =



0 if φ = pπ(x)∼µ

max{‖φ1‖ , ‖φ2‖} if φ ∈ {φ1 ∧ φ2, φ1 ∨ φ2}
‖φ1‖ if φ = ¬φ1
b+ max{‖φ1‖ , ‖φ2‖} if φ = φ1U〈a,b〉φ2
b+ ‖φ1‖ if φ ∈ {♦〈a,b〉φ1,�〈a,b〉φ1}

An STL formula φ is bounded-time if it has a finite time
horizon.

Let φ be an STL formula. The set of all predicates in φ is
denoted by P(φ), i.e., P(φ1) = {pu1≤2, pu2>3}.

In addition to Boolean semantics, STL admits quantitative
semantics [31], [15], which is formalized by the notion of
robustness degree. The robustness degree of a signal s ∈ S
with respect to an STL formula φ is a functional ρ(s, φ)
recursively defines as

ρ(s,>) = ρ>

ρ(s,⊥) = − ρ>

ρ(s, pπ(x)∼µ) = (−1)ι(π(s(0))− µ)

ρ(s,¬φ) = − ρ(s, φ)

ρ(s, φ1 ∧ φ2) = min{ρ(s, φ1), ρ(s, φ2)}
ρ(s, φ1 ∨ φ2) = max{ρ(s, φ1), ρ(s, φ2)}

ρ(s, φ1U〈a,b〉φ2) = sup
tu∈〈a,b〉

{
min

{
ρ(δtus, φ2),

inf
t′∈[0,tu)

{ρ(δt′s, φ1)}
}}

ρ(s,♦〈a,b〉φ) = sup
tu∈〈a,b〉

{ρ(δtus, φ)}

ρ(s,�〈a,b〉φ) = inf
tu∈〈a,b〉

{ρ(δtus, φ)}

where ρ> ∈ R≥0 ∪ {∞} is a large constant representing the
maximum absolute value of robustness (|ρ(s, φ)| < ρ> ), and
ι = 0 if ∼∈ {≥, >} and ι = 1 otherwise. Note that a positive
ρ(s, φ) implies that s satisfies φ. Moreover, the interpretation
of the robustness degree as a quantitative measure of satisfac-
tion is justified by the following proposition from [31], [17].

Proposition 2.1: Let s ∈ S be a signal and φ an STL
formula such that ρ(s, φ) > 0. All signals s′ ∈ S with
‖s′ − s‖∞ < ρ(s, φ) satisfy the formula φ, i.e., s′ |= φ and
ρ(s′, ρ) > 0.

In an online setting, where the signal is being observed as it
is generated, it is useful to assign a quantitative satisfaction
value to partial signals. The authors in [18] introduced an
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interval-based semantics for bounding the quantitative satis-
faction value given only a partial signal. This recursively-
defined Robust Satisfaction Interval (RoSI) includes all pos-
sible robust satisfaction values corresponding to the suffixes
of the partial signal.

Definition 2.1 (Prefix, Completions): Given a finite time
horizon TH , let {t0, · · · , ti} be a finite set of time instants
such that ti ≤ TH . Let s[0,i] denote a partial signal over the
time domain [t0, ti] ⊂ R≥0, i.e. s[0,i] : [t0, ti] → M . Then
s[0,i] is a prefix of a signal s if for all t ≤ ti, s(t) = s[0,i](t).
The set of completions of a partial signal s[0,i] (denoted by
C(s[0,i])) is defined as the set {s|s[0,i] is a prefix of s}.

Definition 2.2 (Robust Satisfaction Interval (RoSI)): The
robust satisfaction interval (also called simply the robustness
interval) of an STL formula φ on a partial signal s[0,i] is an
interval I such that:

inf(I) = infs′∈C(s[0,i]) ρ(s′, φ)

sup(I) = sups′∈C(s[0,i])
ρ(s′, φ)

We first define some interval operations as follows:

−[a, b] = [−b,−a]
min([a1, b1], [a2, b2]) = [min(a1, a2),min(b1, b2)]
max([a1, b1], [a2, b2]) = [max(a1, a2),max(b1, b2)]
c+ [a, b] = [c+ a, c+ b]

We now define a recursive function [ρ] that maps a given
formula φ and a partial signal s[0,i] to an interval [ρ](s[0,i], φ).
We first introduce a new symbol † 6∈ M , and for every
s[0,i] : [t0, ti]→M , define sω[0,i] : R≥t0 →M ∪{†} such that
sω[0:i] = s[0:i] on the domain [t0, ti] and sω[0:i](t) = † for t > ti.
Then for any STL formula φ, [ρ](s[0,i], φ) = [ρ](sω[0,i], φ),
where

[ρ](s, pπ(x)∼µ) =


[−ρ> , ρ> ] if s(0) = †
[ρ(s, pπ(x)∼µ), otherwise

ρ(s, pπ(x)∼µ)]

[ρ](s,¬φ) = −[ρ](s, φ)
[ρ](s, ϕ ∧ ψ) = min([ρ](s, ϕ), [ρ](s, ψ))
[ρ](s, ϕ ∨ ψ) = max([ρ](s, ϕ), [ρ](s, ψ))
[ρ](s,♦〈a,b〉ϕ) = supt∈〈a,b〉[ρ](δts, ϕ)

[ρ](s,�〈a,b〉ϕ) = inft∈〈a,b〉[ρ](δts, ϕ)
[ρ](s, φ U〈a,b〉 ψ) = suptu∈〈a,b〉(min([ρ](δtus, ψ),

inft′∈[0,tu)[ρ](δt′s, φ)

Lemma 2.2 ([18]): For any STL formula φ, the function
[ρ](sω[0,i], φ) defines the robust satisfaction interval for the
formula φ over the signal s[0,i] at time t0.
The proof is by induction over the structure of STL formulae.

The authors in [18] propose an efficient algorithm to com-
pute and maintain [ρ](s[0,i], φ) for a large class of STL formu-
lae.

Lemma 2.3 (Chain Inclusion of Intervals): Given a partial
signal s[0,i], STL formula φ, and j ≤ i, [ρ](sω[0,i], φ) ⊆
[ρ](sω[0,j], φ).
Informally, as more of the signal becomes available, the
bounds on the robustness of satisfaction shrink (i.e. the ro-
bustness of satisfaction becomes more certain).

III. PROBLEM FORMULATION

Let R = (f,X,U, xinit) be a dynamical system, where
X ⊆ Rn and U ⊆ Rm are the state and control spaces, f :
X × U → X is a Lipschitz continuous function, and xinit is
the initial state of the system. The system behavior is given by:

R : ẋ = f(x, u), x(0) = xinit (1)

We denote by x[xinit, u] the state trajectory originating at
xinit obtained by implementing control policy u. Let U =
{u : R≥0 → U} be the set of all control policies.

The systemR is said to satisfy an STL specification φ under
a control policy u ∈ U if the state trajectory starting at x0
satisfies φ, i.e., x[xinit, u] |= φ.

Problem 3.1: Given a dynamical system R and an STL
specification φ, find a control policy u such that the system
satisfies φ under policy u.

Following [32], Problem 3.1 can be restated in terms of
robustness as an optimization problem, as follows

Problem 3.2: Given a dynamical system R and an STL
specification φ, find a control policy u such that the robustness
degree with respect to φ of the state trajectory originating in
xinit under u is maximized, i.e.,

u∗ = argmax
u∈U

ρ(x[xinit, u], φ). (2)

Note that if ρ(x[xinit, u
∗]) > 0, then φ is satisfied.

IV. APPROACH

In this section, we propose a sampling-based algorithm that
computes a maximally-satisfying control policy. The RRT∗-
based algorithm generates a tree of state-formula pairs, where
the states are randomly generated and the associated STL
formulae capture the progress towards satisfaction of the
overall STL specification. The algorithm is guided towards
maximal satisfaction using two methods: biased sampling and
guided steering. A space-time sampling procedure is defined
that is biased towards a set of pairwise non-mutually exclusive
active predicates at the randomly generated time. Informally,
a predicate is active at a time t if its value may influence the
robustness interval of trajectories at time t. For sampling, we
consider a subset of the active predicates that together induce
a non-empty region in the state space. To guide the steering
of the system, we propose a class of heuristic functions that
capture the Direction of Increasing Satisfaction (DIS). The
algorithm blends the stochastic search power of RRT∗ with
targeted (greedy) heuristics, by steering the system towards
a random convex combination between randomly generated
states and states along the DIS. Finally, in order to maintain the
incremental property of the sampling-based algorithm, we em-
ploy an online monitoring algorithm for STL formulae [18].

A. Algorithm

The proposed sampling-based algorithm is given in Alg. 1.
It takes as input a dynamical system R and an STL specifi-
cation φ, and returns an open-loop control policy that induces
a satisfying trajectory, if one exists. Otherwise, the algorithm
stops after the maximum number of iterations Nmax. In the
following, we assume that the specification φ is in positive
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normal form (i.e., without any negation operators), which is
not restrictive because any STL formula can be put in this
form [33]. We also assume that all predicates are linear. This
admits a rich set of specifications in the motion planning do-
main, since many regions of the workspace, be they obstacles
or goal regions, can be expressed as unions of polyhedra using
conjunctions and disjunctions over linear halfspace predicates.

The tree T = (V,E) generated by Alg. 1 has tuples of
states and formulae as vertices. We denote the (unique) parent
and the set of children of a vertex v ∈ V by pa(v) and ch(v),
respectively. Each vertex of v ∈ V is annotated with a time
timeT (v), the control value controlT (v) used to steer the
system from pa(v) to v, the state trajectory trajT (v) induced
by the path from the root of T to v, and RoSI rosiT (v)
associated with trajT (v). In the following, we assume tacitly
that all these values are set when a vertex is added to T .

Alg. 1 starts by initializing the RRT∗ tree with the pair of
initial state xinit and specification φ (lines 1-2). If the top-
level operation of φ is a disjunction, i.e., the root of the AST
of φ, then procedure initialize() (line 2) generates multiple root
vertices in T corresponding to each subformula of the disjunc-
tion. Note that if there are multiple initial states, then T might
be a forest instead of a tree, but this situation does not pose
problems since we can add a virtual root (either disjunctive or
conjunctive depending on whether we can choose the initial
state) to make T a tree.

In each iteration (lines 3-18), Alg. 1 randomly samples
a time and state using the sampling() procedure (line 4);
attempts to connect a near vertex of T to a new state x∗

that minimizes a convex combination of random sampling and
moving along the DIS (lines 5-14); updates T and associated
RoSI of the new vertex v∗ using update() (line 15); and,
finally, performs a rewiring of the near vertices using v∗ as
a parent (lines 16-18). Connecting a new vertex to the tree T
(lines 5-14) involves the following steps: 1) the set of near
vertices N to the random state xr and time tr is computed
(line 5), 2) a uniformly distributed convex coefficient is gen-
erated (line 6), 3) for each vertex v′ ∈ N the optimal state xs

and cost Js with respect to Jχ() are computed (line 10-12),
and the vertex with minimum cost is selected as the parent
of x∗ (line 14) if the system can steer to it (line 13). We
compute the duration a control value u′′ ∈ U is applied
as the difference between the random time tr and the time
timeT (v′) associated with vertex v′ ∈ N (line 9). Thus, all
vertices in N must respect the causality constraint, i.e., their
associated times must be less than tr, see Sec. IV-B for details.

Finally, after Nmax iterations if there exists a solution
(line 19), the algorithm return a piecewise-constant (pwc)
control policy (line 21) obtained from the best path in the
RRT∗ tree T (line 20), i.e., best(T ). A solution exists if there
is a vertex v ∈ V with rosiT (v) = {ρ} and ρ > 0.

B. Biased space-time sampling

In this section, we describe a space-time sampling proce-
dure biased based on an STL specification, and a modified
query function for near vertices in T that ensures causality.

The need for generating both a random time and state stems

Algorithm 1: Algorithm
Input: R = (f,X,U, xinit) – dynamical system
Input: φ – STL formula in positive normal form
Output: u – a satisfying control policy w.r.t. φ

1 T = (V = ∅, E = ∅)
2 V ← initialize(xinit, φ)
3 for k = 1 : Nmax do
4 tr, xr ← sample(X, T , φ)
5 N ← near(T , xr, tr)
6 λ← Unif ([0, 1])
7 vpa ← ./ , J∗ ←∞, x∗ ← ./
8 foreach v′ = (x′, φ′) ∈ N do
9 ∆tr = tr − timeT (v′)

10 us ← argminu Jχ(u,x[x′, u](∆tr), x′, φ′, xr;λ)
11 xs ← x[x′, us](∆tr)
12 Js ← Jχ(us, xs, x′, φ′, xr;λ)
13 if Js < J∗ ∧ steer(x′, xs) then
14 J∗ ← Js, vpa ← v′, x∗ ← xs

15 update(vpa, (x∗, ./ ))
16 for v′′ = (x′′, φ′′) ∈ Near(T , x∗, tr) do
17 if steer(v∗, x′′) then
18 update(v∗, v′′)

19 if existsSolution() then
20 [v0 = vinit, . . . , vs] = best(T )
21 return u = pwc

[
(controlT (vi), timeT (vi))si=1

]
22 else return ./

from the desire to bias the sampling towards promising regions
of the state space. Since satisfaction is history-dependent,
we need a procedure to resolve conflicting constraints. We
choose to generate a random time, because this enables the
computation of active predicates.

Let s[0,i] be a partial signal over the time domain [t0, ti] ⊂
R≥0. A predicate p is called active at time tj > ti if there
exist two signals s1, s2 ∈ C(s[0,i]) such that ρ(δtjs

1, p) 6=
ρ(δtjs

2, p) implies [ρ](s1[0,j], φ) 6= [ρ](s2[0,j], φ), otherwise it
is called inactive. Informally, this means that the robustness of
an active predicate p at time tj determines the RoSI of some
signals in C(s[0,i]), while inactive predicates do not influence
the RoSI of any signal in the completion. Note that activity
status of predicates depend on the time bounds associated with
temporal operators, hence the need for sampling over time.

Lemma 4.1: Procedure Alg. 3 correctly computes the set of
active predicates of a formula φ at time t ≥ 0.

Proof: Follows directly from the semantics of STL.
The sampling procedure is described in Alg. 2. First, a

time tr is generated uniformly distributed in [0, TmaxT + TH ]
(line 1), where TmaxT = maxv∈V timeT (v) is the maximum
time of any vertex of T and TH is the maximum horizon
between vertices. Next, the active predicates are computed
(line 2), and the conflicts between mutually-exclusive pairs
of predicates (i.e., their conjunction is identically false) are
resolved by randomly removing one of them (lines 3-5).
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Finally, a random state is generated uniformly distributed in
the region spanned by the predicates (line 6).

Algorithm 2: sample(X, T , φ)

1 tr ← Unif ([0, TmaxT + TH ])
2 Pr ← active(φ, tr)
3 while ∃ pπ1(x)≤µ1

, pπ2(x)>µ2
∈ Pr s.t. µ1 ≤ µ2 do

4 if Ber(0.5) = 0 then Pr ← Pr \ {pπ1(x)≤µ1
}

5 else Pr ← Pr \ {pπ2(x)>µ2
}

6 xr ← Unif ({x ∈ X |
∧
p∈Pr p(x)})

7 return tr, xr

Algorithm 3: active(φ, t)

1 if φ ∈ {>,⊥} then
2 return ∅
3 else if φ = pπ(x)∼µ then
4 if t = 0 then return {pπ(x)∼µ}
5 else return ∅
6 else if φ ∈ {φ1 ∧ φ2, φ1 ∨ φ2} then
7 return active(φ1, t) ∪ active(φ2, t)
8 else if φ ∈ {♦〈a,b〉φ1,�〈a,b〉φ2} then
9 return

⋃
t′∈〈a,b〉 active(φ1, t− t′)

10 else if φ = φ1U〈a,b〉φ2 then
11 return

(⋃
t′∈[0,b〉 active(φ1, t− t′)

)
∪(⋃

t′∈〈a,b〉 active(φ2, t− t′)
)

A consequence of sampling space and time is that we
need to redefine the near() primitive function to take into
account causality, i.e., vertices come before tr. Thus, we have
near(T , xr, tr) = {v = (x, φx) ∈ V | ‖x− xr‖2 ≤
γ(log(N)/N)

1
n ∧timeT (v) ∈ [−TH+tr, tr]}, where n is the

dimension of the state space, N = |T | = |V |, and γ ∈ R≥0.

C. Direction of Increasing Satisfaction
We propose a class of heuristic functions that capture the

most promising direction to improve the robustness bounds
given a partial trajectory. Their role is to provide a gradient-
like information for exploration algorithms, which may be of
independent interest beyond the use in this paper. For instance,
these may be used in conjunction with optimization-based
planning and learning algorithms to speed up convergence.

The class of heuristic functions is parameterized by two
procedures: choose() and blend(). The choice function decides
which of the two input formulae yields the largest robustness
gain for their conjunction. The blending function combines
the two directions computed for the two sub-formulae of the
conjunction, and should give priority to the one returned by
the choice function. Additionally, we require that the blending
function satisfies the following orthogonality condition:

χ(s, φ1, t) ⊥ χ(s, φ2, t)⇒
blend(χ(s, φc, t), χ(s, φ¬c, t)) =

∑
i∈{c,¬c}

χ(s, φi, t) (3)

The Direction of Increasing Satisfaction (DIS) is defined as

χ(s,>, t) = 0n

χ(s, pπ(x)∼µ) =

{
ẋi(t)ei (−1)ιẋi(t) > 0

0n otherwise

χ(s,¬φ, t) = − χ(s, φ, t)

χ(s, φ1 ∧ φ2, t) =

{
blend(χ(s, φc, t), χ(s, φ¬c, t))

c,¬c = choose(s, t, φ1, φ2)

χ(s, φ1U[a,b)φ2, t) =


χ(s, φ1, t) t < a

χ(s, φ1 ∧ φ2, t) t ∈ [a, b)

0n t ≥ b

where ẋi(t)ei = fi(x(t), u)ei is a vector dependent on the
control input u. Thus, the DIS χ(s, φ, t) is (as expected)
dependent on the applied control input. In the case of the U
operator, we define the DIS for the interval [a, b) above for
illustrative purposes: it is defined similarly for any 〈a, b〉.

In this paper, we consider a stochastic choice function
that depends only on robustness intervals associated with the
partial trajectory and the two formulae:

choose(s, t, φ1, φ2) = choose([ρ](δts, φ1), [ρ](δts, φ2)) =
1 if a1 < a2 ∧ b1 < b2

2 if a1 > a2 ∧ b1 > b2

1 +Ber(p) otherwise

p = 0.5 +
(a1 + b1)− (a2 + b2)

8ρ>
(4)

where [a1, b1] = [ρ](δts, φ1), [a2, b2] = [ρ](δts, φ2).
To minimize the computational overhead we chose a simple

blending function that returns the direction of the sub-formula
given by the choice function in case the sub-formulae’ direc-
tions are not orthogonal, otherwise (3) is enforced, i.e.,

blend(χ(s, φc, t), χ(s, φ¬c, t)) ={∑
i∈{c,¬c} χ(s, φi, t) χ(s, φc, t) ⊥ χ(s, φ¬c, t)

χ(s, φc, t) otherwise

(5)

D. Guided steering

In this section we focus on guided steering used in line 10 of
Alg. 1 posed as an optimization problem over control values
with the cost function:

Jχ(u, x′′, x′, φ′, xr;λ) =λ ‖x′′ − (x′ + dχ(u) ∗∆tr)‖22
+ (1− λ) ‖x′′ − xr‖22

(6)
where dχ(u) = χ(trajT (v′), φ′, timeT (v′)) is the DIS,
v′ = (x′, φ′), and x′′ = x[x′, u](∆tr) is the terminal
state after applying the constant control input u for duration
∆tr. Informally, the cost function Jχ() balances the greedy
heuristic of moving in the direction that improves robustness,
captured by the first term of (6), and the stochastic search
power of RRT∗of steering towards random samples, imposed
by the second term of (6). However, optimizing over this cost
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function simultaneously with respect to both u and x′′ is hard.
Therefore, we propose a relaxation that divides it into two
optimization problems:

dχ = max
u
‖χ(trajT (v′), φ′, timeT (v′))‖22 (7)

min
x′′

Jχ(x′′, x′, xr) = min
x′′

{
λ ‖x′′ − (x′ + dχ ·∆tr)‖

2

2

+ (1− λ) ‖x′′ − xr‖22
} (8)

where dχ is now the direction of maximum increasing satisfac-
tion (DMIS) and independent of u, and the second optimiza-
tion is in terms of x′′.

The following results highlight the advantages of the re-
laxed formulation.

Lemma 4.2: Let x′, xr ∈ X . The minimizer of
Jχ(·, x′, xr) is x∗ = λxχ + (1 − λ)xr and Jχ(x∗) = λ(1 −
λ) ‖xχ − xr‖22, where xχ = x′ + dχ ·∆tr.

Proof: The proof is immediate, and is omitted.
Lemma 4.3: Let φ be an STL formula, s ∈ S , and t ∈

R≥0. If the blending function (5) is used, then there exists I ⊆
{1, . . . , n} such that χ(s, φ, t) =

∑
i∈I fi(x(t), u(t))ei.

Proof: The form of the DIS follows from the orthogonal-
ity condition (3), where ẋi(t) = fi(x(t), u(t)).

Theorem 4.4: Let R = (f,X,U, xinit) be a dynamical
system, φ an STL formula, s ∈ S and t ∈ R≥0. If U is a
convex polytope, f(x, u) = h(x)+G(x)u is input-affine, and
χ is parameterized by (4) and (5), then (7) is a maximization
problem of a quadratic function with linear constraints

max
u∈U

∥∥∥∥∥∑
i∈I

eTi (h+Gu)ei

∥∥∥∥∥
2

2

s.t. (−1)ιi(h+Gu)T ei > 0.

Proof: The form of the cost function follows from the
Lemma 4.3, while the linear constraints correspond to the
predicates selected in χ(), and the polytope U .
Note that for non-linear predicates, the form of the constraints
will vary accordingly.

E. Rewiring

We assume available an oracle om() to compute the RoSI of
a formula on a partial trace. An example is an implementation
of the algorithm in [18], which leverages Lemire’s running
maximum filter algorithm. More efficient variants can be
constructed for subsets of STL.

Adding (line 15 in Alg. 1) and rewiring (line 18) vertices
is done using the update() procedure. First, the monitoring
algorithm om() is used to compute the RoSI for the child v1
by considering v2 its parent. If v2 is a new vertex (line 2 in
Alg. 4), then a simplified formula φ2 is computed from the
formula of v2 (line 5). The vertex v1 is added to the tree if the
new connection induces a RoSI with positive upper bound.
The latter constraint ensures that satisfaction of the speci-
fication is still feasible, otherwise violation is certain. The
simplify() function prunes formulae based on partial trajecto-
ries. Temporal operators that do not influence the outcome,
such as those referring to previous times, are discharged.
Another important role is to keep track of disjunctions and
decide which alternative to choose to satisfy. The decision
was implemented as a stochastic choice function, where there

is a non-zero probability of either not changing the formula,
or pruning one branch of a disjunction operator. Note, that
formulae that do not contain disjunctions might still change,
due to the removal of temporal operators whose deadline has
passed.

In case of updating for rewiring, the parent of vertex of
v2 is changed to v1 again only if the upper bound of the
RoSI associated with the new connection is positive. Addi-
tionally, we require the lower bound to be improved and the
formulae associates with the two vertices to be consistent.
Since vertices are associated with simplified versions of the
original specification, we need to ensure that new connections
contain formulae on the same chain of simplifications, i.e., the
formula of a child vertex can be obtain as a simplification
of the parent’s formula. Formally, we can define a partial
order over the subformulae of the specification φ induced by
“implication” to check line 7).

Algorithm 4: update(v1, v2)

// propagate RoSI
1 I ′2 = [a′2, b

′
2]← om(φ1, rosiT (v1), steer(x1, x2))

2 if φ2 = ./ then
3 if b′2 ≥ 0 then
4 rosiT (v2)← I ′2
5 φ2 ← simplify(φ1)
6 V ← V ∪ {v2}, E ← E ∪ {(v1, v2)}
7 else if b′2 ≥ 0 ∧ a′2 ≥ min rosi(v2) ∧ φ1 =⇒ φ2 then
8 rosiT (v2)← I ′2
9 E ← (E \ {(pa(v2), v2)}) ∪ {(v1, v2)}

10 Vupd = ch(v2) // children of v2
11 while Vupd 6= ∅ do
12 v ← Vupd.pop(), v′ ← pa(v)

rosiT (v′)← om(φ, rosiT (v′), steer(v′, v))

F. Analysis

In this section, we analyze the convergence properties of
our algorithm and its complexity. In particular, we prove that
the control policy u given by the Alg. 1 after Nmax iterations
converges to the solution of Problem 3.2 as Nmax goes to
infinity, with probability one. We provide proof sketches due
to space constraints.

Theorem 4.5 (Asymptotic optimality): The probability that
Alg. 1 returns a control policy u that converges to the solution
u∗ of Problem 3.2 in the bounded variation norm sense,
approaches one as N = |V | tends to infinity, i.e.,

P
({

lim
N→∞

||x[xinit,u]− x[xinit,u
∗]||BV = 0

})
= 1

Proof: [Sketch] The proof follows from the asymp-
totic optimality of the RRT∗algorithm (Theorem 34 in
[20]). Let u∗ be the solution of Problem 3.2 that maxi-
mizes ρ(x[xinit,u

∗], φ). Define a finite sequence of balls
BN = {BN1 , . . . , BNm} around the optimal trajectory x∗ =
x[xinit,u

∗] such that consecutive balls overlap. The radii of
the balls must be set to a fraction of γ(log(N)/N)1/n such
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that any state in x ∈ BNi can be connected using the steer(x,
x’) function to a state x′ in the successor ballBNi+1, where n is
the dimension of the state space. It can then be shown that for
large enough N the probability that each ball in BN contains
at least one sample is one. The convergence in probability
follows from two properties of the proposed algorithm. First,
all decision for biasing the sampling (Alg. 2) and guiding the
steering of the system (Alg. 1, DIS and choice function (4))
are stochastic and assign non-zero probabilities to all possible
choices. Thus, the probability measure of trajectories gener-
ated by Alg. 1 has the same support set as for standard RRT∗,
albeit skewed towards increasing robustness. Second, we used
the lower bounds of RoSIs associated with the tree’s branches
as the cost function. This cost function is monotonic due to
Lemma 2.3, continuous, and it converges to the robustness
value in bounded time. Thus, there is a trajectory xN that
intersects all balls in BN with probability one, and it can be
shown (as in [20]) that xN converges to x∗ as N →∞.

An immediate corollary of Theorem 4.5 is that the optimal
trajectory returned by Alg. 1 converges to the maximum
robustness value as N goes to infinity, i.e.,

P
({

lim
N→∞

||ρ(x[xinit,u], φ)− ρ(x[xinit,u
∗], φ)||BV = 0

})
= 1.

Theorem 4.6: The computational complexity of Alg. 1 is
O(|φ| log(N)) per iteration, where |φ| is the size of the
formula, i.e., the number of predicates and operators.

This iteration complexity follows from a quick inspection of
Alg. 1. The sampling procedure takes O(|φ|) to compute the
constraints (i.e., active predicates) of the biased region. There
are O(log(N)) vertices in a ball of radius γ(log(N)/N)1/d

that affect the number of nearest-neighbor queries. Moreover,
it follows that the steering and rewiring functions are called
for O(log(N)) samples as well. The update procedure takes
O(|φ|) time due to the computation of the DMIS and the RoSI
for each vertex, and checking the consistency of two simplified
STL formulae. Overall, the complexity of each iteration is
O(|φ| log(N)).

V. CASE STUDY

In this section, we demonstrate the practical effectiveness of
our approach via representative case studies. We implemented
our algorithms in Python, and all experiments were performed
on an Intel R©CoreTM i7-5500U CPU with a clock speed of
2.40GHz, 8GB RAM and 4 cores.

1) Case 1: Consider a system R1 whose dynamics are
represented by a double integrator.

q̈ = u, (9)

The input u is bounded as ‖u(t)‖1 ≤ umax. The system can
be rewritten as a linear control system

ẋ1 = x2, ẋ2 = u, y = x1 (10)

where xi(t) ∈ Rn for time t and i = 1, 2.
We ran our approach to synthesize a control policy for R1

subject to the specification φ1 = ♦[2,10](3.5 < x1 ≤ 4 ∧
−0.2 < x2 ≤ 0.2)∧�[0,2](−0.5 < x2 ≤ 0.5)∧�[0,10]((2 <

x1 ≤ 3) =⇒ (x2 > 0.5 ∨ x2 ≤ −0.5)). We set Nmax to
500.

The mean time per iteration was 16ms, and the total time for
500 iterations was 7.8s. Along the returned best control policy,
the RoSI chain was:

[(−4.000, 0.500), (−4.000, 0.349), (−4.000, 0.300),
(−4.000, 0.207), (−4.000, 0.207), (−4.000, 1.143),
(−4.000, 0.902), (−4.000, 0.734), (−4.000, 0.441),
(−4.000, 0.272), (−4.000, 0.086), (−4.000, 0.034),
(−4.000, 0.005), (−4.000, 0.005), (−4.000, 0.005),
(−4.000, 0.005), (−4.000, 0.005), (0.005,0.005)]

The final robustness of satisfaction was thus 0.005. Figure 2
shows the generated tree and best policy at three time steps
(100, 200 and 300, respectively). Note that the policy has
already converged by time step 200.

2) Case 2: Consider a rear wheel carR2 whose dynamics
are given by

ẋ1 = x4 cos(x3), ẋ2 = x4 sin(x3), ẋ3 = x5,

ẋ4 = u1, ẋ5 = u2,
(11)

where x1, x2, x3 represent the pose (position and orientation)
of the vehicle, x4, x5 the linear and angular velocities, and the
vehicle is controlled by bounded linear and angular accelera-
tion u1 and u2, respectively, with | u1 |< 0.2, | u2 |< 0.4.

We synthesized a control policy forR2 subject to the reach-
avoid specification with timing constraints φ2 = ♦[0,18](3 <
x1 ≤ 4 ∧ 2 < x2 ≤ 3) ∧�[0,6]¬(1 < x1 ≤ 2 ∧ 2 < x2 ≤ 3).

The mean execution time per iteration was 260ms, and the
total time for 1600 iterations was 400.55s. The final robustness
of satisfaction value was 0.421 corresponding to the policy
shown in the rightmost subfigure in Figure 2.

VI. CONCLUSION AND FUTURE WORK

We presented a sampling-based method for incrementally
synthesizing a motion control policy such that resulting trajec-
tories satisfy an STL specification. We defined the Direction
of Increasing Satisfaction, and used it to construct a class of
heuristic functions to bias the sampling of controlled edges
in an RRT. We also used the robust interval semantics, which
bounds the quantitative satisfaction of the specification given
a partial policy, to choose which node of the tree to extend.
We prove and demonstrate experimentally that this allows
us to both converge to a path that satisfies the specification,
and improve upon an existing path, asymptotically converging
to a solution that satisfies the specification with maximum
robustness. In future work, we will demonstrate this approach
on a wider variety of domains, including robotic manipulation,
to demonstrate its effectiveness.

Additionally, in this paper, we consider a stochastic choice
function that depends only on robustness intervals of various
subformulae associated with the partial trajectory. Another
option is to learn this choice function while building the
RRT∗. Finally, while the approach we present deals with
open-loop control policy synthesis for a closed system over
a bounded time horizon, receding horizon approaches have
been developed for extending STL synthesis to indefinite time
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Fig. 2. The three figures on the left show the generated tree for a double integrator with φ1 = ♦[2,10](3.5 < x1 ≤ 4∧−0.2 < x2 ≤ 0.2)∧�[0,2](−0.5 <
x2 ≤ 0.5) ∧ �[0,10]((2 < x1 ≤ 3) =⇒ (x2 > 0.5 ∨ x2 ≤ −0.5)). Trees are shown after 100, 200 and 300 iterations. The rightmost figure shows the
tree for a rear wheel car with φ2 = ♦[0,18](3 < x1 ≤ 4 ∧ 2 < x2 ≤ 3) ∧ �[0,6]¬(1 < x1 ≤ 2 ∧ 2 < x2 ≤ 3).

horizons and open systems [32], [16], [33], [34]. We note
that our approach can also be combined with such a receding
horizon scheme to incorporate changes in the environment at
runtime.
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[15] A. Donzé and O. Maler, Robust satisfaction of temporal logic over
real-valued signals. Springer, 2010.
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