
Automata-based Optimal Planning with Relaxed Specifications

Disha Kamale, Eleni Karyofylli, and Cristian-Ioan Vasile

Abstract— In this paper, we introduce an automata-based
framework for planning with relaxed specifications. User re-
laxation preferences are represented as weighted finite state edit
systems that capture permissible operations on the specification,
substitution and deletion of tasks, with complex constraints on
ordering and grouping. We propose a three-way product au-
tomaton construction method that allows us to compute minimal
relaxation policies for the robots using shortest path algorithms.
The three-way product automaton captures the robot’s motion,
specification satisfaction, and available relaxations at the same
time. Additionally, we consider a bi-objective problem that
balances temporal relaxation of deadlines within specifications
with changing and deleting tasks. Finally, we present the
runtime performance and a case study that highlights different
modalities of our framework.

I. INTRODUCTION
Robots are increasingly required to perform complex tasks

with rich temporal and logical structure. In recent years,
automata-based approaches have been widely used for solv-
ing robotic path planning problems wherein an automaton
is constructed from mission specifications posed as temporal
logic formulae (e.g. LTL, scLTL, STL, TWTL) [1]–[4]. Us-
ing shortest path algorithms on the product models between
abstract robot motion models and specification automata,
optimal satisfying trajectories are synthesized.

This traditional approach, albeit useful, does not consider
modifying mission specifications in case satisfaction is infea-
sible. This implies that even the sub-parts of the specification
that might be feasible will not be executed. In many real-
world scenarios, it is often preferable that the robot performs
at least some part of the assigned task even if it cannot
be satisfied in its entirety. Consider the following mission
specification for data collection: “Collect data from region
G1 and then region G2 and then upload it at U1. Collect
data from G3 and upload it at U2. Always avoid obstacles.”
In case an obstacle makes it impossible to reach U2, it is
still preferred to receive the data from G1 and G2. Thus,
we need to consider relaxed satisfaction semantics to handle
infeasible mission specifications.

In literature, the problem of specification relaxation has
been formulated in various ways. Minimum violation is
considered in [5]–[7] for self-driving cars, where policies
are computed with minimal rules of the road violation
based on priorities. Their approach is based on the removal
of violating symbols from the input of the specification
automata to produce satisfying runs. In [8], minimum revision
of tasks for office robots is explored. Their approach allows
changing of tasks based on user-provided substitution costs.
A similar problem is tackled in [9], but for infinite horizon
case with Büchi automata. Both works modify the input
stream of the specification automaton to induce feasibility.

The authors are with Lehigh University, Bethlehem, PA 18015.
{ddk320, elk222, cvasile}@lehigh.edu

Partial satisfaction [10], [11] approaches aim to compute
policies that minimize distance to satisfaction given by paths
to accepting states in specification automata. In a different
direction, [4], [6], [12] consider temporal relaxation of
deadlines to complete missions. Their approach introduces
annotated automata that capture all deadline relaxations from
specifications, to compute policies with minimal delays.
Some of these works combine relaxation of specifications
with maximizing satisfaction probability [8], [10], [13]. All
these works use automata-based techniques. However, all
have specialized approaches that can not be readily com-
bined. Moreover, they operate on a symbol-by-symbol basis
rather than words translations that capture rich relaxation
preferences on groups of tasks.

This work proposes a framework that brings together
the core notions of several automata-based methods for
planning with relaxation and allows for handling complex
specifications and relaxation preferences in symbolic path
planning. The main contributions of the paper are: (1) the
formulation of the minimum relaxation problem that unifies
several existing problems and generalizes them to relax-
ation rules with memory; (2) an automata-based formalism
to capture user relaxation preferences via WFSEs; (3) an
automata-based planning framework that uses a novel three-
way product automaton construction that simultaneously
captures the motion, specification, and relaxation preference
models; and (4) case studies that demonstrate different
instances of specification relaxation, a bi-objective optimal
synthesis problem, and the runtime performance. To the best
of our knowledge, this is the first time relaxation rules are
considered that account for complex ordering and grouping
of sub-tasks when revising mission specifications.

II. PRELIMINARIES

In this section, we introduce notation used throughout the
paper, and briefly review the main concepts from formal
languages, automata theory, and formal verification. For
a detailed exposition of these topics, we refer the reader
to [14], [15] and the references therein.

We denote the range of integer numbers as [[a, b]] =
{a, . . . , b}, and [[a]] = [[0, a]]. Let Σ be a finite set. We
denote the cardinality and the power set of Σ by |Σ| and 2Σ,
respectively. A word over Σ is a finite or infinite sequence of
elements from Σ. In this context, Σ is also called an alphabet.
The length of a word w is denoted by |w|. Let k, i ≤ j be
non-negative integers. The k-th element of w is denoted by
wk, and the sub-word wi, . . . , wj is denoted by wi,j . Let
I = {i0, i1 . . .} ⊆ [[|w|]]. The sub-sequence wi0 , wi1 . . . is
denoted by wI . A set of words over an alphabet Σ is called
a language over Σ. The language of all finite words over Σ
is denoted by Σ∗.

Definition 2.1 (Deterministic Finite State Automaton):
A deterministic finite state automaton (DFA) is a tuple
A = (SA, s

A
0 ,Σ, δA, FA), where: SA is a finite set of

states; sA0 ∈ SA is the initial state; Σ is the input alphabet;
δA : SA × Σ → SA is the transition function; FA ⊆ SA is
the set of accepting states.

A trajectory of the DFA s = s0s1 . . . sn+1 is generated by
a finite sequence of symbols σ = σ0σ1 . . . σn if s0 = sA0 is
the initial state of A and sk+1 = δA(sk, σk) for all k ≥ 0.
A finite input word σ over Σ is said to be accepted by a
finite state automaton A if the trajectory of A generated by
σ ends in a state belonging to the set of accepting states,
i.e., FA. The (accepted) language of a DFA A is the set of
accepted input words denoted by L(A).

Definition 2.2 (Transition System): A weighted transition
system (TS) is a tuple T = (X,xT0 , δT , AP , h, wT), where:
X is a finite set of states; xT0 ∈ X is the initial state; δT ⊆
X × X is a set of transitions; AP is a set of properties
(atomic propositions); h : X → 2AP is a labeling function;
wT : δT → Z>0 is a weight function.

A trajectory (or run) of the system is an infinite sequence
of states x = x0x1 . . . such that (xk, xk+1) ∈ δT for all
k ≥ 0, and x0 = xT0 . The set of all trajectories of T is
Runs(T). A state trajectory x generates an output trajectory
o = o0o1 . . ., where ok = h(xk) for all k ≥ 0. We also
denote an output trajectory by o = h(x). The (generated)
language corresponding to a TS T is the set of all generated
output words, which we denote by L(T). We define the
weight of a trajectory as wT (x) =

∑|x|
k=1 wT (xk−1, xk).

III. BACKGROUND ON PLANNING WITH
RELAXED SPECIFICATIONS

In this section, we review existing temporal logic-based
planning problems that consider specification relaxation in
case of infeasibility. In the subsequent sections, we gen-
eralize all these problems, and propose an automata-based
framework amenable to off-the-shelf synthesis methods in-
stead of customized solutions. For cohesiveness and clarity,
we present the core features of the relaxed TL planning
problems, in some cases, adapted to finite-time.

Throughout the paper, we assume that the motion of a
robot is captured by a finite weighted transition system T
and the finite-time specifications expressed using temporal
logics (TL), e.g. scLTL [16], [17], TWTL [18], BLTL [19],
and Finite LTL [20], and regular expressions (RE) [15], [21].
All of these representations can be translated to DFAs using
off-the-shelf tools e.g., spot [17], scheck [16], pytwtl [18].
Thus, we consider specifications given as a DFA A.

1. Canonical Problem (CP):
Problem 3.1: Find a trajectory for T such that the output

trajectory is accepted by A.
Optimality: Minimize the weight of the trajectory.

In the canonical problem, no relaxations are permitted.
2. Minimum Violation Problem (MVP): Let o be a word

over 2AP , and $ per symbol violation cost. The viola-
tion cost of o with respect to A is minI⊆[[|w|]]$ |I| s.t.
o[[|w|]]\I ∈ L(A). The violation cost of a TS trajectory x is
induced by the output word o = h(x).

Problem 3.2 (Minimum violation): Find a trajectory for
T such that a sub-sequence of the output trajectory is

accepted by A.
Optimality: Minimize the violation cost of the trajectory.

3. Minimum Revision Problem (MRP): Let o be a word
over 2AP , and c : 2AP × 2AP → R the symbol substi-
tution cost. The revision cost of o with respect to A is
mino′∈L(A)

∑|o|
i=0 c(oi,o

′
i) s.t. |o′| = |o|, where o′ is the

revised word.
The symbol substitution cost function c is defined such

that there is no penalty for no substitution, i.e., c(σ, σ) = 0
for all σ ∈ 2AP .

Problem 3.3 (Minimum revision): Let c be the symbol
substitution cost. Find a trajectory for T such that a revision
of the output trajectory is accepted by A.
Optimality: Minimize the revision cost of the trajectory.

For MRP, as our framework operates on groups of symbols
(words), we refer to it as Minimum Word Revision Problem
(MWRP) throughout the paper.

4. Hard-Soft Constraints Problem (HSC):
Problem 3.4: Let AH and AS be two specification DFAs.

Find a trajectory for T such that the output trajectory is
accepted by AH , and, if possible, by AS .
Optimality: Minimize the cost of the trajectory.

We adapt the HSC problem from [2] for finite-time spec-
ifications, where we replace Büchi automata with DFAs.

5. Partial Satisfaction (PS): Let o ∈ 2AP . The continu-
ation cost of o with respect to A is minoc∈(2AP)∗ |oc| s.t.
o′ = ooc ∈ L(A), where o′ is a continuation of o.

Problem 3.5: Find a trajectory for T such that a contin-
uation of the output trajectory is accepted by A.
Optimality: Minimize the cost of the continuation.

The problem minimizes the amount of work still needed
to satisfy the specification from partial trajectories.

6. Temporal Relaxation (TR):
We leverage Time window temporal logic (TWTL) [1], a

specification language for robotics applications with explicit
time bounds. We refer the reader to [18] for a detailed
exposition of TWTL syntax and semantics.

Let φ be a TWTL formula and τ ∈ Zm, where m is the
number of within operators contained in φ. The τ -relaxation
of φ is a TWTL formula φ(τ), where each subformula of
the form [φi]

[ai,bi] is replaced by [φi]
[ai,bi+τi]. We consider

the linear temporal relaxation (LTR), where the LTR of
φ(τ) is |τ |LR =

∑
j τj , and φ(τ) is a τ -relaxation of φ.

Problem 3.6: Find a trajectory for T such that the output
trajectory satisfies the relaxed formula φ(τ) for some relax-
ation τ of the deadlines in φ.
Optimality: Minimize the linear temporal relaxation.

7. Planning: All the problems above are solved by con-
structing a standard product automaton between the motion
model T and the specification DFA A. Planning with relaxed
semantics is achieved via custom pre-processing procedures
of A, and custom shortest path algorithms. In the following,
we show that all these problems can be captured via an
additional automata-based model for user task relaxation,
and solved using standard shortest path methods applied
on a novel 3-way product. Moreover, MVP and MRP are
restricted to relaxations of a single symbol at a time. Our
framework can handle rich relaxation rules that involve
changing groups of symbols (words).

IV. PROBLEM FORMULATION
In this section, we introduce an optimal planning problem

for finite system abstractions with temporal logic goals. We
define a cost function based on user preferences on task
relaxation in case satisfying the given specification is infea-
sible. Using the user task preference we define an optimal
planning problem over the finite motion model, where the
specification language is enlarged to ensure feasibility with
appropriate penalties.

Definition 4.1 (User Task Preference): Let L be a lan-
guage over the alphabet 2AP . A user task preference is a
pair (R,wR), where R ⊆ L × (2AP)∗ is a relation that
captures how words in L can be transformed to words from
(2AP)∗, and wR : R → R represents the cost of the word
transformations. The relation R can also be understood as a
multi-valued function R : L⇒ (2AP)∗.

Problem 4.1 (Minimum Relaxation): Given a transition
system T , a specification DFA A, and a task re-
laxation preference (R,wR), find a trajectory x ∈
Runs(T) that minimizes the task cost. Formally, we have
minx∈Runs(T) wR(o,o′)s.t. o ∈ L(A),o′ = h(x) ∈ L(T)∩
R(o) where R : L(A)⇒ (2AP)∗ and wR : R→ R.

Task preferences can be used to substitute and delete tasks
which are associated with words. These generalize edit-space
operations on single symbols to words, and the optimization
problem Problem 4.1 generalizes the Levenstein distance
between languages of finite words.

User task preferences (R,wR) can be represented in
many ways. We consider the user preferences for relaxation
provided as regular expressions (RE) and regular grammars
that can be readily translated to automata using standard
methods [15]. Consider the following example.

Example 4.1: Specification: visit region P1 for 1 time unit
followed by P2 for 2 time units. Should visiting either or
both be not possible, the substitution rules are: Substitute the
visit to P1 by visiting Q1 for 2 time units with a penalty of
d1, and the visit to P2 by visiting S1 for 2 time units followed
by S2 for 1 time unit with a penalty of d2. Formally, R =
((•/•, 0)∗({Q1}/{P1}, 0)({Q1}/ε, d1)({S1}/{P2}, 0)
({S1}/{P2}, 0) ({S2}/ε, d2)(•/•, 0)∗, where • represents
any symbol in 2AP , ε denotes a deleted symbol,
{Q1}/{P1} denotes that {P1} is substituted by {Q1},
and d1, d2 denote the penalties for the corresponding
substitutions. Note that the transformation can be performed
multiple times due to the outer Kleene star operator.
Alternatively, the transformation rules are P1 7→d1 Q1Q1
and P2P2 7→d2 S1S1S2. and the possible alternatives
are: a) r′1 = Q1Q1P2P2, b) r′2 = P1S1S1S2, and c)
r′3 = Q1Q1S1S1S2.

We use weight computation functions fw(·) that combine
TS and WFSE weights to capture multiple semantics for
relaxation penalties. Next, we show that Prob. 4.1 captures
all problems from Sec. III. The proof is provided in [22].

Proposition 4.1: Problems 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6
are instances of Prob. 4.1

V. UNIFIED AUTOMATA-BASED FRAMEWORK
In this section, we introduce a unified automata-based

framework to capture user preference specifications, and to
synthesize minimal relaxation policies.

z0 z1

z2z3

({P1}/{P1}, 0), ({P2}/{P2}, 0), ({}/{}, 0)

({S1}/{P2}, 0)

({Q
1}
/{P

1}
,0

)

({
S

1}
/{P

2},0
)

({S2}/ε, d2)

({
Q

1}/
ε, d

1)

(a)

z0

({}/{}, 0), ({S1}/{S2}, 0),
({P1}/{P1}, 0), ({S1}/{S1}, 0),
({P1}/{Q1}, d1),
({P1, P2}/{Q1, P2}, d1),
({Q1}/{Q1}, 0),
({P1, P2}/{P1, S1}, d2),
({P2}/{P2}, 0),
({P1, P2}/{Q1, S1}, d1 + d2),
({P2}/{S1}, d2)

(b)

Fig. 1: (a) WFSE for word-word translations, (b) WFSE corre-
sponding to symbol-symbol translations

A. Relaxation Specification
We consider two classes of problems related to task

changes and deadline relaxations.
1) Task Relaxation: In this problem class, we allow

parts of the specification to be substituted and/or removed.
Preferences can be given in many formats, e.g., regular
expressions and grammars, (Ex. 4.1). We introduce weighted
finite state edit systems to represent user task relaxation
preferences with bounded memory, where weights capture
translation penalties.

Definition 5.1 (Weighted Finite State Edit System):
A weighted finite state edit system (WFSE) is a
weighted DFA E = (ZE , z

E
0 ,ΣE , δE , FE , wE), where

ΣE =
(
2AP ∪ {ε}

)
×
(
2AP ∪ {ε}

)
\ {(ε, ε)}, ε denotes

a missing or deleted symbol, and wE : δE → R is the
transition weight function.

The alphabet ΣE captures word edit operations (addition,
substitution, or deletion of symbols). A transition z′ =
δE(z, (σ, σ

′)) has input, output symbols σ and σ′. Given
a word ~σ = (σ0, σ

′
0)(σ1, σ

′
1) . . . (σr, σ

′
r) ∈ L(E), r =

|~σ| − 1, we call σ = σi0σi1 . . . σin ∈ (2AP)∗ and σ′ =
σ′j0σ

′
j1
. . . σ′jm ∈ (2AP)∗ obtained by removing only the

symbol ε, the input and output words, where m,n, r ∈ Z>0,
m,n < r, 0 ≤ i0 < . . . < im < r and 0 ≤ j0 < . . . < jn <
r. Moreover, we say that E transforms σ into σ′.

Note that WFSE is a special type of finite state transducer
where the input and output alphabets are the same, and the
empty symbol ε cannot be mapped to itself. Moreover, the
weights capture translation penalties and can depend on the
states and symbol translation pairs. We can use standard
methods [15] to translate REs that express relaxation rules
into WFSEs.

2) Temporal Relaxation: Temporal relaxation allows de-
lays with respect to deadlines in the satisfaction of specifica-
tions. In the following, we consider annotated automata A∞
computed from TWTL formulae [18] that capture all possible
deadline relaxations. Formally, given TWTL formula φ, an
annotated DFA A∞ is a DFA such that L(A∞) = L(φ(∞)),
where φ(∞) is satisfied by a word o if and only if ∃τ ′ <∞
s.t. o |= φ(τ ′). When the transition weights of the TS T
represent (integer) durations, we construct an extended TS T̂
from T such that all transitions have unit weight (duration).
This additional step ensures that transitions of A∞ and T
are synchronized. See [18] for details.

B. Product Automaton Construction
The optimal control policy that takes into account the

user preferences is computed based on a product automaton

between three models: (a) the robot motion model T ; (b) the
user preferences WFSE E ; and (c) the specification DFA A.

Definition 5.2 (Three-way Product Automaton): Given a
TS T = (X,xT0 , δT , AP, h, wT), a WFSE system E =
(ZE , z

E
0 ,ΣE , δE , FE , wE), and a specification DFA A =

(SA, s
A
0 , 2

AP , δA, FA), the product automaton is a tuple
PE = (QE , qE0 , δ

E
P , F

E
P , w

E
P) also denoted by PE = T ×E A,

where: QE = X × ZE × SA ∪ {qE0 } is the state space;
qE0 = (B, z0, s0) is the initial state; δEP ⊆ QE × QE is the
set of transitions; F EP = X × FE × FA ⊆ QE is the set
of accepting states; wEP : δEP → R is the transition weight
function.

A transition ((x, z, s), (x′, z′, s′)) ∈ δEP if (x, x′) ∈ δT
or x′ = x0, z′ = δE(z, (σ, σ

′)), s′ = δA(s, σ′), and
σ = h(x′). Note that we introduce a virtual TS state B
connected to x0 to avoid the definition of a set of initial
states and associated start weights. State B is only used to
simplify notation and implementation, and does not corre-
spond to an actual state of the robot. The weight function
is wEP((q, q′)) = fw(wT (x, x′), wE(z, z

′)), where fw(·) is
an arbitrary function, q = (x, z, s), q′ = (x′, z′, s′), and
wT (B, xT0) = 1 by convention. A trajectory of PE is said
to be accepting only if it ends in a state that belongs to
the set of final states F EP . The projection of the trajectory
q = qE0 q1 . . . qn onto the TS T is x = x0x1 . . . xn−1, where
qE0 is the initial state of PE , and qk = (xk−1, zk, sk), for all
k ∈ [[1, n]]. Similar to [1], [18], we construct PE such that
only states that are reachable from the initial state, and reach
a final state.

Algorithm 1: Optimal Planning Algorithm – Plan()

Input: TS T , TL specification φ (scLTL, TWTL, etc.),
user task specification RE (R,wR), product
weight computation function fw

Output: optimal policy for the TS T
1 Translate φ to DFA A using off-the-shelf tools
2 Translate (R,wR) to WFSE E using standard methods
3 Compute the three-way PA PE = T ×E A
4 Compute shortest path q∗ in PE from the initial state

qE0 to a final in F EP using weights wEP
5 Project q∗ onto T to obtain the optimal policy x∗

6 return x∗

C. Optimal Planning
The planning procedure Plan() for computing the optimal

trajectory is outlined in Alg. 1. The weights wEP of PE used
for computing the shortest path depend on whether we wish
to minimize task or deadline relaxation as shown next.

1) Task Cost: Let q = q0 . . . qn be a trajectory of
PE . The task cost of q is CE(q) =

∑n−1
k=0 cE(qk, qk+1),

cE(qk, qk+1) = fw(wT (xk, xk+1), wE(zk, zk+1)), where cE
is the transition weight, qk = (xk, zk, sk) for all k ∈ [[0, n]].
The task cost takes into account the penalties associated with
substitution and deletion of tasks represented as sub-words
of the TS’s output words. The optimal trajectory is computed
as Plan(T ,A, E , cE) using Alg. 1.

2) Temporal Relaxation Cost: In this case, the cost is
captured by LTR introduced in Sec. III that aggregates all
delays captured by the annotated specification DFA A∞. The

PA is denoted by PE0 and the optimal trajectory is computed
as Plan(T̂ ,A∞, E0, cTR), where T̂ is the extended TS, and
E0 is a trivial WFSE with a single node and a pass-through
self-loop (leaves symbols unchanged and has weight 0). The
temporal relaxation cost of q is CTR(q) = |q|, cTR(q, q′) =
1,∀(q, q′) ∈ δE0P , where q is a trajectory of PE0 . Minimizing
the length of trajectory q is equivalent to minimizing |τ |LR.
This follows from the results in [18].

3) Bi-objective Cost: We consider cases where a robot can
trade-off between changing tasks and delaying their satisfac-
tion. The solution combines an annotated specification au-
tomaton A∞ with a (non-trivial) relaxation preference WFSE
E to compute policies in T̂ using Plan(T̂ ,A∞, E , cbi). The
blended cost of a trajectory q is Cbi(q | λ) = λCE(q) + (1−
λ)CTR(q), cbi(q, q

′ | λ) = λcE(q, q
′) + (1 − λ)cTR(q, q′),

where the λ ∈ [0, 1] is a parameter that trades-off between
the two objectives, and cbi is the bi-objective transition cost.

We compute the Pareto-optimal trajectories and the Pareto-
front using a parametric Dijkstra’s algorithm [23]. The
Pareto-front for our bi-objective problem is composed of a
finite number of isolated points in the cTR × cE cost space.

D. Complexity Analysis

The construction of the three-way PA PE , line 3 in Alg. 1,
takes O(|δT | × |δE | × |δA∞ |). Computing the shortest path
q∗ (line 4) is done with Dijkstra’s algorithm which takes
O(
∣∣δEP ∣∣+∣∣QE ∣∣ log

∣∣QE ∣∣). Lastly, projection onto T (line 5) is
linear in the size of q. Crucially, our framework has the same
asymptotic complexity as custom planning methods for the
problems in Sec. III. MVP, MRP, and PS operate one symbol
at a time, see the proof of Prop. 4.1 [22]. Their associated
WFSEs have a single state with a self-loop, i.e., |δE | = 1 (see
Fig.1b). Thus, the PA construction complexity degenerates
to O(|δT | × |δA∞ |). For TR, the complexity also reduces
since the WFSE has a single state; the deadline relaxation is
captured by A∞ [18]. Lastly, for HSC, we can choose AH as
specification DFA, and the WFSE can have same structure as
AS with penalty M � 1 if the soft constraint is not satisfied.
For brevity, we omit the formal details. Thus, the complexity
of PA construction becomes O(|δT | × |δAH

| × |δAS
|), the

same as for custom methods (due to the quadratic complexity
of language intersection [15]).

VI. CASE STUDIES

We consider a self-driving car in an urban environment,
T abstraction of which is shown in Fig. 2. The robot has
to visit task regions while avoiding obstacles. The green,
red, and white states represent task regions, obstacles and
waypoints respectively. The permissible directions of motion
are represented by the edges. The global obstacle O and local
obstacles O2, O3, if present, make it impossible to safely
reach the neighbouring task regions. Even if O3 is absent,
the robot can not stay at the T1 region next to T2 due to
the no parking zone. The weights associated with transitions
represent their duration. Transitions with no weight labels
have unit weights. For all states except 14, 15, self transitions
exist but haven’t been included in the figure for simplicity.
The transitions shown using yellow arrows and obstacle O2
are present only for problems 6-8, node 15 only for problem

8. We measure the time duration in minutes denoted by m
for TWTL specifications.

For MWRP, HSC-MWRP, bi-objective problems, the re-
laxation preferences allow the substitution of T1 with T2,
T3, T4, and T5 with costs 5, 8, 11, and 14, respectively. For
MVP and HSC-MVP, the deletion cost is 10. For HSC, the
cost for violation of the soft constraint is 10. The preferences
and costs are captured by a WFSE with |ZE | = 5.

For MVP, MWRP, and HSC problems, we consider sce-
narios with O present (e.g., road construction, temporary
closure), thereby making visits to T1 infeasible.

Fig. 2: Robot motion model

1) Canonical Problem (CP): The task specification is
“Visit T1”, i.e., φ = F T1, where F is the eventually
operator. As obstacle O is absent, no relaxations are required.
This case corresponds to a pass-through operation in E . The
optimal T trajectory is (0, 6, 7, 10, 11, 1) which corresponds
to the shortest path to T1 with a total cost CE = 9.

2) Minimum Violation Problem (MVP): We consider the
specification “Visit T1 and T4 while avoiding obstacles” that
translates to the scLTL formula φ = ¬O U T1 ∧ ¬O U T4.
The optimal trajectory of T is (0, 6, 7, 14, 4) as T1 is not
reachable in the presence of O. The optimal cost is 15,
including the cost of 10 for skipping T1.

3) Minimum Revision Problem (MWRP): In this case, the
task specification is “Visit T1 while avoiding obstacles”. If
the task T1 is not feasible, revise the task according to the
preferences given above. Here φ = ¬O U T1. The optimal T
trajectory accepted by A is (0, 6, 8, 12, 13, 2) with an optimal
cost CE = 11, where T1 is substituted by T2 with cost 5.

4) Hard-Soft Constraints (HSC): This problem is imple-
mented both in the presence and absence of obstacle O. The
task specification is “Visit T1 while avoiding obstacles, and,
if possible, take the bridge”. The specification is φ = φh∧φs,
where φh = ¬O U T1 and φs = F bridge are the hard and
soft constraints, respectively. The cost of not satisfying φs
is 10 and is added to the WFSE.
HSC-CP: Without obstacle O, the case is analogous to CP
and, thus, the optimal T trajectory is (0, 6, 8, 9, 10, 11, 1)
with optimal cost CE = 10.
HSC-MWRP: Here T1 is substituted by T2 which has the
lowest substitution cost. Thus, the optimal T trajectory
is (0, 6, 8, 12, 13, 2) with cost CE = 20 that includes the
substitution cost 5 and the violation cost 10 for not going
over the bridge.
HSC-MVP: φh = (¬O U T1) ∧ (¬O U T5), φs = F bridge.
With obstacle O, only T5 can be visited. In the MVP case,
the optimal T trajectory is (0, 6, 7, 5) with an optimal cost
of CE = 32 that includes the costs of 10 for not visiting T1
and of 10 for not taking the bridge.

5) Temporal Relaxation (TR): In this example, the spec-
ification “Visit and stay in T2 for 2m within 0m to 6m.”
translates to a TWTL formula φ = [H2T2][0,6]. As the min-
imum travel time to T2 from state 0 is 7m, the specification is
relaxed to φ(τ) = [H2T2][0,6+τ] with τ = 3 obtained by the
optimal trajectory (0, 6, 8, 12, 13, 2, 2, 2). The optimal cost is
CTR = 9.

6) Multiple word-word translations: With O2 present, the
task specification is: “Visit T4 for 2 consecutive instances
and next, visit regions T4 and then T2 and next, visit
regions T4 and T1. Avoid obstacles all the time.” The
corresponding scLTL specification is: ¬O2 U (F(T4 ∧
X T4) ∧XX ((F T4 ∧ F T2 ∧ (¬T2 U T4)) ∧X(F T4 ∧
F T1∧(¬O U T1)∧(¬T1 U T4)))). If the task is infeasible,
the substitution rules are: Substitute the first two instances
of T4 (i.e. FT4∧ X T4) by T5 with a total penalty of 6.
Substitute the next occurrence of T4 by one T5 and two T3s
with a total penalty of 4. Finally, delete the last occurrence
of T4 with a penalty of 10 and substitute T1 by T2 with
a penalty of 7. The trajectory obtained after relaxation is:
(0,6,5,5,5,6,8,12,3,3,12,13,13,2,2) with a total cost CE = 35.

The above example demonstrates that our framework
allows for multiple rules to be taken into account for different
instances of the same symbol/word. Also, it highlights how
the ordering is considered and retained during relaxation.

7) Bi-objective Problem: In the absence of O: “Visit
T1 for 3m between 0m to 5m”. If not feasible, use the
substitution preferences. The DFA A∞ is obtained from
the TWTL formula φ = [H3T1][0,5]. We obtain a set of
Pareto-optimal trajectories and the corresponding intervals
for parameter values. The intervals indicate the range of
possible trade-offs between CE and CTR that correspond
to the same Pareto-optimal trajectory. The set of solutions
are: (1) (0, 6, 5, 5, 5, 5), λ ∈ [0, 0.25], corresponds to the
minimum temporal relaxation |τ |LR = 0 with CTR = 5 and
CE = 29; (2) (0, 6, 8, 12, 3, 3, 3, 3), λ ∈ [0.25, 0.33], strikes a
balance between task and temporal relaxations with CE = 20,
CTR = 8, and |τ |LR = 3; (3) (0, 6, 8, 9, 10, 11, 1, 1, 1, 1),
λ ∈ [0.33, 1], achieves minimum task cost CE = 12, CTR =
12 and |τ |LR = 7. We now consider a word-word translation
preference rule. Consider the specification “Visit T5 for 1s
within first 3s from the start and immediately next, proceed to
visit T4 for 2m within first 7m followed by T1 for 1m within
first 5m of the mission. The local obstacle O2 should be
avoided for the first 4m whereas the global obstacle O should
be avoided for all 20m duration of the task.” The correspond-
ing TWTL formula is: “H20¬O ∧H4¬O2 ∧ ([H1T5][0,3] ·
[H2T4][0,7] · [H1T1][0,5])”. The substitution rules are as
follows: T4 7→3 T5, T1 7→3 T5T3T2, T1 7→4 T3T2,
T1 7→5 T3. The trajectories obtained after relaxation are:
1) (0, 6, 5, 5, 5, 5, 5, 5, 5, 6, 12, 3, 12, 13, 2), 2) (0, 6, 5, 5,
6, 7, 14, 4, 4, 4, 14, 8, 12, 3, 3), 3) (0, 6, 5, 5, 6, 7, 14, 4, 4, 4,
14, 8, 12, 3, 3, 13, 2).

8) Difference between symbol-symbol and word-word
translations: Given that obstacle O is present and O3 is
absent, the task is to visit T1 for 2m. As the route through
node 15 is a no parking zone, there are no self-transitions
on T1 at node 15. Given same substitution preferences as
for MRP and if modelled as a wfse with a single state
(see e.g., Fig. 1b) which is analogous to relaxations per-

User preference Specification (φ) O? Optimal trajectory cost

CP FT1 No {0, 6, 7, 10, 11, 1} 9
MVP (¬O U T1) ∧ (¬O U T4) Yes {0, 6, 7, 4} 14

MWRP ¬O U T1 Yes {0, 6, 8, 12, 13, 2} 11
HSC-CP φs = Fbridge , φh = ¬O U T1 No {0, 6, 8, 9, 10, 11, 1} 10

HSC- MWRP —"— Yes {0, 6, 8, 12, 13, 2, } 20
HSC-MVP φs = Fbridge , φh = ¬O U T1 ∧ ¬O U T5 Yes {0, 6, 7, 5} 32

TR [H2T2][0,6] Yes {0, 6, 8, 12, 13, 2, 2, 2} 9

TABLE I: User specifications, preferences, and costs

(a) (b)

Fig. 3: (a): Total cost Cbi as a function of parameter λ, (b): Pareto
front and the corresponding trajectories. (Note: The points on the Pareto
front correspond to the respective colored line segments in 3a)

formed by the existing solutions, the shortest path obtained
is (0,6,8,12,13,15,2) which violates the specification as it can
pass through T1 (node 15) but not stay there. However, our
framework with a wfse model similar to Fig.1a allows for this
situation to be taken into account and the resultant trajectory
is (0,6,8,12,13,2,2).

9) Runtime Performance: We study the effect of varying
the sizes of T and E on the size and time taken for PE
construction. This study was run on Dell Precision 3640 Intel
i9-10900K with 64 GB RAM using python 2.7.12. We first
keep the WFSE size constant at δE = 8 and vary the size of
TS from |X| = 118 to |X| = 300 corresponding to which
the PE size goes from

∣∣QE ∣∣ = 352 to
∣∣QE ∣∣ = 898. Note that

PE construction retains only the reachable states. Whereas,
the standard Cartesian product between T , E , and A varies
from 1872 nodes to 4784 nodes. Similarly, when the TS is
kept constant at |X| = 22 and the WFSE states are increased
from δE = 14 to δE = 453, which corresponds to having
n=453 substitution rules taken into account. For this, the PE
size varies from

∣∣QE ∣∣ = 106 to
∣∣QE ∣∣ = 986 whereas the

Cartesian product size increases from 616 nodes to 19932
nodes agreeing with the complexity analysis results from
Section V-D.

VII. CONCLUSIONS
This work studies different existing approaches for spec-

ification relaxation and presents a unified and generalised
automata-based framework that takes into account different
instances of task and temporal relaxations and the trade-off
between them. We propose the construction of a three-way
product automaton that allows for word to word translations
and temporal relaxations simultaneously. We demonstrate
different instances of specification relaxation through case
studies and show that the three-way product automaton
construction scales linear in time with respect to transition
system size. Future work includes extending the framework
for control synthesis for stochastic systems while taking into
account satisfaction probability.

REFERENCES

[1] C. I. Vasile and C. Belta, “An Automata-Theoretic Approach to
the Vehicle Routing Problem,” in Robotics: Science and Systems
Conference (RSS), Berkeley, California, USA, July 2014, pp. 1–9.

[2] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 218–235, 2015.

[3] J. Tumova, A. Marzinotto, D. V. Dimarogonas, and D. Kragic, “Max-
imally satisfying LTL action planning,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2014, pp. 1503–1510.

[4] D. Aksaray, C. I. Vasile, and C. Belta, “Dynamic Routing of Energy-
Aware Vehicles with Temporal Logic Constraints,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), Stockholm,
Sweden, May 2016, pp. 3141–3146.

[5] J. Tumova, S. Karaman, C. Belta, and D. Rus, “Least-violating
planning in road networks from temporal logic specifications,” in Inter-
national Conference on Cyber-Physical Systems, no. 17, Piscataway,
NJ, USA, 2016, pp. 1–9.

[6] C.-I. Vasile, J. Tumova, S. Karaman, C. Belta, and D. Rus, “Minimum-
violation scLTL motion planning for mobility-on-demand,” in IEEE
International Conference on Robotics and Automation (ICRA), May
2017, pp. 1481–1488.

[7] J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-
violating Control Strategy Synthesis with Safety Rules,” in Interna-
tional Conference on Hybrid Systems: Computation and Control, ser.
HSCC ’13. New York, NY, USA: ACM, 2013, pp. 1–10.

[8] M. Lahijanian and M. Kwiatkowska, “Specification revision for
markov decision processes with optimal trade-off,” in IEEE 55th
Conference on Decision and Control, Dec 2016, pp. 7411–7418.

[9] K. Kim, G. Fainekos, and S. Sankaranarayanan, “On the Minimal
Revision Problem of Specification Automata,” International Journal
Robotics Research, vol. 34, no. 12, pp. 1515–1535, Oct. 2015.

[10] B. Lacerda, D. Parker, and N. Hawes, “Optimal Policy Generation
for Partially Satisfiable Co-safe LTL Specifications,” in International
Joint Conference on Artificial Intelligence, 2015, pp. 1587–1593.

[11] M. Lahijanian, S. Almagor, D. Fried, L. E. Kavraki, and M. Y. Vardi,
“This time the robot settles for a cost: A quantitative approach to
temporal logic planning with partial satisfaction,” in AAAI Conference
on Artificial Intelligence. AAAI Press, 2015, pp. 3664–3671.

[12] F. Penedo Álvarez, C. I. Vasile, and C. Belta, “Language-Guided
Sampling-based Planning using Temporal Relaxation,” in Workshop
on the Algorithmic Foundations of Robotics (WAFR), San Francisco,
CA, USA, December 2016.

[13] M. Guo and M. M. Zavlanos, “Probabilistic Motion Planning Under
Temporal Tasks and Soft Constraints,” IEEE Transactions on Auto-
matic Control, vol. 63, no. 12, pp. 4051–4066, 2018.

[14] C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,
2008.

[15] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Au-
tomata Theory, Languages, and Computation (3rd Edition). Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2006.

[16] T. Latvala, “Efficient Model Checking of Safety Properties,” in 10th In-
ternational SPIN Workshop, ser. Model Checking Software. Springer,
2003, pp. 74–88.

[17] A. Duret-Lutz, “Manipulating LTL formulas using Spot 1.0,” in
International Symposium on Automated Technology for Verification
and Analysis (ATVA), ser. Lecture Notes in Computer Science, vol.
8172. Hanoi, Vietnam: Springer, Oct 2013, pp. 442–445.

[18] C.-I. Vasile, D. Aksaray, and C. Belta, “Time Window Temporal
Logic,” Theoretical Computer Science, vol. 691, pp. 27–54, Aug 2017.

[19] I. Tkachev and A. Abate, “Formula-free Finite Abstractions for Linear
Temporal Verification of Stochastic Hybrid Systems,” in International
Conference on Hybrid Systems: Computation and Control, Philadel-
phia, PA, April 2013, pp. 283–292.

[20] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in International Joint Conference on
Artificial Intelligence. AAAI Press, 2013, pp. 854–860.

[21] Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta, “Formal Approach
to the Deployment of Distributed Robotic Teams,” IEEE Transactions
on Robotics, vol. 28, no. 1, pp. 158–171, Feb 2012.

[22] D. Kamale, E. Karyofylli, and C.-I. Vasile, “Automata-based optimal
planning with relaxed specifications,” 2021.

[23] N. E. Young, R. E. Tarjan, and J. B. Orlin, “Faster parametric shortest
path and minimum-balance algorithms,” Networks, vol. 21, no. 2, pp.
205–221, 1991.

	Introduction
	Preliminaries
	Background on planning with relaxed Specifications
	Problem Formulation
	Unified Automata-based Framework
	Relaxation Specification
	Task Relaxation
	 Temporal Relaxation

	Product Automaton Construction
	Optimal Planning
	Task Cost
	Temporal Relaxation Cost
	Bi-objective Cost

	Complexity Analysis

	CASE STUDIES
	Canonical Problem (CP)
	Minimum Violation Problem (MVP)
	Minimum Revision Problem (MWRP)
	Hard-Soft Constraints (HSC)
	Temporal Relaxation (TR)
	Multiple word-word translations
	Bi-objective Problem
	Difference between symbol-symbol and word-word translations
	Runtime Performance

	CONCLUSIONS
	References

