
Classification of Time-Series Data Using Boosted Decision Trees

Erfan Aasi1, Cristian Ioan Vasile2, Mahroo Bahreinian1, and Calin Belta1

Abstract— Time-series data classification is central to the
analysis and control of autonomous systems, such as robots
and self-driving cars. Temporal logic-based learning algorithms
have been proposed recently as classifiers of such data. How-
ever, current frameworks are either inaccurate for real-world
applications, such as autonomous driving, or they generate
long and complicated formulae that lack interpretability. To
address these limitations, we introduce a novel learning method,
called Boosted Concise Decision Trees (BCDTs), to generate
binary classifiers that are represented as Signal Temporal
Logic (STL) formulae. Our algorithm leverages an ensemble
of Concise Decision Trees (CDTs) to improve the classifica-
tion performance, where each CDT is a decision tree that
is empowered by a set of techniques to generate simpler
formulae and improve interpretability. The effectiveness and
classification performance of our algorithm are evaluated on
naval surveillance and urban-driving case studies.

I. INTRODUCTION

To cope with the complexity of robotic tasks, machine
learning (ML) techniques have been employed to capture
their temporal and logical structure from time-series data.
One of the main problems in ML is the two-class classifi-
cation problem, where the goal is to build a classifier that
distinguishes desired system behaviors from the undesired
ones. Traditional ML algorithms focus on building such
classifiers; however, they are often not easy to understand
or they don’t offer any insights about the system. Motivated
by the readability and interpretability of temporal logic
formulae [1], there has been great interest in applying formal
methods to ML in recent years [2], [3], [4], [5], [6], [7], [8].

Signal Temporal Logic (STL) [9] is a specification lan-
guage used to express temporal properties of real-valued
signals. In this paper, we use STL to generate specifications
of time-series system behaviors. Early methods for mining
temporal properties from data mostly focus on parameter
synthesis, given template formulae [2], [10], [11], [12]. These
works require the designer to have a good understanding of
the system properties. In [13], a general supervised learning
framework that infers both the structure and the parameters
of a formula is presented. The approach is based on lattice
search and parameter synthesis, which makes it general, but
inefficient. Using an efficient decision tree-based framework
to learn STL formulae is explored in [14], [15], where the
nodes of the tree contain simple formulae that are tuned
optimally from a predefined set of primitives. In [16], the
authors propose a systematic enumeration based method to

*This work was partially supported by the NSF under grants IIS-2024606
and IIS-1723995 at Boston University.

1Erfan Aasi, Calin Belta, and Mahroo Bahreinian are with Boston Univer-
sity, Boston, MA 02215, USA eaasi@bu.edu, cbelta@bu.edu,
mahroobh@bu.edu

2Cristian Ioan Vasile is with Lehigh University, Bethlehem, PA 18015,
USA cvasile@lehigh.edu

learn short, interpretable STL formulae. Other works about
learning temporal logic formulae consider learning from pos-
itive examples only [3], clustering [4], active learning [17],
and automata-based methods for untimed formulae [5], [6].

Most existing algorithms for learning STL formulae either
do not achieve good classification performance for real-
world applications, or do not provide any interpretability
of the output formulae: they generate long and complicated
specifications. To address these concerns, in this paper we
introduce Boosted Concise Decision Trees (BCDTs) to learn
STL formulae from labeled time-series data. To improve
the classification accuracy of existing works, we use a
boosting method to combine multiple models with weak
classification power. The weak learning models are bounded-
depth decision trees, called Concise Decision Trees (CDTs).
Each CDT is a Decision Tree (DT) [18], empowered by
a set of techniques called conciseness techniques, to gen-
erate simpler formulae and improve the interpretability of
the final output. We also use a heuristic method in the
BCDT algorithm to prune the ensemble of trees, which
helps with the interpretability of the formulae. To relate
STL and BCDTs, we establish a connection between boosted
trees and weighted STL (wSTL) formulae [19], which have
weights associated with Boolean and temporal operators.
We show performance gains and improved interpretability
of our method compared to literature, in naval surveillance
and urban driving scenarios.

The main contributions of the paper are: (a) a novel
inference algorithm based on boosted decision trees, which
has better classification performance than related approaches,
(b) a set of heuristic techniques to generate simple STL
formulae from decision trees that improve interpretability, (c)
two case studies in naval surveillance and urban-driving that
highlight the classification performance and interpretability
of our proposed learning algorithm.

II. PRELIMINARIES

Let R, Z, Z≥0 denote the sets of real, integer, and non-
negative integer numbers, respectively. With a slight abuse
of notation, given a, b ∈ Z≥0 we use [a, b] = {t ∈ Z≥0 | a ≤
t ≤ b}. The cardinality of a set is denoted by |·|. A (discrete-
time) signal s is a function s : [0, T] → Rn that maps each
(discrete) time point t ∈ [0, T] to an n-dimensional vector of
real values, where T ∈ Z≥0. Each component of s is denoted
as sj , j ∈ [1, n].

Signal Temporal Logic (STL) was introduced in [9].
Informally, the STL formulae used in this paper are made of
predicates µ defined over components of real-valued signals
in the form of µ = sj ∼ π, where π ∈ R is a threshold and
∼∈ {>,≤}, which are connected using Boolean operators,
such as ¬, ∧, ∨, and temporal operators, such as G[a,b]

(always) and F[a,b] (eventually). The semantics are defined
over signals. For example, formula G[3,6]s3 ≤ 1 means that,
for all times 3,4,5,6, component s3 of a signal s is less
than or equal 1. STL has both qualitative and quantitative
semantics. We use s |= φ to denote Boolean satisfaction.
The quantitative semantics is given by a robustness degree
ρ(φ, s)[20] , which captures the degree of satisfaction of
a formula φ by a signal s. Positive robustness (ρ(φ, s) ≥
0) implies Boolean satisfaction s |= φ, while negative
robustness (ρ(φ, s) < 0) implies violation s 6|= φ.

Weighted STL (wSTL) [19] is an extension of STL that
has the same qualitative semantics as STL, but has weights
associated with the Boolean and temporal operators, which
modulate its robustness degree. In this paper, we restrict
our attention to a fragment of wSTL with weights on
conjunctions only. For example, the wSTL formula φ1∧αφ2,
α = (α1, α2) ∈ R2

>0, denotes that φ1 and φ2 must hold with
priorities α1 and α2. The priorities capture the satisfaction
importance of their corresponding formulae.

Parametric STL (PSTL) [2] is an extension of STL, where
the endpoints a, b of the time intervals in the temporal oper-
ators and the thresholds π in the predicates are parameters.
The set of all possible valuations of all parameters in a PSTL
formula ψ is called the parameter space and is denoted by
Θ. A particular valuation is denoted by θ ∈ Θ and the
corresponding formula by ψθ.

III. PROBLEM FORMULATION
A. Motivating Example

Consider the maritime surveillance scenario from [13],
[15] (see Fig. 1(a)). The goal is to detect anomalous vessel
behaviors by looking at their trajectories. A vessel behaving
normally approaches from the open sea and heads directly
towards the harbor, while a vessel with anomalous behaviors
either veers to the island and then heads to the harbor,
or it approaches other vessels in the passage between the
peninsula and the island and then returns to the open sea.

In the scenario’s dataset [15], the signals are repre-
sented as 2-dimensional trajectories with planar coordinates
(x(t), y(t)). The labels indicate the type of a vessel’s behav-
ior (normal or anomalous). In Fig. 1(b) and 1(c), we show
the x and y components of some signals, respectively, over
time. For better visualization, we show the signals over a
part of their time horizon. In Fig. 1(b), one of the areas
that distinguishes between positive (normal) and negative
(anomalous) signals is the area between lines L1 and L2,
over the time interval t ∈ [15, 25]. By using STL classifiers,
formula φ1 = F[15,25](x > 40) ∧ F[15,25](x ≤ 47), or even
a simpler formula φ′1 = F[15,25]((x > 40) ∧ (x ≤ 47)),
can be used to distinguish positive and negative signals
in this area. Similarly, in Fig. 1(c), we can describe the
separation area between lines L3 and L4 by the STL formula
φ2 = F[12,20](y > 26) ∧ F[12,20](y ≤ 32), or even a simpler
formula φ′2 = F[12,20]((y > 26) ∧ (y ≤ 32)). Considering
the common time interval between the separation areas in
Fig. 1(b) and Fig. 1(c), a shorter and easier to read formula
φ3 = F[15,20]((40 < x ≤ 47) ∧ (26 < y ≤ 32)) can be used
to distinguish between positive and negative signals in the x-
y space. In this paper, we seek techniques to generate simple

formulae, such as φ3, to classify signals without losing the
classification accuracy.

(a) (b)

(c)

Fig. 1. (a) Naval surveillance scenario [13], where normal trajectories are
shown in green, and anomalous signals are shown in blue and magenta, (b)
x and (c) y components of naval trajectories. The green and red trajectories
belong to the normal and anomalous behaviors, respectively.

B. Problem Statement
Let C = {Cp, Cn} be the set of possible (positive and

negative) classes. We consider a labeled data set with N
data samples as S = {(si, `i)}Ni=1, where si is the ith signal
and `i ∈ C is its label.

Problem 1: Given a labeled data set S = {(si, `i)}Ni=1,
find an STL formula φ that minimizes the Misclassification
Rate MCR(φ) defined below:

2 (1)

IV. SOLUTION
We propose a solution to Pb. 1 based on BCDT method,

presented in Sec. IV-A. BCDT grows multiple binary CDTs,
inspired by AdaBoost [21] algorithm, where each CDT is a
decision tree empowered by a set of conciseness techniques
to generate simpler formulae. The construction method for a
single CDT is explained in Sec. IV-B. We describe the meta
parameters of the CDT method in Sec. IV-C, and in Sec. IV-
D we explain the conciseness techniques and the connection
with interpretability.

A. Boosted Concise Decision Trees Algorithm
The BCDT algorithm in Alg. 1 is inspired by the Ad-

aBoost method [22]. AdaBoost combines weak classifiers
with simple formulae, trained on weighted data samples.
Weights of the data represent the difficulty of correct classi-
fication. After training a weak classifier, the weights of the
correctly classified samples are decreased and weights of the
misclassified samples are increased. The algorithm takes as
input the labeled data set S, the number of learners (trees)
K, and the weak learning model E , which is the algorithm to
construct CDTs (explained in Alg. 2). The CDTs are binary

decision trees, where formulae of the nodes are primitives
(see Sec. IV-C) with general rectangular predicates µ of the
form As ≤ b, with A = [In1 − In2]T , b ∈ Rn1+n2 , In as
the n× n identity matrix, and n1, n2 ∈ [0, n].

Algorithm 1 Boosted Concise Decision Trees (BCDT)
1: Input: S = {(si, `i)}Ni=1, K, E
2: Output: final classifier fBCDT (·)
3: Initialize: ∀ (si, `i) ∈ S : D1(si) = 1/|S|
4: for k = 1, . . ., K:
5: classifier fkCDT (·)← E(S,Dk)

6: εk ←
∑

(si,`i)∈S Dk(si) · 1[`i 6= fkCDT (si)]

7: αk ←

{
1
2 ln (1

εk
− 1) 0 < εk ≤ 1/2

M εk = 0

8: Dk+1(si) ∝ Dk(si) exp (−αk · `i · fkCDT (si))

9: fBCDT (·)←

{
sign(

∑K
k=1 αk · fk

CDT (·)) αk < M, ∀k
fk∗
CDT (·) otherwise

10: return fBCDT (·)

In Alg. 1, initially all data samples are weighted equally
(line 3). The algorithm iterates over the number of trees
(line 4). At each iteration, the weak learning algorithm E
constructs a single CDT fkCDT (·) based on data set S and
current samples’ weights Dk (line 5). Next, the misclassifica-
tion error of the constructed tree εk is computed (line 6). If
the current tree has weak classification performance better
than random guessing (0 < εk ≤ 1/2), its weight is
computed based on the original AdaBoost method, and if
it has perfect classification performance and classifies all
signals correctly (εk = 0), a big value M is assigned to
its weight (line 7). At the end of each iteration, the samples’
weights are updated and normalized (denoted by ∝) based
on the performance of the current tree, to focus on the
misclassified signals in the next trees (line 8). To compute
the final output of the algorithm, we use a heuristic method
to prune the ensemble of trees, to generate simpler formulae
and improve interpretability. Inspired by heuristic methods
for pruning ensemble of decision trees in [18], [23], we
compute the final output fBCDT (·) as (line 9): if the weights
of all trees are less than M , the final output is computed
as the weighted majority vote over all the CDTs (as in the
AdaBoost method); otherwise, if there are one or more trees
with weight M , the final output is computed by the tree with
weight M that has the simplest STL formula, denoted by
fk
∗

CDT (·). As a metric to compare the simplicity of formulae,
the number of Boolean and temporal operators is considered.
This pruning method helps with reducing the generalization
error in the test phase and generating simpler formulae. We
show its advantages with empirical results in Sec. V.

The final output fBCDT (·) assigns a label to each data
sample. For simplicity, we abuse notation and consider Cp =
1 and Cn = −1, such that fkCDT (·) ∈ {−1, 1} for all k ∈
[1,K]. Note that one of the main assumptions in boosting
methods is that each weak learner performs slightly better
than random guessing (i.e., coin tossing). Therefore in Alg. 1,
if any newly generated tree performs worse than random

guessing (εk > 0.5), we just discard it and generate another
tree. An illustration of Alg. 1 is shown in Fig. 2.

Fig. 2. Illustration of BCDT Alg. 1. The CDTs and their weights are
used in construction of the final classifier fBCDT (.) in Alg. 1, and its
corresponding formula Φ. In this figure we have assumed ∀k ∈ [0,K] :
αk < M .

We use the method from [15] to convert each CDT
fkCDT (·) to a corresponding STL formula φk. The output
of BCDT method is translated to a set of formulae and
associated weights {(φk, αk)}Kk=1. The STL formula Φ =∧
k φk is the overall output formula; however, using wSTL

[19] we express Φ =
∧
k
αkφk, to capture the classification

performance of each CDT.

B. Construction of Concise Decision Tree

Decision Trees (DTs) [18], [24] are sequential decision
models with hierarchical structures. In our algorithm, DTs
operate on signals with the goal of predicting their labels. In-
spired by [15], we present the Concise Decision Tree (CDT)
method E in Alg. 2, which extends the DT construction
algorithm to CDTs, by applying conciseness techniques to
generate simpler formulae (detailed in Sec. IV-D).

Algorithm 2 Concise Decision Tree (CDT) method E
1: Meta-Parameters: P,J , stop
2: Input: S, φpath, h, φcparent
3: Output: sub-tree T
4: if stop(φpath, h, S) then
5: c = O(S, φpath,P, h)
6: return leaf(c)
7: T ← non terminal(φcparent)
8: φnew = φpath ∧ φcparent
9: S>, S⊥ ← partition(S, φnew)

10: for ⊗ ∈ {>,⊥} do
11: φc⊗ = O(S⊗, φ

new,P, h+ 1)
12: φ⊗ = C(φcparent, φc⊗, S, φpath, h)
13: if φpath ∧ φ⊗ �J φnew:
14: return E(S, φpath, h, φ⊗)
15: T .left← E(S>, φ

new, h+ 1, φc>)
16: T .right← E(S⊥, φ

new, h+ 1, φc⊥)
17: return T

To limit the complexity of CDTs, we consider three meta-
parameters in Alg. 2: (1) PSTL primitives P capturing the

possible ways to split the data at each node, (2) impurity
measures J to select the best primitive at each node, and (3)
stop conditions stop to limit the CDTs’ growth. The meta-
parameters are explained in details in Sec. IV-C.

Alg. 2 is recursive, and takes as input (1) the set of labeled
signals S at the current node, referred to as parent node, (2)
the path formula φpath from the root to the parent node, (3)
the depth h from the root to the node, and (4) the candidate
formula φcparent for the node. At the beginning, the stop
conditions stop are checked (line 4). If they are satisfied
(lines 5-6), a single leaf is returned that is marked with label
c, according to the primitive optimization method in Alg. 3.
Otherwise, a non-terminal node is created that is associated
with the candidate formula φcparent (line 7). The formula
φnew is the updated path formula from the root, considering
the candidate primitive φcparent of the parent node (line 8).
Next, the data set S is partitioned according to the new
formula (line 9), where S> and S⊥ are the set of signals
that satisfy and violate φnew, respectively.

Following the structure of the tree, first for the left child of
the node (⊗ = >) and then for the right child (⊗ = ⊥), we
follow these steps (line 10): first, the candidate primitive for
the child φc⊗ is computed from the set P (line 11). Then, by
applying the conciseness method C (explained in Sec. IV-D)
on the combination of parent’s candidate formula φcparent and
the child’s candidate primitive φc⊗, we find a new formula φ⊗

(line 12) as a new candidate for the parent node. In line 13,
the notation �J is used to compare two formulae based on
the impurity measure J . If the impurity reduction of the new
candidate formula φ⊗ is more than the previous candidate
φcparent, the algorithm is repeated for the parent node, with
φcparent replaced by φ⊗ (line 14). Note that the decision tree
method in [15] is based on the idea of incremental impurity
reduction at each node of the tree. Following the same idea,
we argue that by applying the conciseness techniques at each
node, if the impurity reduction of the new candidate formula
is better than the previous one, the new candidate leads
to a stronger classifier with a simpler specification. Finally,
when there is no more possibility of applying the conciseness
method on the parent node, we continue the construction of
the tree for the left and right children (lines 15-16) and the
sub-tree for the parent is returned (line 17).

Algorithm 3 Parameterized Primitive Optimization O
1: Meta-Parameters: J , stop
2: Input: S, φpath, prim, h
3: Output: optimal primitive φ∗

4: if stop(φpath, h, S) then
5: φ∗ ← argmaxc∈C{p(S, c;φpath)}
6: else
7: φ∗ = argmax

ψ∈prim,θ∈Θ
J (S, partition(S, φpath ∧ ψθ))

8: return φ∗

The parameterized primitive optimization method O, pre-
sented in Alg. 3, finds the best primitive with optimal
evaluation, from the input primitive set prim. This method
has similar meta parameters as Alg. 2 and takes as input
(1) the set of labeled signals S at the current node, (2) the

path formula φpath from the root to the current node, (3) a
set of input primitives prim, and (4) the depth h from the
root to the node. If the stop conditions are satisfied (line 4),
a label c∗ ∈ C is computed (line 5) according the best
classification quality, using the partition weight p(S, c;φpath)
of the impurity measure (see Sec. IV-C.2); otherwise, the
best primitive from the input primitive set prim is computed
by solving an optimization method based on the impurity
measure J .

C. Meta Parameters

1) PSTL primitives P: The splitting rules at each node are
simple PSTL formulae, called primitives [15]. Here we use
first-order primitives P1: G[t0,t1](sj ∼ π), F[t0,t1](sj ∼ π),
where the decision parameters are (t0, t1, π).

2) Impurity measure J : We use the Misclassification
Gain (MG) impurity measure [18] as a criterion to se-
lect the best primitive at each node. Given a finite set
of signals S, an STL formula φ, and the subsets of S
that are partitioned based on satisfaction of φ as S>,
S⊥ = partition(S, φ), we have MG(S, {S>, S⊥}) =
MR(S) −

∑
⊗∈{>,⊥} p⊗MR(S⊗), where MR(S) =

min(p(S,Cp;φ) , p(S,Cn;φ)), and the p parameters are
partition weights computed based on signals’ labels and
satisfaction of φ. Here, we extend the robustness-based
impurity measures in [15] to account for the sample weights
Dk from the BCDT in Alg. 1. The boosted impurity measures
are defined by the partition weights below

p⊗ =

∑
(si,`i)∈S⊗ Dk(si) · ρ(φ, si)∑
(si,`i)∈S Dk(si) · |ρ(φ, si)|

, ⊗ ∈ {>,⊥}

p(S, c;φ) =

∑
(si,`i)∈S, `i=cDk(si) · |ρ(φ, si)|∑

(si,`i)∈S Dk(si) · |ρ(φ, si)|

(2)

This formulation also works for other types of impurity
measures, such as information and Gini gains [25].

3) Stop Conditions: There are multiple stopping condi-
tions that can be considered for terminating Alg. 2. We stop
the growth of trees either when they reach a given depth, or
when λ percent of the signals belong to the same class. In
our implementations, we set λ = 95%.

D. Conciseness

We propose the conciseness method C, presented in Alg. 4,
to improve the simplicity and interpretability of STL formu-
lae. This algorithm takes as inputs the candidate primitive
φcparent for the parent node, the candidate primitive for
its child (either left or right child) φc⊗,⊗ ∈ {>,⊥}, the
set of signals S, path formula φpath, and depth h of the
parent node. The output of the algorithm is a new candidate
primitive for the parent node, denoted by φcnew.

First, the method constructs a new PSTL primitive for the
parent node, denoted by φparent, by combining the candidate
primitives of the parent and the child nodes (line 3), where
the combination operator is denoted by

⊎
. This is done

by considering the possible ways to combine two candidate
primitives, which we propose two heuristic techniques for it.
Then, the optimal valuation of the new PSTL primitive is

computed by using the optimization method O and the path
formula φpath (line 4).

Algorithm 4 Conciseness Method C
1: Input: φcparent, φc⊗, S, φpath, h
2: Output: new candidate primitive φcnew
3: φparent = φcparent

⊎
φc⊗

4: φcnew = O(S, φpath, φparent, h)
5: return φcnew

The heuristic techniques to combine two primitives and
generate shorter PSTL formulae are as following:

1) Combination of Always operators: If the candi-
date primitives of the parent and child nodes are as
φcparent = G[t0,t1]µparent and φc⊗ = G[t2,t3](µchild), re-
spectively, we construct a new PSTL primitive φparent =
G[t4,t5]((µparent) ∧ (µchild)) for their combination. For ex-
ample, given φcparent = G[t0,t1]((s1 > π1)∧ (s2 ≤ π2)) and
φc⊗ = G[t2,t3](s2 > π3), the combined PSTL primitive is
φparent = G[t4,t5]((s1 > π1) ∧ (π3 < s2 ≤ π2)).

2) Combination of Eventually operators: Similar to the
combination of always operators, if the candidate primitives
of the parent and child nodes are as φcparent = F[t0,t1]µparent
and φc⊗ = F[t2,t3](µchild), respectively, we construct a new
PSTL primitive as φparent = F[t4,t5]((µparent) ∧ (µchild)).

In Fig. 3, we provide an example of how Alg. 4 works.

Fig. 3. Example of applying the conciseness method C for the naval
surveillance data set. On the left, the candidate primitive for the parent node
1 is φcparent = G[18,58](y ≤ 32.55), and after partitioning the signals,
the candidate primitive for the left child (node 2) is computed as φc> =
G[22,48](y > 23.33). The conciseness method C constructs a new candidate
PSTL primitive φparent = G[t0,t1](π0 < y ≤ π1) for their combination,
where its optimal valuation according to the primitive optimization method
O is φ> = G[17,60](23.45 < y ≤ 33.66). Due to the higher impurity
reduction of φ> compared to φcparent, the new candidate φ> is chosen
as φcparent for the parent node 1 on the right. The partitioning of the
signals and the candidate primitives for the left and right children (nodes 2
and 3) are recomputed according to the new candidate primitive φcparent.
According to the conciseness technique C, there is no more possibility of
combining the candidate primitives of the parent node and its children,
because the temporal operators of the parent and its children nodes are
different. Therefore, the procedure of CDT construction is followed up from
the left and right children.

Remark 1: There are multiple ways of combin-
ing the primitives to improve interpretability. For exam-
ple, given the candidate primitive the parent node as
φcparent = G[t0,t1](µparent), and the candidate primitive
of its child as φc⊗ = F[t2,t3](µchild), we can construct
a new PSTL primitive for the parent node as φparent =
F[t4,t5]((µparent)U[0,t6] (µchild)). We will explore the other
ways of combining the primitives in the future works.

Remark 2: Note that our heuristic method combines two
primitives whenever their combination improves the impurity

measure and classification performance. This leads to a larger
set of primitives for constructing the trees, and it is more
efficient compared to the naive approach of investigating all
possible combinations of primitives.

E. Complexity Analysis

We denote the lower and the two-sided asymptotic bounds
for the complexity of the overall algorithm by Ω(.) and Θ(·),
respectively. The complexity of the BCDT algorithm (Alg. 1)
is equivalent to the complexity of the AdaBoost method with
K trees O(K .CE(N)), where CE(N) is the complexity
of constructing a CDT by Alg. 2, and N is the number
of signals to be processed. Let CO(N) be the complexity
of the optimization method in Alg. 3. Clearly we have
CO(N) = Ω(N), because the method must at least check
the labels of all signals [26]. The worst-case complexity of
Alg. 2 is obtained when at each node the optimal partition
has size (1, N − 1), and we run the conciseness method
(Alg. 4) for each child of the node, which leads to 2CO(N).
Using the recursive nature of decision trees, the complexity
analysis of [14] and the Akra-Bazzi method [26], for the
worst-case and average-case complexity of CE(N) we have
Θ(N + 4

∑N
k=2 CO(k)) and Θ(N · (1 + 2

∫ N
1

CO(u)
u2)du),

respectively.

V. CASE STUDIES

We demonstrate the effectiveness and computational ad-
vantages of our method with two case studies. The first is
the naval surveillance scenario from Sec. III-A. The second
is an urban-driving scenario, implemented in the simulator
CARLA [27]. We use Particle Swarm Optimization (PSO)
method [28] for solving the optimization problems in Alg. 3.
The parameters of the PSO method are tuned empirically.
We use M = 100 in our implementations. We run the case
studies on a 3.70 GHz processor with 16 GB RAM.

A. Naval Surveillance

We compare our inference algorithm with the methods
from [15] (the DTL4STL tool) and [16]. The dataset is
composed of 2000 signals, with 1000 normal and 1000
anomalous trajectories. Each signal has 61 timepoints (see
Fig. 4(b) for some example trajectories). We test our algo-
rithm with 5-fold cross validation and maximum depth = 3
for the trees (as in [15]). The results are provided in Table. I
for different number of decision trees K in Alg. 1; TR-M(%)
and TR-S(%) are the mean and standard deviation of the
MCR in the training phase, respectively; TE-M(%) and TE-
S(%) are the mean and standard deviation of the MCR in
the test phase; R is the runtime, and CT is the number of
times that by applying the conciseness method C during the
construction of CDTs, a simpler formula is found.

In Fig. 4(a), the classification performance of our frame-
work is represented, with respect to different number of
decision trees K. From this figure and Table. I it is clear
that the best classification performance, over both training
and test phases, is obtained with K = 3, where we find
a set of concise trees that are able to classify all signals
correctly in the test phase. Note that adding to the number
of trees increases the complexity of the framework and leads

to capturing finer details of the dataset, which has the risk of
overfitting, as the TE-M increases for K > 3 (see Fig. 4(a)).

TABLE I

K TR-M (%) TR-S (%) TE-M (%) TE-S (%) R CT
1 0.36 0.35 0.95 0.97 11m 8s 4
2 0.34 0.21 0.55 0.33 30m 47s 14
3 0.01 0.02 0.00 0.00 33m 16s 10
4 0.05 0.10 0.10 0.12 61m 33s 29
5 0.01 0.02 0.10 0.20 81m 52s 33
6 0.00 0.00 0.05 0.10 85m 55s 38

(a) (b)

Fig. 4. (a) Classification performance of our framework for naval
surveillance scenario, with different number of decision trees K. The best
performance is obtained with K = 3, (b) Examples of trajectories from
the naval surveillance case study. The green and red trajectories belong to
normal and anomalous behaviors, respectively. For formula ΦNaval

1 , the
thresholds of the always and eventually operators are shown by solid and
dashed black lines, respectively.

In the following, the learned formulae with K = 3 are
presented over all the folds. At each fold f , first the initial
wSTL formula Φf learned by Alg. 1 is presented, which is
the weighted conjunction of three STL formulae; then by
applying the heuristic technique from Alg. 1 for trees with
weight M , the final output ΦNavalf is presented:

• Fold 1: Φ1 = φM11 ∧ φ2.71
12 ∧ φ2.88

13

⇒ ΦNaval1 = φ11 = φ111 ∧ φ112

φ111 = F[28,53](x ≤ 30.85)

φ112 = G[2,26]((y > 21.31) ∧ (x > 11.10))

• Fold 2: Φ2 = φ2.59
21 ∧ φ0.80

22 ∧ φM23

⇒ ΦNaval2 = φ23 = φ231 ∧ φ232

φ231 = G[8,32](y > 23.15), φ232 = F[20,55](x ≤ 33.57)

• Fold 3: Φ3 = φM31 ∧ φ2.49
32 ∧ φ2.64

33

⇒ ΦNaval3 = φ31 = φ311 ∧ φ312

φ311 = F[57,60](x ≤ 33.91), φ312 = G[7,51](y > 21.36)

• Fold 4: Φ4 = φ2.65
41 ∧ φM42 ∧ φM43

⇒ ΦNaval4 = φ43 = φ431 ∧ φ432

φ431 = F[52,55](x ≤ 35.34)

φ432 = G[0,26]((y > 22.20) ∧ (x > 11.73))

• Fold 5: Φ5 = φ2.53
51 ∧ φM52 ∧ φ1.83

53

⇒ ΦNaval5 = φ52 = φ521 ∧ φ522

φ521 = G[9,44](y > 23.43), φ522 = F[57,59](x ≤ 33.10)

Note that there are some similarities between the inferred
formulae in different folds; for example, the structures of the
formulas φ112 and φ432 are the same and their thresholds and

time bounds are really close to each other. Also it is worth
to mention that in the fourth fold, although both formulae
φ42 and φ43 have weight M , formula φ43 is chosen over
φ42 because φ43 has less number of Boolean and temporal
operators (see Sec. IV-A). The output formulae of each fold
are simple and easy to interpret. For example, from the
plain English translation of formula ΦNaval1 , the behavior of
normal vessels is interpreted as: ”Normal vessel’s x and y
coordinates are bigger than 11.10 and 21.31m, respectively,
over the time interval [2, 26], and their x coordinate gets
less than or equal to 30.85m, at some timepoint in the time
interval [28, 53]”. The thresholds of the formula ΦNaval1 are
shown in Fig. 4(b).

In [15], using first-order primitives and maximum tree
depth of 3, the authors get a MCR with mean 1.3% and
standard deviation 0.28% for this data set. To provide a fair
comparison, we ran the algorithm from [15] on the same
computer that we used for our algorithm and for the same
data set. We obtained a MCR with mean 1.5% and standard
deviation 0.5% in the test phase, with total runtime of 33
seconds. An example formula learned in one of the folds
using the method from [15] is:

(φ1 ∧ φ2) ∨ (¬φ1 ∧ ((φ3 ∧ φ4) ∨ (¬φ3 ∧ φ5)))

φ1 = G[39,60](x ≤ 19.5), φ2 = F[11,38](x > 41.2)

φ3 = G[20,59](y < 32.3), φ4 = G[59,60](x ≤ 39.2)

φ5 = G[20,53](y > 29.7)

Compared to [15], our algorithm obtains a better clas-
sification performance, in addition to simpler and more
interpretable formulae, at the cost of higher runtime due to
the boosting and conciseness techniques. In [16], the authors
obtain a MCR with mean 5% in test phase and total runtime
of 45 minutes and the formula learned in their work is
(y ≥ 19.74)U[0,9.84](x ≤ 24.86). From the interpretability
view, both the formulae learned by our algorithm and by
[16] are simple and easy to interpret and both methods have
roughly similar runtime, but our algorithm has noticeably
better classification performance.

B. Urban Driving

Consider an autonomous vehicle (referred to as ego) driv-
ing in an urban environment shown in Fig. 5. The scenario
also contains a pedestrian and another car, which is assumed
to be driven by a ”reasonable” human who obeys traffic
laws. Ego and the other car are in different, adjacent lanes,
moving in the same direction. The cars move uphill in the
y−z plane of the coordinate frame, towards positive y and z
directions, with no lateral movement in the x direction. The
accelerations of the cars are constant, and smaller for ego.

The positions and accelerations of the cars are initialized
such the other car is always ahead of ego. The vehicles are
headed towards an intersection without any traffic lights.
There is an unmarked cross-walk at the end of the road
before the intersection. When the pedestrian crosses the
street, the other car brakes to stop before the intersection.
If the pedestrian does not cross, the other car keeps moving
without decreasing its velocity. Ego does not have a clear
line-of-sight to the pedestrian crossing at the intersection,

because of the other car and the uphill shape of the road. The
goal is to develop a method allowing ego to infer whether
a pedestrian is crossing the street by observing the behavior
(e.g., relative position and velocity over time) of the other
car.

Fig. 5. Urban driving scenario implemented in the simulator CARLA [27]

The simulation of this scenario ends whenever ego gets
closer than 8m to the intersection. We assume that labeled
behaviors (relative distances and velocities) are available,
where the labels indicate whether a pedestrian is crossing
or not. We collected 300 signals with 500 uniform time-
samples per trace, where 150 were with and 150 without
pedestrians crossing the street (see Fig. 6(b) and 6(c)). The
dataset is available in [29]. We evaluate our algorithm with
5-fold cross-validation and maximum depth = 2 for the trees.
The results are shown in Table II for different values of K.

TABLE II

K TR-M (%) TR-S (%) TE-M (%) TE-S (%) R CT
1 0.00 0.00 1.00 1.33 7m 10s 2
2 0.00 0.00 0.67 0.82 9m 57s 2
3 0.00 0.00 0.33 0.66 14m 52s 1
4 0.00 0.00 0.00 0.00 24m 40s 3
5 0.00 0.00 1.00 1.33 24m 49s 3
6 0.00 0.00 0.33 0.66 32m 52s 3

The classification performance of our framework is shown
in Fig. 6(a), for different number of decision trees K, and the
best performance is obtained with K = 4. In the following
the learned formulae with K = 4 are presented, by following
the same notation as naval surveillance scenario in Sec. V-A:
• Fold 1: Φ1 = φM11 ∧ φ2.74

12 ∧ φM13 ∧ φM14

⇒ ΦUrban1 = φ13 = φ131 ∧ φ132

φ131 = F[463,499](y ≤ 8.78), φ132 = G[477,481](vy > 8.01)

• Fold 2: Φ2 = φ2.65
21 ∧ φM22 ∧ φM23 ∧ φM24

⇒ ΦUrban2 = φ23 = φ231 ∧ φ232

φ231 = F[463,488](z ≤ 1.40), φ232 = G[488,493](vz > 1.19)

• Fold 3: Φ3 = φM31 ∧ φM32 ∧ φM33 ∧ φM34

⇒ ΦUrban3 = φ32

φ32 = F[370,485]((y ≤ 14.01) ∧ (vy > 7.45))

• Fold 4: Φ4 = φ3.03
41 ∧ φM42 ∧ φM43 ∧ φM44

⇒ ΦUrban4 = φ44 = φ441 ∧ φ442

φ441 = F[474,486](y ≤ 9.47)

φ442 = G[476,496]((vz > 1.03) ∧ (y > 2.65))

• Fold 5: Φ5 = φM51 ∧ φM52 ∧ φ2.47
53 ∧ φM54

⇒ ΦUrban5 = φ51

φ51 = F[384,469]((y ≤ 49.80) ∧ (vy > 9.13))

Notice that the main objective of this scenario is to infer
whether a pedestrian is crossing the street, based on the be-
havior of the other car when it gets close to the intersection.
Hence, we expect the desired specifications to be short and
they reason over the signals at time intervals close to the
end of the simulation. This conforms to the time intervals of
our inferred formulae and the fact that at each fold, we have
trees with perfect classification in training phase (weight M).
The output formulae of our method are simple and easy
to understand. For example, ΦUrban3 states that there is a
pedestrian crossing the street, if ”at some timepoint in the
time interval [370, 485], the vehicles get closer than 14.01m
in the y−direction, and the y component of ego’s velocity
gets bigger than the corresponding component of other car by
7.45m/s”. This simply means that the other car is stopped at
the intersection, because a pedestrian is crossing it, and ego
is getting close to the other car; therefore, in the y−direction,
the relative distance gets smaller and the velocity of ego gets
bigger than the other car. The thresholds of formula ΦUrban3

are shown in Fig. 6(b) and 6(c).

(a)

(b) (c)

Fig. 6. (a) Our framework’s classification performance for urban driving
scenario, with different number of decision trees K. The best performance
is obtained with K = 4, (b) and (c) the y component of relative distance and
relative velocity between ego and the other vehicle, respectively, over time.
The green and red signals belong to the cases when there is a pedestrian
crossing the street and when there is no pedestrian crossing, respectively.
The thresholds and time bound of the formula ΦUrban

3 are shown by solid
black lines.

To provide a fair comparison, we evaluate the performance
of the algorithm from [15] on the same data set and on
the same computer that is used for the algorithm developed
in this paper. For the algorithm in [15], with first-order
primitives, 5-fold cross validation and maximum depth of
2 for the trees, we obtained a mean MCR of 1% with
standard deviation 1.5% in the test phase, with total runtime
of 7.72 seconds. An example formula learned in one of
the folds using the method from [15] is F[474,499](z <

1.2)∧F[0,499](vy > 8.97). The results show that our inferred
formulae either have the same structure or are simpler
than the formulae inferred by [15]. Moreover, our method
achieves better classification performance than the algorithm
in [15], at the cost of higher execution time.

VI. CONCLUSION

In this paper, we propose a novel method for two-class
classification of time-series data. Our algorithm grows an
ensemble of decision trees that are empowered by con-
ciseness techniques, to improve the interpretability of the
formulae. The classification and interpretability advantages
of our algorithm are evaluated on naval surveillance and
urban-driving case studies, and are compared with two algo-
rithms from literature. In future works, we will investigate
alternate ways of achieving a tradeoff between formula
conciseness and MCR performance, with faster execution
time. Moreover, we will consider the STL inference from
signals with heterogeneous time lengths.

REFERENCES

[1] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifica-
tions,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 8, no. 2, pp. 244–263, 1986.

[2] E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric identifi-
cation of temporal properties,” in International Conference on Runtime
Verification. Springer, 2011, pp. 147–160.

[3] S. Jha, A. Tiwari, S. A. Seshia, T. Sahai, and N. Shankar, “Telex:
learning signal temporal logic from positive examples using tightness
metric,” Formal Methods in System Design, vol. 54, no. 3, pp. 364–
387, 2019.

[4] M. Vazquez-Chanlatte, J. V. Deshmukh, X. Jin, and S. A. Seshia,
“Logical clustering and learning for time-series data,” in International
Conference on Computer Aided Verification, 2017, pp. 305–325.

[5] D. Neider and I. Gavran, “Learning linear temporal properties,” in
Formal Methods in Computer Aided Design. IEEE, 2018, pp. 1–10.

[6] Z. Xu, M. Ornik, A. A. Julius, and U. Topcu, “Information-guided
temporal logic inference with prior knowledge,” in American Control
Conference, 2019, pp. 1891–1897.

[7] A. Ketenci and E. A. Gol, “Synthesis of monitoring rules via data
mining,” in American Control Conference, 2019, pp. 1684–1689.

[8] R. Yan and A. Julius, “Neural network for weighted signal temporal
logic,” arXiv preprint arXiv:2104.05435, 2021.

[9] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[10] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining
requirements from closed-loop control models,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 11, pp. 1704–1717, 2015.

[11] B. Hoxha, A. Dokhanchi, and G. Fainekos, “Mining parametric
temporal logic properties in model-based design for cyber-physical
systems,” International Journal on Software Tools for Technology
Transfer, vol. 20, no. 1, pp. 79–93, 2018.

[12] A. Bakhirkin, T. Ferrère, and O. Maler, “Efficient parametric identifi-
cation for stl,” in Proceedings of the 21st International Conference on
Hybrid Systems: Computation and Control (part of CPS Week), 2018,
pp. 177–186.

[13] Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning and
detection of anomalous behavior,” IEEE Transactions on Automatic
Control, vol. 62, no. 3, pp. 1210–1222, 2016.

[14] G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A
decision tree approach to data classification using signal temporal
logic,” in Hybrid Systems: Computation and Control, 2016, pp. 1–
10.

[15] G. Bombara and C. Belta, “Offline and online learning of signal
temporal logic formulae using decision trees,” ACM Transactions on
Cyber-Physical Systems, vol. 5, no. 3, pp. 1–23, 2021.

[16] S. Mohammadinejad, J. V. Deshmukh, A. G. Puranic, M. Vazquez-
Chanlatte, and A. Donzé, “Interpretable classification of time-series
data using efficient enumerative techniques,” in Proceedings of the
23rd International Conference on Hybrid Systems: Computation and
Control, 2020, pp. 1–10.

[17] A. Linard and J. Tumova, “Active learning of signal temporal logic
specifications,” in 2020 IEEE 16th International Conference on Au-
tomation Science and Engineering (CASE). IEEE, 2020, pp. 779–785.

[18] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and regression trees. CRC press, 1984.

[19] N. Mehdipour, C.-I. Vasile, and C. Belta, “Specifying user preferences
using weighted signal temporal logic,” IEEE Control Systems Letters,
2020.

[20] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in International Conference on Formal Modeling
and Analysis of Timed Systems. Springer, 2010, pp. 92–106.

[21] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, no. 1, pp. 119–139, 1997.

[22] S. Shalev-Shwartz and S. Ben-David, Understanding machine learn-
ing: From theory to algorithms. Cambridge university press, 2014.

[23] V. Y. Kulkarni and P. K. Sinha, “Pruning of random forest classifiers:
A survey and future directions,” in 2012 International Conference on
Data Science & Engineering (ICDSE). IEEE, 2012, pp. 64–68.

[24] B. D. Ripley, Pattern recognition and neural networks. Cambridge
university press, 2007.

[25] L. Rokach and O. Maimon, “Top-down induction of decision trees
classifiers - a survey,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C, vol. 35, no. 4, pp. 476–487, 2005.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[27] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” preprint arXiv:1711.03938, 2017.

[28] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Inter-
national Conference on Neural Networks, vol. 4. IEEE, 1995, pp.
1942–1948.

[29] E. Aasi, “Unmarked crosswalk carla scenario,” https://github.
com/erfanaasi/unmarked crosswalk carla scenario, GitHub repository,
2022, [Online; accessed 1-March-2022].

