
Article

The International Journal of

Robotics Research

2020, Vol. 39(8) 1002–1028

� The Author(s) 2020

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0278364920918919

journals.sagepub.com/home/ijr

Reactive sampling-based path planning
with temporal logic specifications

Cristian Ioan Vasile1 , Xiao Li2 and Calin Belta2

Abstract

We develop a sampling-based motion planning algorithm that combines long-term temporal logic goals with short-term

reactive requirements. The mission specification has two parts: (1) a global specification given as a linear temporal logic

(LTL) formula over a set of static service requests that occur at the regions of a known environment, and (2) a local speci-

fication that requires servicing a set of dynamic requests that can be sensed locally during the execution. The proposed

computational framework consists of two main ingredients: (a) an off-line sampling-based algorithm for the construction

of a global transition system that contains a path satisfying the LTL formula; and (b) an on-line sampling-based algo-

rithm to generate paths that service the local requests, while making sure that the satisfaction of the global specification

is not affected. The off-line algorithm has four main features. First, it is incremental, in the sense that the procedure for

finding a satisfying path at each iteration scales only with the number of new samples generated at that iteration. Second,

the underlying graph is sparse, which implies low complexity for the overall method. Third, it is probabilistically com-

plete. Fourth, under some mild assumptions, it has the best possible complexity bound. The on-line algorithm leverages

ideas from LTL monitoring and potential functions to ensure progress towards the satisfaction of the global specification

while servicing locally sensed requests. Examples and experimental trials illustrating the usefulness and the performance

of the framework are included.

Keywords

Sampling-based planning, linear temporal logic, reactive planning

1. Introduction

Motion planning is a fundamental problem in robotics

(LaValle, 2006). The goal is to generate a feasible path for

a robot to move from an initial to a final configuration

while avoiding obstacles. Approaches based on potential

fields, navigation functions, and cell decompositions are

among the most commonly used (Choset et al., 2005).

These, however, become prohibitively expensive in high-

dimensional configuration spaces. Sampling-based meth-

ods were proposed to overcome this limitation. Examples

include the probabilistic roadmap (PRM) algorithm pro-

posed by Kavraki et al. (1996), which is very useful for

multi-query problems, but is not well suited for the integra-

tion of differential constraints. LaValle and Kuffner (2001)

proposed rapidly-exploring random trees (RRT). These

grow randomly, are biased to explore ‘‘new’’ space (LaValle

and Kuffner, 2001) (Voronoi bias), and find solutions quite

fast. Moreover, PRM and RRT were shown to be probabil-

istically complete (Kavraki et al., 1996; LaValle and

Kuffner, 2001), but not probabilistically optimal (Karaman

and Frazzoli, 2011). Karaman and Frazzoli (2011)

proposed RRT� and PRM�, the probabilistically optimal

counterparts of RRT and PRM. Sampling-based methods

have been employed in dealing with kinematic constraints

(Hauser and Zhou, 2016; Kleinbort et al., 2019; Moore

et al., 2014; Webb and van den Berg, 2013), stochastic

robot models (Agha-mohammadi et al., 2014; Burns and

Brock, 2007; Hauser, 2011; van den Berg et al., 2011;

Vasile et al., 2016), multi-robot systems (Dobson et al.,

2017; Kantaros and Zavlanos, 2019), in applications such

as autonomous driving (Kuwata et al., 2009; Reyes Castro

1Laboratory for Information and Decision Systems,Computer Science and

Artificial Intelligence Laboratory, Massachusetts Institute of Technology,

Cambridge, MA, USA
2Department of Mechanical Engineering, Boston University, Boston, MA,

USA

Corresponding author:

Cristian-Ioan Vasile, Laboratory for Information and Decision Systems,

Computer Science and Artificial Intelligence Laboratory, Massachusetts

Institute of Technology, 77 Massachusetts Avenue, 32-D716, Cambridge,

MA 02139, USA.

Email: cvasile@mit.edu

uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/0278364920918919
journals.sagepub.com/home/ijr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0278364920918919&domain=pdf&date_stamp=2020-06-04

et al., 2013; Vasile et al., 2017b), manipulation (He et al.,

2017; Muhayyuddin et al., 2018), and surgery (Baykal

et al., 2019). A more detailed exposition of sampling-based

methods can be found in Kingston et al. (2018).

A recent trend in robot motion planning is the develop-

ment of computational frameworks that allow for automatic

deployment from rich, high-level, temporal logic specifica-

tions. As opposed to traditional methods, which only allow

to specify a goal position, these frameworks can capture

more complex tasks such as sequencing (e.g., ‘‘Reach A,

then B, and then C’’), convergence (‘‘Go to A and stay there

for all future times’’), persistent surveillance (‘‘Visit A, B,

and C, in this order, infinitely often’’), and more complex

logical combinations of the above, such as ‘‘Visit A and

then B or C infinitely often. Always avoid D. Never go to E

unless F was reached before.’’ It was shown that temporal

logics, such as linear temporal logic (LTL), computational

tree logic (CTL), and m-calculus, and their probabilistic

versions (PLTL, PCTL), can be used as formal languages

for motion planning (Bhatia et al., 2010; Ding et al., 2011;

Karaman and Frazzoli, 2009; Kress-Gazit et al., 2007,

2018; Nilsson et al., 2016; Schillinger et al., 2018;

Wongpiromsarn et al., 2009). Adapted model checking

algorithms and automata game techniques (Belta et al.,

2017; Chen et al., 2012; Kress-Gazit et al., 2007) have been

used to generate plans and control policies for finite models

of robot motion. Such models were obtained through

abstractions, which are essentially partitions of the robot

configuration space that capture the ability of the robot to

steer among the regions in the partition (Belta et al., 2005,

2017). As a result, they suffer from the same scalability

issues as the cell-based decomposition methods.

In this article, we address the problem of generating a

path for a robot required to satisfy a (global) LTL specifi-

cation over some known, static service requests, while at

the same time servicing a set of locally sensed requests

ordered according to their priorities. Consider, for example,

a disaster relief scenario requiring an unmanned aircraft to

provide persistent surveillance of some affected regions in

order to assess the danger posed by unsafe structures with

known locations (e.g., by repeatedly taking photos of such

regions and uploading the photos at a base region). During

flight, by using an onboard camera, the robot looks for sur-

vivors and fires. If detected, such requests need to be ser-

viced (e.g., fires need to be extinguished and rescue teams

need to be alerted if survivors are detected), possibly with

predefined priorities, while making sure that the global,

surveillance mission is not compromised. To address the

scalability issues mentioned previously, we propose a ran-

domized sampling approach that consists of two compo-

nents: (1) an off-line algorithm that generates a finite

transition system that contains a run satisfying the global

specification; and (2) an on-line algorithm that finds local

paths that satisfy the local specification, while at the same

time making sure that progress is made towards satisfying

the global specification.

For the off-line component of the framework, we pro-

pose a sampling-based path planning algorithm that finds

an infinite path satisfying a LTL formula over a set of prop-

erties that hold at some regions in the workspace. The pro-

cedure is based on the incremental construction of a

transition system in the configuration space followed by

the search for one of its satisfying paths. One important

feature of the algorithm is that, at a given iteration, it only

scales with the number of samples and transitions added to

the transitions system at that iteration. This, together with a

notion of ‘‘sparsity’’ that we define and enforce on the tran-

sition system, play an important role in keeping the overall

complexity at a manageable level. In fact, we show that,

under some mild assumptions, our definition of sparsity

leads to the best possible complexity bound for finding a

satisfying path. Finally, while the number of samples

increases, the probability that a satisfying path is found

approaches 1, i.e., our algorithm is probabilistically

complete.

The closest to our proposed off-line algorithm is the

work by Karaman and Frazzoli (2009, 2012), where the

specifications are given in deterministic m-calculus. As in

this article, Karaman and Frazzoli (2009) guarantee prob-

abilistic completeness and scalability with added samples

only at each iteration of their algorithm. However, determi-

nistic m-calculus formulae have unnatural syntax based on

fixed point operators, and are difficult to use by untrained

human operators. In contrast, LTL has friendly syntax and

semantics, which can be easily translated to natural lan-

guage (Raman et al., 2013). Note that there is no known

procedure to transform a LTL formula f into a m-calculus

formula C such that the size of C is polynomial in the size

of f (for details see Cranen et al., 2010). Karaman and

Frazzoli (2009) employed the fixed point (Knaster–Tarski)

theorem to find a satisfying path. Their method is based on

maintaining a ‘‘product’’ graph between the transition sys-

tem and every sub-formula of their deterministic m-calculus

specification and checking for reachability and the exis-

tence of a ‘‘type’’ of cycle on the graph. On the other hand,

our algorithm maintains the product automaton between the

transition system and a Büchi automaton corresponding to

the given LTL specification. Note that, as opposed to LTL

model checking (Baier and Katoen, 2008), we use a modi-

fied version of product automaton that ensures reachability

of the final states. Moreover, we impose that the states of

the transition system be bounded away from each other (by

a given function decaying in terms of the size of the transi-

tion system). Computing sparse structures is also explored

by Dobson and Bekris (2013) for PRM using different

techniques.

The on-line component of our framework uses

sampling-based methods as well. However, in this case the

focus is on servicing local request and avoiding local obsta-

cles within the bounded sensing area of the robot, while

ensuring the satisfaction of the global specification in the

long term. The proposed on-line algorithm is based on the

definition of a potential function over the global transition

Vasile et al. 1003

system that ensures progress toward satisfaction of the glo-

bal specification. This idea is inspired by Ding et al.

(2014). The new algorithm that we propose for the compu-

tation of the potential function improves the complexity of

the algorithm from Ding et al. (2014) by a polynomial fac-

tor. The new algorithm is shown to be correct and to have

the same complexity as Dijkstra’s algorithm.

The main contribution of this work is a sampling-based,

formal framework that combines infinite-time satisfaction

of temporal logic global specifications with reactivity to

requests sensed locally. Related works include those of

Lahijanian et al. (2016), Livingston and Murray (2013),

Livingston et al. (2013), Tumova et al. (2013), Ulusoy et al.

(2013a), and Vasile et al. (2017a). Lahijanian et al. (2016)

considered global specifications given in the more restric-

tive scLTL fragment of LTL. To deal with the state-space

explosion problem, they propose a layered path planning

approach that uses a cell decomposition of the configura-

tion space for high-level temporal planning and expansive

space trees (EST) for kino-dynamic planning of the low-

level, cell-to-cell motion. The on-line algorithm from

Tumova et al. (2013) and Reyes Castro et al. (2013) finds

minimum violating paths for a robot when the global speci-

fication cannot be enforced completely. In Livingston and

Murray (2013) and Livingston et al. (2013), the global

specifications are given in the GR(1) fragment of LTL, and

on-line local re-planning is done through patching invali-

dated paths based on m-calculus specifications. Timed

specifications such as time window temporal logic (Penedo

Álvarez et al., 2016) and signal temporal logic (Vasile

et al., 2017a) formulae were considered in conjunction with

RRT*, but without considering sensing and reactivity to

locally sensed requests. Finally, the idea of using a potential

function to enforce the satisfaction of an infinite-time spe-

cification through local decisions is inspired from Ding

et al. (2014) and Ulusoy et al. (2013a).

This article unifies and extends our previous results pub-

lished in conference proceedings (Vasile and Belta, 2013,

2014). It includes the entire reactive temporal logic path

planning framework. In this article, we expand the proof

for the complexity of the off-line algorithm and establish

the order of the maximum number of neighbors for a state

in the global transition system, which we only hinted to in

Vasile and Belta (2013). We also add a conditional result

showing that the proposed incremental checking algorithm

for satisfying paths is the best possible. This result depends

on a conjecture in incremental computation, which is

known to be true for a large class of algorithms (Haeupler

et al., 2012). Finally, we present new case studies and

include experimental trials to validate the framework.

2. Preliminaries

In this section, we briefly review the main concepts from

automata theory and formal verification employed in this

article. For a detailed exposition of these topics see Baier

and Katoen (2008) and the references therein. For a finite

set S, we use Sj j and 2S to denote its cardinality and power

set, respectively. Here ; denotes the empty set.

Definition 1. (Deterministic transition system (DTS)). A

weighted deterministic transition system (DTS) is a tuple

T = (X , x0,D,v,P, h), where:

� X is a finite set of states;
� x0 2 X is the initial state;
� D � X ×X is a set of transitions;
� v : D! R

+ is a positive weight function;
� P is a set of properties (atomic propositions);
� h : X ! 2P is a labeling function.

We also denote a transition (x, x0) 2 D by x!T x0. A tra-

jectory (or run) of the system is an infinite sequence of

states x= x0x1 . . . such that xk!T xk + 1 for all k ø 0. A

state trajectory x generates an output trajectory

o= o0o1 . . ., where ok = h(xk) for all k ø 0. The absence of

inputs (control actions) in a DTS implicitly means that a

transition (x, x0) 2 D can be chosen deterministically at

every state x.

A LTL formula over a set of properties P is defined

using standard Boolean operators, : (negation), ^ (con-

junction), and _ (disjunction), and temporal operators, �
(next), U (until), } (eventually), and � (always). The

semantics of LTL formulae over P are given with respect

to infinite words over 2P, such as the output trajectories of

the DTS defined above. Any infinite word satisfying a LTL

formula can be written in the form of a finite prefix fol-

lowed by infinitely many repetitions of a suffix. Verifying

whether all output trajectories of a DTS with set of propo-

sitions P satisfy a LTL formula over P is called LTL

model checking. LTL formulae can be used to describe rich

mission specifications. For example, formula �(}(R1^
}R2) ^ :O1) specifies a persistent surveillance task: ‘‘visit

regions R1 and R2 infinitely many times and always avoid

obstacle O1’’ (see Figure 1). In this article, we consider a

particular fragment of LTL, called LTL�X (Baier and

Katoen, 2008), which does not include the� (next) opera-

tor. Formal definitions for the LTL syntax, semantics, and

model checking can be found in (Baier and Katoen, 2008).

Definition 2. (Büchi Automaton). A (non-deterministic)

Büchi automaton is a tuple B= (SB, SB0
,S, d,FB), where:

� SB is a finite set of states;
� SB0

� SB is the set of initial states;
� S is the input alphabet;
� d : SB×S! 2SB is the transition function;
� FB � SB is the set of accepting states.

A transition (s, s0) 2 d(s,s) is also denoted by s!s Bs0. A

trajectory of the Büchi automaton s0s1 . . . is generated by

an infinite sequence of symbols s0s1 . . . if s0 2 SB0
and

sk!
sk

Bsk + 1 for all k ø 0. An infinite input sequence over S

is said to be accepted by a Büchi automaton B if it

1004 The International Journal of Robotics Research 39(8)

generates at least one trajectory of B that intersects the set

FB of accepting states infinitely many times.

It was shown in Baier and Katoen (2008) that for every

LTL formula f over P there exists a Büchi automaton B
over alphabet S = 2P such that B accepts all and only those

infinite sequences over P that satisfy f. Note that the con-

verse is not true. There exist Büchi automata for which

there are no corresponding LTL formulae. However, there

are logics such as deterministic m-calculus which are in

one-to-one correspondence with the set of languages

accepted by Büchi automata.

The translation problem of LTL formulae to Büchi auto-

mata is PSPACE-complete, and the resulting automata sizes

can grow exponentially in the size of the logic formulae.

However, in practice specifications rarely lead to explosion

in automata sizes with respect to the formulae. Moreover,

state-of-the-art algorithms such as those in Gastin and

Oddoux (2001) and Duret-Lutz et al. (2016) use construc-

tions and heuristic procedures to compute fast small auto-

mata. The papers also include analytical and empirical

performance analysis.

In this article, we use the translation algorithms off-line,

and the resulting automata are independent of the robot

models. This means that we can reuse the automata with

other robots, scenarios, and synthesis algorithms as long as

the specifications remain the same.

Model checking a DTS against a LTL formula is based on

the construction of the product automaton between the DTS

and the Büchi automaton corresponding to the formula. In

this article, we used a modified definition of the product auto-

maton that is optimized for incremental search of a satisfying

run. Specifically, the product automaton is defined such that

all its states are reachable from the set of initial states.

Definition 3. (Product automaton). Given a DTS

T = (X , x0,D,v,P, h) and a Büchi automaton B= (SB,

SB0
, 2P, dB,FB), their product automaton, denoted by

P= T ×B, is a tuple P= (SP , SP0
,DP ,vP ,FP) where:

� SP0
= fx0g× SB0

is the set of initial states;
� SP � X × SB is a finite set of states that are reachable

from some initial state; for every (x�, s�) 2 SP there

exists a sequence of x= x0x1 . . . xnx�, with xk!T xk + 1

for all 0 ł k\n and xn!T x�, and a sequence

s= s0s1 . . . sns� such that s0 2 SB0
, sk !

h(xk)
Bsk + 1 for all

0 ł k\n and sn!
h(xn)

T s�;
� DP � SP × SP is the set of transitions, defined by

((x, s), (x0, s0)) 2 DP if and only if x!T x0 and s!h(x)Bs0;
� vP : DP ! R

+ is inherited from T such that

vP(((x, s), (x
0, s0)))= v((x, x0));

� FP = (X ×FB) \ SP is the set of accepting states of P.

A transition in P is also denoted by (x, s)!P(x0, s0) if

((x, s), (x0, s0)) 2 DP . A trajectory p= (x0, s0)(x1, s1) . . . of

P is an infinite sequence, where (x0, s0) 2 SP0
and

(xk , sk)!P(xk + 1, sk + 1) for all k ø 0. A trajectory of

P= T ×B is said to be accepting if and only if it intersects

the set of final states FP infinitely many times. It follows

by construction that a trajectory p= (x0, s0)(x1, s1) . . . of P
is accepting if and only if the trajectory s0s1 . . . is accepting

in B. As a result, a trajectory of T obtained from an accept-

ing trajectory of P satisfies the given specification encoded

by B. For x 2 X , we define bP(x)= fs 2 SB : (x, s) 2 SPg
as the set of Büchi automaton states that correspond to x in

P. In addition, we denote the projection of a trajectory

p= (x0, s0)(x1, s1) . . . onto T by gT (p)= x0x1 A similar

notation is used for projections of finite trajectories.

For both DTS and automata, we use �j j to denote size,

which is the cardinality of the corresponding set of states.

A state of a DTS or an automaton is called non-blocking if

it has at least one outgoing transition.

3. Problem formulation

Consider a robot moving in an environment (workspace) D
containing a set of disjoint regions of interest RG. We

assume that the robot can precisely localize itself in the

environment. There is a set of service requests PG at the

regions in RG and their location is given by a map

LG : RG ! 2PG . We assume that these regions as well as

the labeling map are static and a priori known to the robot.

We refer to these as global regions and requests, because

these are used to define the long-term goal of the robot’s

mission. An example of an environment with global

regions and requests is shown in Figure 2.

While the robot moves in the environment, it can locally

sense a set of dynamic service requests denoted by PL and

a particular type of avoidance request denoted by pO, which

captures moving obstacles, unsafe areas, etc. We assume

PG \ (PL [fpOg)= ;. A dynamic request from PL

occurs at a point in the environment and has an associated

Fig. 1. A simple map with three features: an obstacle O1 and

two regions of interest R1 and R2. The mission specification is

f =�(}(R1 ^ }R2) ^ :O1). The initial position of the robot is

marked by the blue disk. The graph (in black and red) represents

the generated transition system T . The red arrows specify a

satisfying trajectory composed of a prefix ½x0, x2, x3� and

infinitely many repetitions of the suffix ½x4, x3, x2, x3�.
Note: Colour version of the figure is available online.

Vasile et al. 1005

servicing radius, which specifies the maximum distance

from which the robot can service it. The servicing radius of

a request is determined by its type (PL) and all servicing

radii are known a priori. The robot may service a dynamic

request by moving inside the request’s servicing radius and

performing an appropriate action. Thus, a dynamic request

is define by its time-varying position in the environment

and its type from PL. Multiple dynamic requests of the

same type may be present in the environment at the same

time. The number, type, and motion of dynamic requests

and local obstacles are a priori unknown. Moreover, it is

unknown when and where dynamic requests appear in the

environment. We assume that once a request is serviced, it

disappears from the environment.

The region around the robot in which the robot can sense

a dynamic request, including pO, is called the sensing area

of the corresponding sensor. For simplicity, we assume that

all sensors have the same sensing area. The sensing area may

be of any shape and size provided that it is connected and

full-dimensional (see Figure 2). We assume that the avoid-

ance request pO is associated with whole regions, parts of

which can be detected when they intersect with the robot’s

sensing area. For simplicity, we refer to regions satisfying pO

as local obstacles. We do not assume that sensors have the

ability to distinguish between multiple requests of the same

type (aside from location), i.e., assign identities to dynamic

requests and local obstacles. This means that the robot at the

current time only knows the requests within its sensing area,

and for each request it knows its position and type; for local

obstacles it knows only their extend within the sensing area.

This also implies that the robot cannot establish whether a

request entering and leaving the sensing area multiple times

is the same request. Tracking is outside the scope of this arti-

cle, but has been considered in Serlin et al. (2018a,b) with

LTL constraints, and in Pierson et al. (2016) as active pursuit

with exclusion zones. The set of regions corresponding to

local obstacles present in the environment at time t ø 0 is

denoted byRL(t).
The mission specification is composed of two parts: a

global mission specification, which is defined over the set

of global properties PG, and a local mission specification,

which specifies how on-line detected requests PL must be

handled. The global mission specification, which defines

the long-term motion of the robot, is given as a LTL�X for-

mula FG. When the robot passes over a global region, it is

assumed that the robot services the requests associated with

the region. Formally, a symbol in 2PG is generated when-

ever the robot is inside the boundary of a region in RG,

and ; is generated when the robot is on the exterior of all

regions. In Figure 1, the symbol generated at x0, x1, and x3

is LG(x0)=LG(x1)=LG(x3)= ;, while those for x2 and x4

are LG(x2)= fR1g and LG(x4)= fR2g, respectively.

Therefore, a path traveled by the robot generates a word

over PG. A path is said to satisfy the global mission speci-

fication FG if the corresponding word satisfies FG. The

local mission specification is ‘‘Service the highest priority,

locally sensed dynamic request, while avoiding local obsta-

cles’’ evaluated at the current time. Priorities are given by

an injective function prio : PL ! N that assigns lower val-

ues to higher-priority requests. If the robot detects dynamic

requests, it must go and service the request with the highest

priority. If multiple requests have the same (highest) prior-

ity, then the robot can choose any of them. As the local

specification is evaluated at the current time of the robot,

the highest-priority request may change before the servi-

cing of a previously considered request. In addition, the

robot must avoid all local obstacles marked by pO.

Planning is performed in the configuration space of the

robot. Let C be the compact configuration space of the

robot and H : C ! D be a submersion that maps each con-

figuration x to a position y =H(x) 2 D. Formally, the prob-

lem can be formulated as follows.

Problem 4. Given a partially known environment described

by (D,RG,PG,LG,PL), an initial configuration x0 2 C, a

LTL�X formula FG over the set of properties PG, and a

priority function prio : PL ! N, find an (infinite) path in

the configuration space C originating at x0 such that the

path y=H(x) in the environment satisfies FG and on-line

detected dynamic requests, while avoiding local obstacles.

Note that in this article we are concerned with computing

satisfying paths in the robots’ configuration spaces and focus

on correctness with respect to global and local specifications.

Path tracking algorithms can be used to implement the

Fig. 2. Simplified representation of a disaster scenario

considered in Example 5. The environment contains three global

regions A, B and C colored in green, blue, and red, respectively.

Three dynamic requests are also shown as colored points: a

survivor (yellow), a fire (orange), and a local obstacle (black).

The circles around them delimit the corresponding servicing

areas. The initial position of the robot is shown in magenta and

the cyan rectangle corresponds to its sensing area. In this figure

the robot does not detect any dynamic request or local obstacles.

Note: Colour version of the figure is available online.

1006 The International Journal of Robotics Research 39(8)

computed paths on robots, and take into account their

dynamics (Aguiar and Hespanha, 2007; Frazzoli et al., 2000;

Kuwata et al., 2009; Murray et al., 1994).

Example 5. Figure 2 shows a simplified disaster response

scenario, in which a fully actuated point robot is deployed

in an environment where three global regions of interest A,

B, and C are defined. The set of dynamic requests is

PL = ffire, survivorg and the local obstacle is

pO = unsafe. If the robot detects requests fire or survivor,

it must service them by going within the corresponding ser-

vicing radii and initiating appropriate actions (i.e., extin-

guishing the fire and providing medical relief,

respectively). If the robot detects the local obstacle unsafe

(shown in black in Figure 2), the robot must avoid that

region. The limited sensing area of the robot’s sensors is

depicted in Figure 2 by a cyan rectangle.

The global mission specification is: ‘‘Go to region A and

then go to regions B or C infinitely often.’’This specification

can be expressed in LTL�X as

FG :¼ �(}(A ^ }(B _ C))) ð1Þ

The local mission specification is to ‘‘Extinguish fires

and provide medical assistance to survivors, with priority

given to survivors, while avoiding unsafe areas.’’ Thus, the

priority function is defined such that prio(survivor)= 0 and

prio(fire)= 1.

4. Outline of the approach

We propose a computational framework to solve Problem 4

that consists of two parts: (a) an off-line sampling-based

algorithm to compute a global transition system T G in the

configuration space C of the robot that contains a path

whose image in the workspace D satisfies the global mis-

sion specification FG; and (b) an on-line sampling-based

algorithm that computes at every time step a local control

strategy that takes into account dynamic requests such that

both local and global mission specifications are met.

A possible approach to the off-line part of Problem 4 is

to construct a partition of the configuration space such that

its image in the workspace contains the regions of interest as

elements of the partition. By using input–output lineariza-

tions and vector field assignments in the regions of the parti-

tion, it was shown that ‘‘equivalent’’ abstractions in the form

of finite (not necessarily deterministic) transition systems

can be constructed for a large variety of robot dynamics that

include car-like vehicles and quadrotors (Belta et al., 2005;

Lindemann and LaValle, 2009; Ulusoy et al., 2013b). Model

checking and automata game techniques can then be used to

control the abstractions from the temporal logic specification

(Kloetzer and Belta, 2008). The main limitation of this

approach is its high complexity, as both the synthesis and

abstraction algorithms scale at least exponentially with the

dimension of the configuration space.

In this article, we propose a sampling-based algorithm

for the construction of T G that can be summarized as

follows: (1) the LTL formula fG is translated to a Büchi

automaton B; (2) a transition system T G is incrementally

constructed from the initial configuration x0 using an

RRG-based algorithm; (3) concurrently with (2), the prod-

uct automaton PG = T G ×B is updated and used to check

whether there is a trajectory of T G that satisfies FG. As

will become clear later, our proposed algorithm is probabil-

istically complete (Karaman and Frazzoli, 2011; LaValle,

2006) (i.e., it finds a solution with probability 1 if one

exists and the number of samples approaches infinity) and

the resulting transition system T G is sparse (i.e., its states

are ‘‘far’’ away from each other). In addition, it is incremen-

tal, in the sense that its complexity scales only with the

number of samples generated at the current iteration, rather

than with size of T G.

The proposed approach to the on-line part of Problem 4

is based on the RRT algorithm, a probabilistically complete

sampling-based path planning method. RRT randomly

grows trees instead of general graphs. We modify the stan-

dard RRT in order to find local paths which preserve the

satisfaction of the global specification FG, while servicing

on-line requests and avoiding locally sensed obstacles. We

use ideas from Bauer et al. (2007) on monitors for LTL for-

mulae and Ding et al. (2014) on potential functions to

ensure the correctness of the local random paths with

respect to FG.

5. Solution

In the following, we denote by T G = (XG, x0,DG,
vG,PG, hG) the global transition system, by B the Büchi

automaton encoding the LTL�X formula FG and by

PG = T G ×B their product. The local transition system is

given by T L = (XL, xc,DL,vL,PL [fpOg, hL) which is

incrementally generated at each time step of the on-line pro-

cedure (see Section 5.2) from the current configuration xc.

An element of D will be called a position. The states of T G

and T L are configurations in C. The weight of a transition

of T G or T L is given by the distance between its endpoints

in C. The labeling function hG(x), x 2 XG, is defined as the

proposition set corresponding to the region the projection

of x belong to. Formally, hG(x)=LG(R) if H(x) 2 R for

some R 2 RG, and hG(x)= ; otherwise. Similarly, the

labeling function hL(x), x 2 XL is defined as the set of local

requests which are satisfied at position y =H(x) if

y 62 RL(t), and hL(x)= pO, otherwise. Recall that the

robot has knowledge only about the local requests and

obstacles inside its sensing area, which is determined by

the current position H(xc). In addition, hL(x) may be ; if

no local requests are satisfied by the corresponding

position y =H(x) and y does not fall inside a local

obstacle.

We make the following additional assumptions that are

necessary in the technical treatment presented in the follow-

ing. For a set R � D that is connected and has full dimen-

sion in D, we assume that the inverse set H�1(R) also has

Vasile et al. 1007

full dimension in C. The global regions and local obstacles

are connected sets with non-empty interior (i.e., they have

full dimension in D). In addition, all the connected regions

in the free space, between global regions and obstacles,

respectively, are full dimensional. This implies that all glo-

bal regions, local obstacles, service areas for dynamic

requests, and connected free-space regions (all subsets of

D) have corresponding inverse sets (through H�1) of non-

zero Lebesgue measure in C. It is important to note that

these are just technical assumptions, which are normally

made in sampling-based approaches, and we do not need to

construct the inverse mapH�1. In the sampling-based algo-

rithms described in the following, we only need to check

how the environment image of a configuration satisfies fea-

tures of interest in the environment. Finally, we assume that

the robot knows its configuration precisely and it can fol-

low trajectories in the configuration space made of con-

nected line segments. The initial configuration x0 of the

robot is known andH(x0)= y0.

5.1. Off-line algorithm

The starting point for our solution to Problem 4 is the off-

line algorithm to generate the global transition system T G.

The algorithm is based on the RRG algorithm, which is an

extension of RRT (Karaman and Frazzoli, 2011) that main-

tains a digraph instead of a tree, and can therefore be used

as a model for general v-regular languages (Karaman and

Frazzoli, 2009). However, we modify the RRG to obtain a

‘‘sparse’’ transition system that satisfies a given LTL for-

mula FG. More precisely, a transition system T G is

‘‘sparse’’ if the minimum distance between any two states

of T is greater than a prescribed function dependent only

on the size of T G (minx, x02T G
x� x0k k2 ø h(T Gj j)). The

distance used to define sparsity is inherited from the under-

lying configuration space and is not related to the graph

theoretical distance between states in T G. Throughout this

article, we assume that this distance is Euclidean.

As stated in Section 4, sparsity of T G is desired because

the transition system is then used in the on-line part of the

framework. The environment is partially known by the

robot before the start of the mission. As transitions of T G

may need to be locally re-planned on-line, T G must only

capture the essential features of D such that FG is satisfied.

Sparseness also plays an important role in establishing the

complexity bounds for the incremental search algorithm

(see Section 5.1.3).

5.1.1. Primitive functions. We first briefly introduce the

functions used by the algorithm.

Sampling function The algorithm has access to a sam-

pling function sample : N! C, which generates indepen-

dent and identically distributed samples from a given

distribution P. We assume that the support of P is the

entire configuration space C.
Steer function The steer function steer : C× C ! C is

defined based on the robot’s dynamics.
1

Given a

configuration x and goal configuration xg , it returns a new

configuration xn that can be reached from x by following

the dynamics of the robot and that satisfies

xn � xg

�� ��
2
\ x� xg

�� ��
2
. If a third parameter hL is given,

then xn must be within hL distance away from x,

xn � xk k2\hL.

Near function The function near : C×R! 2X is a

function of a configuration x and a parameter h2, which

returns the set of states from the transition system T G that

are at most at h2 distance away from x. In other words,

near returns all states in T G that are inside the n-dimen-

sional sphere of center x and radius h2.

Far function The function far : C×R×R! 2X is a

function of a configuration x and two parameters h1 and

h2. It returns the set of states from the transition system

T G that are at most at h2 distance away from x. However,

the difference from the near function is that far returns an

empty set if any state of T G is closer to x than h1.

Geometrically, this means that far returns a non-empty set

for a given state x if there are states in T G, which are inside

the n-dimensional sphere of center x and radius h2 and all

states of T G are outside the sphere with the same center,

but radius h1. Thus, x has to be ‘‘far’’ away from all states

in its immediate neighborhood (see Figure 3). This func-

tion is used to achieve the ‘‘sparseness’’ of the resulting

transition system.

isSimpleSegment function The function

isSimpleSegment : C× C ! f0, 1g is a function that takes

two configurations x1, x2 in C and returns 1 if the line seg-

ment ½x1, x2� (fx 2 R
n : x = lx1 + (1� l)x2, l 2 ½0, 1�g) is

simple, otherwise it returns 0. Let y1 =H(x1), y2 =H(x2)
and ½y1, y2�=H(½x1, x2�) be the projections of x1, x2 and

the line segment ½x1, x2� onto the workspace D, respec-

tively. A line segment ½x1, x2� is simple if ½x1, x2� 	 C and

the number of times ½y1, y2� crosses the boundary of any

region R 2 R is at most one. Therefore, isSimpleSegment

returns 1 if either: (1) y1 and y2 belong to the same region

R and ½y1, y2� does not cross the boundary of R or (2) y1

and y2 belong to two regions R1 and R2, respectively, and

½y1, y2� crosses the common boundary of R1 and R2 once.

Here R or at most one of R1 and R2 may be a free space

region (a connected set in Dn
S

R2R R). See Figure 3 for

examples. In Algorithm 1, a transition is rejected if it corre-

sponds to a non-simple line segment (i.e., isSimpleSegment

function returns 0).

Bound functions The functions h1 : Z+ ! R (lower

bound) and h2 : Z+ ! R (upper bound) define the

bounds on the distance between a configuration in C and

the states of the transition system T G in terms of the size

of T G. These are used as parameters for functions far and

near. We impose h1(k)\h2(k) for all k ø 1. We also

assume that ch1(k).h2(k), for some finite c.1 and all

k ø 0. In addition, h1 tends to zero as k tends to infinity.

The rate of decay of h1(�) has to be fast enough such that a

new sample may be generated. Specifically, the set of all

configurations where the center of an n-sphere of radius

h1=2 may be placed such that it does not intersect any of

1008 The International Journal of Robotics Research 39(8)

the d-spheres corresponding to the states in T G has to have

non-zero measure with respect to the probability measure P

used by the sampling function. One conservative upper

bound is h1(k)\ 1ffiffiffi
p
p

ffi
m(C)G(d=2 + 1)

k

d

q
for all k ø 1, where

m(C) is the total measure (volume) of the configuration

space, d is the dimension of C, and G is the gamma func-

tion. This bound corresponds to the case when C is convex

and there is enough space to insert an n-sphere of radius

h1=2 between every two distinct states of T G. To simplify

the notation, we drop the parameter for these functions and

assume that k is always given by the current size of the

transition system, k = Tj j.

5.1.2. Sparse RRG. The goal of the modified RRG algo-

rithm (see Algorithm 1) is to find a satisfying run, but such

that the resulting transition system is ‘‘sparse,’’ i.e., states

are ‘‘sufficiently’’ apart from each other. The algorithm iter-

ates until a satisfying run originating in x0 is found.

At each iteration, a new sample xr is generated (line 5 in

Algorithm 1). For each state x in T G that is ‘‘far’’ from the

sample xr (x 2 far(xr,h1,h2)), a new configuration x0r is

computed such that the robot can be steered from x to x0r and

the distance to xr is decreased (line 8). The two loops of the

algorithm (lines 7–13 and 16–21) are executed if and only if

the far function returns a non-empty set. However, x0r is

regarded as a potential new state of T G, and not xr. Thus,

the steer function plays an important role in the ‘‘sparsity’’

of the final transition system. Next, it is checked if the poten-

tial new transition (x, x0r) is a simple segment (line 9). It is

also verified whether x0r may lead to a solution, which is

equivalent to testing whether x0r induces at least one non-

blocking state in PG (see Algorithm 2). If configuration x0r
and the corresponding transition (x, x0r) pass all tests, then

they are added to the list of new states and list of new transi-

tions of T G, respectively (lines 12–13).

After all ‘‘far’’ neighbors of xr are processed, the transition

system is updated. Note that at this point T G was only

extended with states that explore ‘‘new space.’’ However, in

order to model v-regular languages the algorithm must also

close cycles. Therefore, the same procedure as before (lines

6–14) is also applied to the newly added states XG0 (lines 15–

22 of Algorithm 1). The difference is that it is checked

whether states from XG0 can steer the robot back to states in

T G in order to close cycles. In addition, because we know

that the states in XG0 are ‘‘far’’ from their neighbors, the near

function will be used instead of the far function. The algo-

rithm returns a (prefix, suffix) pair in T G obtained by projec-

tion from the corresponding path (p0!
�
PG

pF) and cycle

(pF!
+
PG

pF) in PG, respectively. The � above the transition

symbol means that the length of the path can be 0 or more,

while + denotes that the length of the cycle must be at

least 1.

In the end, the result is a transition system T G that cap-

tures the general topology of the environment. In the next

section, we show that T G also yields a run that satisfies the

given specification.

5.1.3. Incremental search for a satisfying run. The pro-

posed approach of incrementally constructing a transition

system raises the problem of how to efficiently check for a

satisfying run at each iteration. As mentioned in the previ-

ous section, the search for satisfying runs is performed on

the product automaton. Note that testing whether there

exists a trajectory of T G from the initial configuration x0

that satisfies the given LTL�X formula FG is equivalent to

searching for a path from an initial state p0 to a final state

pF in the product automaton PG = T G ×B and for a cycle

containing pF of length greater than 1, where B is the

Büchi automaton corresponding to FG. If such a path and

a cycle are found, then their projection onto T G represents

a satisfying infinite trajectory (line 23 of Algorithm 1).

Fig. 3. A simple map with three features: an obstacle O1 and

two regions R1, R2. The robot is assumed to be a fully actuated

point and C=D 	 R
2. At the current iteration the states of T G are

fx0, x1, x2, x3g. The transitions of T G are represented by the black

arrows. The initial configuration is x0 and is marked by the blue

disk. The radii of the dark gray (inner) disks and the light gray

(outer) disks are h1 and h2, respectively. A new sample xnew, 1 2 C
is generated, but it will not be considered as a potential new state

of T G, because it is within h1 distance from state 3

(far(xnew, 1,h1,h2)= ;). Another sample xnew, 2 2 C is generated,

which is at least h1 distance away from all states in T G. In this

case, far(xnew, 2,h1,h2)= fx0, x1, x2, x3g and the algorithm

attempts to create transition to and from the new sample xnew, 2. The

transitions f(xnew, 2, x0), (x0, xnew, 2), (xnew, 2, x1), (x1, xnew, 2),
(xnew, 2, x2), (x2, xnew, 2)g (marked by black dashed lines) are added

to T G, because all these transitions correspond to simple line

segments (isSimpleSegment returns 1 for all of them). For example,

isSimpleSegment(xnew, 2, x0)= 1, because xnew, 2 and x0 belong to

the same region (the free-space region) and ½xnew, 2, x0� does not

intersect any other region. Here isSimpleSegment(xnew, 2, x2)= 1,

because ½xnew, 2, x2� crosses the boundary between the free-space

region and region R1 once. On the other hand, the transitions

f(xnew, 2, x3), (x3, xnew, 2)g (marked by orange dashed lines) are not

added to T G, since they pass over the obstacle O1. In this case,

isSimpleSegment(x3, xnew, 2)= 0, because x3 and xnew, 2 are in the

same region, but ½x3, xnew, 2� crosses the boundary of O1 twice.

Note: Colour version of the figure is available online.

Vasile et al. 1009

Testing whether pF belongs to a non-degenerate cycle

(length greater than 1) is equivalent to testing whether pF

belong to a non-trivial strongly connected component:

SCC (the size of the SCC is greater than 1). Checking for a

satisfying trajectory in PG is performed incrementally as

the transition system is modified.

The reachability of the final states from initial ones in

PG is guaranteed by construction (see Definition 3).

However, we need to define a procedure (see Algorithm 2)

to incrementally update PG when a new transition is added

to T G. Consider the (non-incremental) case of constructing

PG = T G ×B. This is done by a traversal of
�PG = (XG × SB, �DPG

) from all initial states, where

((x, s), (x0, s0)) 2 �DPG
if x!T G

x0 and s !hG(x)
s0. Here �PG is a

product automaton but without the reachability require-

ment. This suggests that the way to update PG when a tran-

sition (x, x0) is added to T G, is to do a traversal from all

states p of PG such that gT G
(p)= x. In addition, it is

checked whether x0 induces any non-blocking states in PG

(lines 1–3 of Algorithm 2). The test is performed by com-

puting the set S0PG
of non-blocking states of PG (line 1)

such that p0 2 S0PG
has gT G

(p0)= x0 and p0 is obtained by a

transition from f(x, s) : s 2 bPG
(x)g. If S0PG

is empty, then

the transition (x, x0) of T G is discarded and the procedure

stops (line 3). Otherwise, the product automaton PG is

updated recursively to add all states that become reachable

because of the states in S0PG
. The recursive procedure is

performed from each state in S0PG
as follows: if a state p

(line 9) is not in PG, then it is added to PG together with

all its outgoing transitions (line 4) and the recursive

procedure continues from the outgoing states of p; if p is

in PG, then the traversal stops, but its outgoing transitions

are still added to PG (line 14). The incremental construc-

tion of PG has the same overall complexity as constructing

PG from the final T G and B, because the recursive proce-

dure just performs traversals that do not visit states already

in PG. Thus, we focus our complexity analysis on the next

step of the incremental search algorithm.

The second part of the incremental search procedure is

concerned with maintaining the SCCs of PG (line 16 of

Algorithm 2) as new transitions are added (these are stored

in D0PG
in Algorithm 2). To incrementally maintain the

SCCs of the product automaton, we employ the soft-thresh-

old-search algorithm presented in Haeupler et al. (2012).

The algorithm maintains a topological order of the super-

vertices corresponding to each SCC. When a new transition

is added to PG, the algorithm proceeds to re-establish a

topological order and merges vertices if new SCCs are

formed. The details of the algorithm are presented in

Haeupler et al. (2012). The authors also offered insight into

the complexity of the algorithm. They showed that, under a

mild assumption, the incremental algorithm has the best

possible complexity bound.

Incrementally maintaining PG and its SCCs yields a

quick way to check whether a trajectory of T G satisfies FG

(line 4 of Algorithm 1). Theorem 7 establishes the overall

complexity of Algorithm 2.

5.1.4. Complexity of the off-line algorithm. In this section,

the overall complexity of Algorithm 2 is established and we

show that this is the best possible under some mild assump-

tions. The proofs of Theorems 7 and 11 are based on the

analysis from Haeupler et al. (2012) of incremental algo-

rithms for cycle detection and maintenance of SCCs.

Remark 6. The complexity results in this section are

reported with respect to the size of transition systems,

while the size of the Büchi automata is considered a fixed

parameter. The translation step is performed once and is

decoupled from the incremental procedure in the sense that

the Büchi automata do not change. Details on the LTL-to-

Büchi translation problem and algorithms can be found in

Gastin and Oddoux (2001) and Duret-Lutz et al. (2016).

Algorithm 2 uses the soft-threshold-search algorithm

presented in Haeupler et al. (2012) to incrementally main-

tain SCCs. The soft-threshold-search algorithm has O(m
3
2)

complexity and is very efficient for sparse graphs (in

asymptotic sense), where m is the number of edges added

to T G. Recall that a graph is sparse if the number of edges

m is asymptotically the same as the number of nodes n,

i.e., m = O(n).

Theorem 7. The overall execution time of the incremental

search algorithm (Algorithm 2) is O(n
3
2), where n = T Gj j is

the number of states added to T G in Algorithm 1.

Remark 8. First, note that the execution time of the incre-

mental procedure is better by a polynomial factor than

Algorithm 1: Sparse RRG

Input: B– Büchi automaton corresponding to FG

Input: x0 initial configuration of the robot
Output: (prefix, suffix) in T G

1 Construct T G with x0 as initial state
2 Construct PG = T G ×B
3 Initialize scc(�)
4 while :(x0
 f) ([:(9p 2 FPG

s.t. scc(p)j j.1)) do
5 xr sample()
6 X 0G ;, D0G ;
7 foreach x 2 far(xr,h1,h2) do
8 x0r steer(x, xr)
9 if isSimpleSegment(xr, x

0
r) then

10 added updatePA(PG,B, (x, x0r))
11 if added is True then
12 X 0G X 0G [fx0rg
13 D0G D0G [f(x, x0r)g
14 T G T G [(X 0G,D

0
G)

15 D0G ;
16 foreach x0r 2 X 0G do

17 foreach x 2 near(x0r,h2) do
18 if (x = steer(x0r, x)) ^ isSimpleSegment(x0r, x) then
19 added updatePA(PG,B, (x, x0r))
20 if added is True then
21 D0G D0G [f(x0r, x)g
22 T G T G [(X 0G,D

0
G)

23 return (gT G
(p0!

�
PG

pF),gT G
(pF!

+
PG

pF)), where pF 2 FP

1010 The International Journal of Robotics Research 39(8)

naı̈vely running a linear-time SCC algorithm at each step,

since this will have complexity O(m2), where m = DGj j.
The algorithm presented in Haeupler et al. (2012)

improves the previously best known bound by a logarithmic

factor (for sparse graphs). The proof of Theorem 7 exploits

the fact that the ‘‘sparseness’’ (metric) property we defined

implies a topological sparseness, i.e., T G is a sparse

graph.

Proof. The soft-threshold-search attains the desired com-

plexity only for sparse graphs. Therefore, what we need to

show is that the transition system generated by Algorithm

1 is a sparse graph. Note that although we run the SCC

algorithm on the product automaton, the asymptotic execu-

tion time is not affected by analyzing the transition system

instead of the product automaton, because the Büchi auto-

maton is fixed. This follows from SPG
j jł SBj j � XGj j and

DPG
j jł dBj j � DGj j.

Intuitively, the underlying graph of T G is sparse, because

the states were generated ‘‘far’’ from each other. When a new

state is added to T G, it will be connected to other states that

are at least h1 and at most h2 distance away. In addition, all

states in T G are at least h1 distance away from each other.

This implies that there is a bound on the density of states.

Using this intuition, the problem of estimating the maximum

number of neighbors of a state can be restated as a sphere

packing problem (Conway and Sloane, 1999).

Let x be the state added to T G and S1 and S2 be two

spheres centered at x and with radii h1 and h2, respectively.

Each neighbor of x can be thought of as a sphere with

radius h1=2 and center belonging to the volume delimited

by the two spheres S1 and S2. As h1\h2\ch1, for some

c.1, it follows that there will be only a finite number of

spheres that can be placed inside the described volume. Let

NS be the number of spheres, then a conservative upper

bound is given by the following ratio

NS ł
V ðh2Þ � V ðh1Þ

V ðh2

2
Þ ł

Vðch2Þ � Vðh1Þ
V ðh2

2
Þ

= 2dðcd � 1Þł 2ðd + log2 cÞ

where d is the dimension of the configuration space C and

V (a) is the volume of a d-sphere of radius a ø 0. Thus, x

has at most O(1) neighbors. This implies that Algorithm 1

adds at most O(1) transitions to T G when adding a new

state x. As T G is a sparse graph before adding the state x,

it follows that T G will remain a sparse graph. h

Remark 9. Note that the exact value of NS may depend

not only on the dimension d of the configuration space C,
but also on the shape of C if x is close to its boundary.

The number NS is closely related to the kissing number

(Conway and Sloane, 1999) in dimension d. The kissing

number td is the maximum number of non-overlapping d-

spheres that touch another given d-sphere. It is easy to see

that td is a lower bound for the maximum value of NS . In

Conway and Sloane (1999), a linear optimization proce-

dure to compute an upper bound for any dimension is pre-

sented. It is also known (Talata, 1998) that td is

exponential in d, i.e., td ø 2ad , where a.0 is a constant.

Thus, the maximum value of NS is of order 2d.

Haeupler et al. (2012) showed that any incremental

algorithm that maintain a topological order and satisfies a

‘‘locality’’ property must take at least O(n
ffiffiffiffi
m
p

) time, where

n is the number of nodes in the graph and m is the number

of edges. The ‘‘locality’’ property is a mild assumption that

restricts the algorithm to reorder only vertices that are

affected by the addition of an edge. A vertex x is affected

by the additional edge u, v if there is another vertex y such

that x\y in the original topological ordering, but must be

changed to x.y. For more details see Haeupler et al.

(2012). However, it is conjectured (Haeupler et al., 2012)

that this bound holds in general (Conjecture 10).

In the following, we assume that m =O(n). In addition,

to simplify the exposition, we assume without loss of gen-

erality that initially T G has all n states and no transitions.

This assumption is not restrictive, because vertex addition

takes only O(1).
Conjecture 10. Any incremental cycle detection algo-

rithm takes at least O(n
ffiffiffiffi
m
p

) time, where n is the number of

vertices the graph and m is the number of edges added to it.

Theorem 11. If Conjecture 10 is true, then the complexity

of any incremental checking algorithm for satisfying paths

in a given transition system T G is at least O(n
ffiffiffiffi
m
p

), where

n = T Gj j and m is the number of transitions added to T G.

Proof. Let T G be a transition system with n states and m

transitions, DT G
= ftr1, . . . , trmg. In the following, we con-

sider algorithms that return true or false whether adding a

Algorithm 2: Incremental Search for a Satisfying Run

Input: PG – product automaton
Input: B – Büchi automaton
Input: (x, x0)– new transition in T G

Output: Boolean value – indicates if PG was modified

1 S0PG
 f(x0, s0) : s!hG(x)

Bs0, s 2 bPG
(x), s0 non-blockingg

2 D0PG
 f((x, s), (x0, s0)) : s 2 bPG

(x), s!hG(x)
Bs0, (x0, s0) 2 S0PG

g
3 if S0PG

6¼ ; then

4 PG PG [(S0PG
,D0PG

)

5 stack S0PG

6 while stack 6¼ ; do
7 p1 = (x1, s1) stack:pop()

8 foreach p2 2 f(x2, s2) : x1!T G
x2, s1 !

hG(x1)
Bs2g do

9 if p2 62 SPG
then

10 PG PG [(fp2g, f(p1, p2)g)
11 D0PG

 D0PG
[f(p1, p2)g

12 stack stack [fp2g
13 else if (p1, p2) 62 DPG

then
14 DPG

 DPG
[f(p1, p2)g

15 D0PG
 D0PG

[f(p1, p2)g
16 updateSCC(P, scc, D0PG

)

17 return True
18 return False

Vasile et al. 1011

given transition to a transition system T G yields a satisfy-

ing run or not with respect to a given specification FG.

Let A(T G,FG) be an incremental checking algorithm. We

want to show that any such incremental algorithm takes at

least O(n
ffiffiffiffi
m
p

) time.

It is well known (Baier and Katoen, 2008) that for any

v-regular language L there is a corresponding non-

deterministic Büchi automaton, which accepts all and only

the (infinite) words of L. As such, any encoding of the spe-

cification (LTL, CTL, CTL�, m-calculus, etc.) has a corre-

sponding Büchi automaton. Let B be the Büchi automaton

corresponding to the v-regular specification and
�PG = T G ×B be the full product automaton without the

reachability requirement.

Assume without loss of generality that the first m� 1

transitions of T G do not induce a satisfying run. Thus, only

the mth transition may induce a satisfying run. Note, that the

assumption is not limiting, because after a satisfying run is

detected any additional transition will not change the result.

Let P0
G, . . . ,Pm

G be a sequence of subgraphs of �PG with

the following properties:

1. P0
G, . . . ,Pm�1

G are acyclic;

2. Pm
G is cyclic if and only if there is a satisfying run in

T G with respect to FG;

3. ;= DP0
G
� DP1

G
� . . . � DPm

G
;

4. m0= DPm
G

�� ��=O(m).

It follows that procedure A solves the incremental cycle

detection problem for P0
G, . . . ,Pm

G. Therefore, A must take

at least O(n0
ffiffiffiffiffi
m0
p

)=O(n
ffiffiffiffi
m
p

).
To complete the proof, we must show that there exists a

subsequence (Pi
G)0 ł i ł m for a given �PG and a sequence

ftr1, . . . , trmg of transitions of T G. We define the sub-

graphs recursively as follows: (1) Pm
G is the maximum

acyclic spanning subgraph of �PG if T G does not contain a

satisfying run or Pm
G = �PG otherwise; (2) Pi

G is the maxi-

mum acyclic spanning subgraph of Pi + 1
G jEi

for all

i 2 f0, . . . ,m� 1g, where Ei = ftr1, . . . , trig× dB and

Pi + 1
G jEi

is the subgraph of Pi + 1
G with transitions restricted

to Ei. From the definition it immediately follows that

DPi
G
� (Ei \ DPi + 1

G
) � DPi + 1

G
for all 0 ł i ł m� 1 and

DP0
G
= ;. Thus, by construction conditions (1), (2), and (3)

are satisfied. The last requirement is trivially true when T G

contains a satisfying run. In addition, when T G does not

contain a satisfying run, then the maximum acyclic graph

of �PG retains at least half the transitions. Any digraph G

may be decomposed into two acyclic subgraphs (Wood,

2004) such that their edge sets form a partition of the edge

set of G. It follows that at least one (acyclic) subgraph has

half of the edges of G. Thus, we have that

m0=O(m). h

Remark 12. Note that Theorem 7 gives a lower bound for

all incremental checking procedures with respect to the

number of states and transitions that are added.

The following corollaries of Theorem 11 are easy to prove.

Corollary 13. If Conjecture 10 is true, then Algorithm 2

has the best possible complexity for transition systems that

are sparse graphs.

Corollary 14. Algorithm 2 has the best possible complexity

for transition systems, which are sparse graphs, among all

incremental algorithms with the ‘‘locality’’ property.

5.1.5. Probabilistic completeness. The presented RRG-

based algorithm retains the probabilistic completeness of

RRG (Karaman and Frazzoli, 2011).

Theorem 15. Algorithm 1 is probabilistically complete.

Proof. We start by noting that any word in a v-regular lan-

guage can be represented by a finite state Büchi automaton

(Baier and Katoen, 2008). This is important, because this

shows that a solution, represented by a transition system, is

completely characterized by a finite number of states. Let

us denote by �X the finite set of states that define a solu-

tion. It follows from the way regions are defined that we

can choose a neighborhood around each state in �X such

that the system can be steered in one step from all points

in one neighborhood to all points in the next neighbor-

hood. Thus, we can use induction to show that (Karaman

and Frazzoli, 2012): (1) there is a non-zero probability that

a sample will be generated inside the neighborhood of the

first state in the solution sequence; (2) if there is a state in

T that is inside the neighborhood of the kth state from the

solution sequence, then there is a non-zero probability that

a sample will be generated inside the k + 1th state’s neigh-

borhood. Therefore, as the number of samples goes to infi-

nity, the probability that the transition system T has nodes

belonging to all neighborhoods of states in �X goes to 1. To

finish the proof, note that we have to show that the algo-

rithm is always able to generate samples with the desired

‘‘sparseness’’ property. However, recall that the bound

functions must converge to 0 (as the number of states goes

to infinity) fast enough such that the set of configurations

for which ‘‘far’’ function returns a non-empty list has non-

zero measure with respect to the sampling distribution.

This concludes the proof. h

5.2. On-line algorithm

The approach for solving the on-line part of the planning

problem is based on the RRT algorithm, a probabilistically

complete sampling-based path planning method. We mod-

ify the standard RRT in order to find local paths that pre-

serve the satisfaction of the global specification FG, while

servicing on-line requests and avoiding locally sensed

obstacles.

To keep track of validity of samples (random configura-

tions) with respect to the global specification FG, we pro-

pose a method that combines the ideas presented in Bauer

et al. (2007) on monitors for LTL formulae and Ding et al.

(2014) on potential functions. The problem considered in

Bauer et al. (2007) is to decide as soon as possible whether

1012 The International Journal of Robotics Research 39(8)

a given (infinite) word w satisfies a LTL formula f. The

main idea is to keep track of Büchi states corresponding to

a finite prefix of w with respect to both f and :f concur-

rently. If one of the two sets of Büchi states corresponding

to f or :f becomes empty, then we can conclude that the

specification is either violated or satisfied. If both sets are

non-empty, then nothing can be said about w
 f. In our

case, we just use half of a monitor, because we are inter-

ested only in checking whether steering the robot to new

samples violates FG. The potential functions approach

described in Ding et al. (2014) is used to address the prob-

lem of connecting the locally generated path to states in the

global transition system such that FG is satisfied.

5.2.1. Potential functions. Ding et al. (2014) defined a

potential function over the states of the product automaton

between a transition system and a Büchi automaton. The

potential function captures the distance from each state of

the product to the closest final state. It can be thought of as

a distance to satisfaction and resembles a Lyapunov func-

tion. We extend this notion to define potential functions on

the states of the global transition system. This extension

allows us to reason about the change of potential between

nodes of T G connected through local paths instead of a

direct transition. The local paths are generated as branches

of a tree by the proposed RRT-based algorithm. The defini-

tions of self-reachable set and potential function for prod-

uct automaton states presented in the following are adapted

from Ding et al. (2014).

Let PG = T G ×B= (SPG
, SPG0

,DPG
,vPG

,FPG
) be a

product automaton between a transition system T G and

Büchi automaton B. We denote by D(p, p0) the set of all

finite trajectories from a state p 2 SPG
to a state p0 2 SPG

:

D(p, p0)=

p1 . . . pnjp1 = p, pn = p0; pk!PG
pk + 18k = 1, . . . , n� 1;8n ø 2f g

ð2Þ

A state p 2 SPG
is said to reach a state p0 2 SPG

if

D(p, p0) 6¼ ;. The length of a path is defined as the sum of

the weights corresponding to the transitions it is composed of

L(p)=
Xn�1

k = 1

vPG
(pk , pk + 1) ð3Þ

For p, p0 2 SPG
, the distance between p and p0 is defined

as follows:

d(p, p0)=
minp2D(p, p0)(L(p)) if D(p, p0) 6¼ ;
‘ if D(p, p0)= ;

�
ð4Þ

The weight function vPG
is positive, because it is

induced by the distance of the underlying (metric) space.

This implies (Ding et al., 2014) that d(p, p0)ø 0 for all

p, p0 2 SPG
with equality if and only if p = p0, because we

consider only LTL�X specifications. This means that there

can be no progress towards the global specification, i.e.,

change in the Büchi automata states, without the robot vis-

iting a region different than the current one it is in.

A set A 	 SPG
is self-reachable if and only if all states

in A can reach a state in A. Formally, a set A is self-

reachable if for all p 2 A there is a state p0 2 A such that

D(p, p0) 6¼ ;.

Definition 16. (Potential function of states in PG). The

potential function VPG
(p), p 2 SPG

is defined as

VPG
(p)=

minp02F�PG

d(p, p0) if p 62 F�PG

0 if p 2 F�PG

�
ð5Þ

where F�PG
	 FPG

is the maximal self-reachable set of final

states of PG.

The potential function is non-negative for all states of

PG. It is zero for some p 2 SPG
if and only if p is a final

state and p can reach itself or a self-reachable final state. In

addition, if VPG
(p)= ‘, p 2 SPG

, then p does not reach any

self-reachable final states.

Definition 17. (Potential function of states in T G). Let

x 2 X and B � bPG
(x). The potential function of x with

respect to B is defined as

VT G
(x,B)= min

s2B
VPG

((x, s)) ð6Þ

In addition, the minimum potential of x is defined as

V �T G
(x)= VT G

(x,bPG
(x)).

The minimum potential of a state x of T G is the mini-

mum potential of all states in PG that correspond to x. The

actual potential is defined to capture the fact that not all

Büchi states may be available in order to achieve the mini-

mum potential.

Ding et al. (2014) presented an algorithm to compute

the potential function VPG
(�) over the states of the product

automaton. The complexity of the algorithm is

O(FPG
j j3 + FPG

j j2 + SPG
j j2 × FPG

j j) (Ding et al., 2014).

We propose an improved algorithm (see Algorithm 3),

which reduces the complexity by a polynomial factor.

Theorem 18. Algorithm 3 correctly computes the potential

function VPG
(�) for a given product automaton PG and its

complexity is O SPG
j j log SPG

j j+ DPG
j jð Þ.

Remark 19. In the proposed framework, the computation

of the SCC in Algorithm 3 (lines 1–2) may be skipped,

because the off-line planning Algorithm 1 already main-

tains SCCs of PG. Thus, Algorithm 3 is better suited for

use in conjunction with the off-line algorithms.

Proof. The improvement achieved by Algorithm 3 is based

on two observations: (1) if the maximal self-reachable final

states set F�PG
is known, then the potential function VPG

(�)
can be computed by running Dijkstra’s algorithm once

instead of FPG
j j times as in Ding et al. (2014); (2) self-

reachability is a property about the existence of cycles in

PG and can therefore be inferred from the SCC directed

acyclic graph (DAG) of PG.

Vasile et al. 1013

Algorithm 3 computes the potential function VPG
(�) by

first computing F�PG
(lines 1–5) using the SCC DAG (line

2) and Algorithm 4. However, Algorithm 4 performs a

depth-first search (DFS) of dag starting from a given SCC

sccr. Thus, it returns only the states of F�PG
that belong to

sccr and its descendants. In order to avoid calling

Algorithm 4 for all SCC, we add a virtual node v to PG

(line 1), which is connected to all states of PG, and then

compute the SCC DAG. Because v only has outgoing tran-

sitions, it cannot belong to any cycle. Thus, the SCC sccv

containing v is a singleton and is connected to all other

SCCs in dag. It follows that running Algorithm 4 on dag

with starting SCC sccv (line 4) correctly computes F�PG
.

Afterwards, v and all its incident transitions are removed

from PG (line 5). If there are self-reachable final states

(line 6), then the algorithm proceeds to compute the poten-

tials using Dijkstra’s algorithm starting from F�PG
and tra-

versing transitions in the opposite direction (lines 8–10),

i.e., using the incoming transitions instead of the outgoing

transitions. Again, in order to avoid calling Dijkstra’s algo-

rithm for every state in F�PG
, we add a virtual node v to PG.

All states in F�PG
are connected to v with weight 0. Because

v has only ingoing transitions and vPG
((p, p0)).0 for all

(p, p0) 2 DPG
, it follows that v does not belong to any

cycles and Dijkstra’s algorithm correctly computes the

potential function for every p 2 SPG
:

d(p, v)=
minp02F�PG

d(p, p0)+ vPG
((p0, v))f g if p 62 F�PG

vPG
((p0, v)) if p 2 F�PG

(

=
minp02F�PG

d(p, p0) if p 62 F�PG

0 if p 2 F�PG

(

= VPG
(p)

The analysis presented above relies on the fact that

Algorithm 4 correctly computes F�PG
. In the following, we

prove by structural induction with respect to dag that

Algorithm 4 correctly computes F�(sccr), where sccr is an

SCC of dag and F�(sccr) is the maximal subset of F�PG

whose states belong to sccr and its descendants.

First, note that by definition a final state pf belongs to

F�PG
if and only if: (1) pf belongs to a cycle or equivalently

to a SCC of PG with more than one state; (2) pf has a self-

loop; or (3) pf reaches another state in F�PG
. As dag is acyc-

lic it follows that condition (3) can be reduced to checking

whether F � (sccn) is non-empty for some successor sccn of

sccr. This implies that F�(sccr) is unique for every sccr and

it can be computed recursively using DFS. The recursive

algorithm starts by marking the current SCC sccr as visited

(line 2) and proceeds to compute the union of F�() for all

successors of sccr (lines 3–7). If a successor sccn was not

visited previously, then the procedure is called recursively

starting from sccn (lines 4–5), otherwise the stored set cor-

responding to sccn is used (line 7). The next step is to add

the self-reachable final states of sccr to srfs (lines 8–9). The

srfs is stored in S(sccr) for possible later use (line 10). We

need to show that S(sccr)= F�(sccr), for all sccr in dag.

Algorithm 3: Compute Potential Function VPG
(�)

Input: PG– product automaton
Output: Boolean value indicating whether there are self-
reachable final states
1 PG PG [(fvg, f(v, p, 0) : p 2 SPG

g) // add virtual state v
and connect it to all states

2 scc, dag StronglyConnectedComponentsDAG(PG) //
compute SCC DAG for PG

3 sccv fvg
4 F�PG

 ComputeSRFS(dag,FPG
, sccv) // compute self-

reachable final states
5 PG PGnfvg // remove virtual state v and all its incident

transitions
6 if F�PG

= ; then // if there are no self-reachable final states

7 return False
8 PG PG [(fvg, f(p, v, 0) : p 2 F�PG

g) // add virtual state v

and connect all self-reachable final states to it with weight 0
9 VPG

 ReverseDijkstra(PG, sink = v) // compute potentials
for each state with v as sink

10 PG PGnfvg // remove virtual state v and all its incident
transitions

11 return True

Algorithm 4: Compute Self-Reachable Final States –
computeSRFS()

Input: dag– the SCC directed acyclic graph of PG

Input: FPG
– the set of final states of PG

Input: sccr– the current root SCC used by the DFS algorithm
Output: srfs– the set of self-reachable final states
1 srfs ;
2 visited(sccr) True
3 foreach sccn 2 dag:out(sccr) do
4 if :visited(sccn) then
5 srfs srfs [computeSRFS(dag,FPG

, sccn)
6 else
7 srfs srfs [S(sccn)
8 if sccrj j.1 _ srs 6¼ ; _ (sccr = fpg ^ (p, p) 2 DPG

) then
9 srfs srfs [(FPG

\ sccr)
10 S(sccr) srfs
11 return srfs

Algorithm 5: Tracking Büchi States of Local Samples

Input: B– Büchi automaton corresponding to FG

Input: w = s1 . . . sn– a finite word over 2PG

Input: B– a set of Büchi states from which the tracking starts
Output: Bf – set of Büchi states available after the last symbol of
w
1 Bf B

2 for k 1 . . . (n� 1) do
3 B0 ;
4 foreach s 2 Bf do

5 B0 B0 [fs0 2 SBj(s, s0) 2 DBg
6 Bf B0

7 return Bf

1014 The International Journal of Robotics Research 39(8)

The base case is trivial, because it involves the SCCs

without any outgoing transitions in dag. It follows that srfs

at line 8 is empty. In addition, all final states in sccr satisfy-

ing conditions (1) or (2) are added to srfs. Thus,

S(sccr)= F�(sccr).
For the induction step, we assume that Algorithm 4 cor-

rectly computes F�(sccn) for all successors of sccr (line 5).

Note that if a successor sccn was already visited at some

previous step, Algorithm 4 was called with sccn as starting

SCC. Therefore, S(sccn) (line 7) is assumed to be com-

puted correctly by the induction hypothesis. As in the base

case, if either condition (1) or (2) hold, then Algorithm 4

adds all final states in sccr to srs and it follows that

S(sccr)= F�(sccr). The remaining case is when sccr is a

singleton fpg and p has no self-loop. In this case,

p 2 F�(sccr) if and only if p reaches some other state in

F�(sccr). As dag is acyclic, p can only reach states in the

descendants SCC of sccr. On the other hand, by the induc-

tion hypothesis we have that srfs = F�(sccr)nfpg at line 8.

It follows that p is added to S(sccr) if srfs is non-empty at

line 8. Thus, we have S(sccr)= F�(sccr) in this case as

well when Algorithm 4 returns.

The complexity of Algorithm 3 is O SPG
j j logð

SPG
j j+ DPG

j jÞ. It is easy to see that the operations on lines

1, 5, 8, and 10 take O SPG
j jð Þ, while computing the SCC

DAG (line 2) and Dijkstra’s algorithm (line 9) have

O DPG
j jð Þ and O SPG

j j log SPG
j j+ DPG

j jð Þ complexity,

respectively. In addition, computing F�PG
using Algorithm 4

takes at most O SPG
j j+ DPG

j jð Þ. The SCC DAG graph dag

has at most the same number of states and transitions as

PG. Algorithm 4 is also a DFS and each SCC is processed

once and each transition of dag is traversed once.

Therefore, the overall complexity of processing the SCCs

in Algorithm 4 (lines 8–10) is linear in the number of states

of PG. Adding the complexity of all steps, we obtained the

stated complexity bound. h

5.2.2. Satisfying local paths with respect to FG. Local

paths in our RRT-based algorithm connect states of the

global transition system. Let x, x0 2 T G and x= x1 . . . xn

be a local path connecting x1 = x and xn = x0 and

o= o1 . . . on be the output trajectory corresponding to x

with respect to the global proprieties

(ok 2 2PG , 8k = 1 . . . n). We need to ensure that there is a

satisfying run in T G starting at x0 after traversing x. Thus,

we need to consider two problems: (1) how to keep track

of available Büchi states as local samples are generated and

(2) how to connect a local path’s endpoint (tree leaf) to the

global transition system T G.

The first problem is solved by Algorithm 5, which deter-

mines the set of Büchi states given a word w over 2PG.

Algorithm 5 solves this problem by repeatedly computing

the set of outgoing neighboring states of B for all states in

the previous iteration. To check whether a local path can be

connected to the state xn = x0 2 X , we just need to verify

that it has finite potential, i.e., VT G
(x0,B)\‘, where B is

the set of available Büchi states after traversing x, in this

case w = o.

The second problem has a simple solution in this set-

ting. We choose the state in T G which has (finite) mini-

mum potential after traversing a branch of the RRT tree. In

addition, the line segment between the leaf state from the

tree and the state in T G must be collision free (see Section

5.2.3).

5.2.3. On-line planning algorithm. The overall planning

algorithm, outlined in Algorithm 6, is composed of the off-

line preprocessing steps of computing the global transition

system T G, the product automaton PG = T G ×B and the

potential function for PG and the on-line loop. At each step

of the loop, the robot scans for local requests and obstacles

and checks whether it needs to compute a new local path.

Re-planning is performed in four cases: (1) if the current

path is empty; (2) a higher-priority request was detected;

(3) the chosen request disappeared; and (4) the local path

collides with a local obstacle. Büchi states are tracked start-

ing from the initial configuration of the robot, correspond-

ing to the initial state of T G. Map B is used to store the

tracked Büchi states. Figure 4 shows how a the local plan-

ning algorithm interacts with the T G and locally sensed

requests and obstacles.

The local path planning algorithm is shown in

Algorithm 7 and is based on RRT. The procedure incre-

mentally constructs the local transition system T L. The ini-

tial (root) state of T L is the current configuration of the

robot xc. The map serv indicates whether a state or any of

its ancestors serviced the on-line request with the highest

priority. If there are no requests, then serv is true for all

states of T L.

The construction of the RRT proceeds by generating a

new random sample (line 4) inside the sensing area of the

robot, steer the system towards it (lines 5–6) and checking

whether it is a valid state (lines 8–9). Samples are generated

such that their images in D belong to the sensing area of

the robot. The nearest function (line 5) is a standard RRT

Algorithm 6: Planning Algorithm

Input: FG– the global LTL�X specification
Input: prio– the priority function for on-line requests
Input: x0 initial configuration of the robot
1 Convert FG into Büchi automaton B
2 Compute T G and PG = T G ×B starting at x0 using

Algorithm 1
3 Compute potential function VPG

(�)
4 path emptyList()
5 xc x0

6 B(xc) bPG
(xc)

7 while True do
8 I getLocalRequests()
9 if checkPath(I , path) _ :path:hasNext() then

10 path planLocally(xc,PG,B, prior, I)
11 xn path:next()
12 enforce(xc ! xn)
13 xc xn

Vasile et al. 1015

primitive that returns the nearest state in T L based on the

distance function associated with C. We assume that we

have access to a steer function (see Section 5.1.1), which

drives the system from xn to a configuration x 2 C, where x

is the closest configuration to the new sample xs and it is

within hL distance away from xn (Karaman and Frazzoli,

2011; LaValle and Kuffner, 2001). The label primitive

function (line 7) is used to annotate x with the global prop-

erties it satisfies. The new state x is valid if its correspond-

ing set of Büchi states is non-empty and the line segment

from its parent xn to itself is a simple collision-free line seg-

ment. Algorithm 5 is used to compute the set of available

Büchi states for x. The primitive function isSimpleSegment

is used to ensure that the set of global properties along the

potential new transition (xn, x) changes at most once (see

Section 5.1.1). The collisionFree primitive is used to check

whether the image in the workspace of the line segment

(xn, x) 2 C collides with a local obstacle in D. If these tests

are passed, the procedure adds the state x and the transition

(xn, x) to T L (lines 11–12). In addition, the serv map is

updated by checking if either the parent state xn (or some

ancestor) or the state itself x has serviced the selected on-

line request.

We also require that the state xG of T G has a lower

(actual) potential than the last visited state xG0 of T G. This

condition is not enforced, if the potential of xG0 is zero, but

we still require xG 6¼ xG0 .

5.2.4. Correctness of local paths with respect to FG

Theorem 20. Let x= x1, . . . be an infinite path in C gener-

ated by Algorithm 6 and o= o1, . . . be the corresponding

Fig. 4. The same environment as in Figure 2, but also showing the global transition system T G (in black) and the local transition system T L

(in blue and red). The robot’s current position xc is marked by the magenta disk and coincides with the root of T L. The sensing area is again in

cyan and a fire request and a local obstacle (unsafe) are detected. Note that in this figure only the portion of the unsafe area that is inside the

sensing area is detected. In addition, the survivor request is not detected at all. The local control strategy, which corresponds to a path from xc

to a leaf and then to a state in T G, was found and is shown in red. The last transition of the local path is the link between T L and T G. This

local path satisfies the global and local mission specification described in Example 5.

Note: Colour version of the figure is available online.

Algorithm 7: Local Path Planning

Input: xc– current configuration of the robot
Input: PG– the product automaton T G ×B
Input: B– Büchi automaton corresponding to global
specifications FG

Input: prior– on-line requests priority function
Input: I– sensed requests and local obstacles
Output: path– computed local control strategy
1 Construct T L = (XL, xc,DL,vL,PL [fpOg, hL) with xc as

initial state
2 serv(xc) :I :hasRequest()
3 while 9= xc !�T L

xT ! xG w/ VT G
(xG,B(xG))\‘ _ :serv(xT)

do
4 xs generateSample(xc, I :area)
5 xn nearest(T L, xs)
6 x steer(xn, xs,hL)
7 x label(x, I)
8 B(x) trackBuchiStates(B, hL(xn),B(xn))
9 if B(x) 6¼ ; ^ isSimpleSegmnent(xn, x)
^ collisionFree(xn, x) then

10 serv(x) serv(xn) _ I :serviced(x, prior)
11 XL XL [fxg
12 DL DL [f(xn, x)g
13 return xc !�T L

xT ! xG

1016 The International Journal of Robotics Research 39(8)

(infinite) output word generated by traversing x. If every

call of Algorithm 7 finishes in finite time, then o satisfies

the global specification FG, o
 FG.

Proof. The condition that local path planning algorithm

(Algorithm 7) always finishes in finite time implies that it

was able to successfully find a local strategy every time

the robot detected on-line requests and local obstacles.

Therefore, this assumption implies that the environment is

not adversary to the robot, i.e., it does not actively try to

stop the robot from performing its mission.

By construction, every time Algorithm 7 finishes suc-

cessfully it returns a local path which ends in a state x of

T G with finite (actual) potential. This implies that there is a

state p = (x, s) of PG with finite potential, where s 2 B(x),
and its potential is less than the potential of the previous

state of T G occurring in x. As shown Ding et al. (2014),

this guarantees that there is a state x0 in x with zero poten-

tial and x0 is a finite number of steps after x in x.

By the hypothesis, x contains infinitely many states of

T G and an infinite number of them has zero potential. This

concludes the proof, because the states with zero potential

correspond to final Büchi states. h

Remark 21. The complexity of the local path planning

algorithm (Algorithm 7) is the same as for the standard

RRT. The functions generateSample, steer, and nearest are

standard primitives (Karaman and Frazzoli, 2011; LaValle

and Kuffner, 2001). The functions label, isSimpleSegment,

and collisionFree are primitives and check whether an on-

line request was serviced and can be reduced to collision

detection in the lower-dimensional workspace. Tracking

Büchi states takes constant time (O(1)), because the global

specification FG is fixed.

Remark 22. The RRT-based Algorithm 7 is probabilisti-

cally complete at each procedure call, where the goal is to

visit the servicing disk of the highest-priority request and

the constraints are to avoid global regions that lead to vio-

lation of the global specification, avoiding local obstacles,

sampling only within the sensing area, and leafs along ser-

vicing paths to connect to the global transition system.

Thus, each problem instance reduces to the reach avoid

problem with terminal cost. In this setting, RRT is prob-

abilistically complete (Karaman and Frazzoli, 2011;

LaValle and Kuffner, 2001). The meaning of completeness

is not obvious in the setting of time-varying goals and con-

straints, and partial-information problems. Development of

a theoretical framework about completeness for dynamic,

partial information scenarios is beyond the scope of this

article, and is left for future work.

6. Case studies

In this section, we illustrate the usefulness and the perfor-

mance of the proposed framework in simulated and experi-

mental trials. The first part focuses on simulated trials

where robots are given persistent tasks expressed as LTL

formulae while servicing locally sensed requests. We show

that the algorithms are able to handle planning in config-

uration spaces with up to 19 dimensions. In the second

part, we present experiments on two robotic platforms:

Cozmo and Baxter robots. The Cozmo is deployed in a

labeled planner environment, and tasked to perform persis-

tent surveillance missions while servicing requests detected

using its on-board camera (see Section 6.2.1 for details of

the experimental setup). In Baxter’s case, persistent tasks,

such as attending cooking pots, need to be performed using

one six-degree-of-freedom (6-DoF) arm. Moreover, it needs

to service requests associated with customers’ plates (see

Section 6.2.2 for the description of the setup).

The algorithms presented in this article are implemented

in Python 2.7 and use the LOMAP (Ulusoy et al., 2013c)

and networkx (Hagberg et al., 2008) libraries. The spot tool

(Duret-Lutz et al., 2016) was used to convert the LTL spec-

ifications into Büchi automata.

The examples in Section 6.1 were ran on an Ubuntu

16.04 laptop with Intel Core i7 at 2.90 GHz and 32 GB of

memory. The experiments in Section 6.2 were performed

using an Ubuntu 14.04 desktop system with Intel Xeon

2.20 GHz processors and 64 GB of memory.

6.1. Simulations

In this section, we present an illustrative case study in a

planar environment, and then focus on the scalability of the

off-line and on-line algorithms with respect to the dimen-

sion of the robots’ configuration spaces. Lastly, we com-

pare the performance of the off-line algorithm against

naı̈ve approaches that do not use incremental and sparsity

mechanisms, respectively.

6.1.1. Planar case. Consider the planar configuration

space depicted in Figure 5 of a fully actuated robot, where

the workspace coincides with the configuration space, and

the submersion H is trivial. The initial configuration is

x0 = (2, 2). The specification is to ‘‘visit regions r1, r2, r3

and r4 infinitely many times while avoiding regions o1, o2,

o3 and o4.’’ The corresponding LTL formula for the given

mission specification is

f1 =�(}r1 ^ }r2 ^ }r3 ^ }r4 ^ :(o1 _ o2 _ o3 _ o4))

ð7Þ

There are three local obstacles labeled LO and three

dynamic requests: two fire requests and a survivor request.

The three dynamic requests have a cyclic motion at a lower

speed than that of the robot. The maximum distance tra-

veled by the robot in one discrete time step is h = 0:1 (see

the steer primitive in Algorithm 7, line 6). The priority

function prior is defined such that survivor request have

higher priority than fire request.

A solution with respect to the global specification of the

problem is shown in Figure 5. A few iterations of

Algorithm 1 are shown in Figure 6. The global satisfying

Vasile et al. 1017

path is given as a prefix–suffix pair. The prefix is executed

once, and starts at the initial configuration x0 and ends at

configuration xaccept = (0:42, 0:32) (lower left corner) asso-

ciated with an accepting state paccept = (xaccept, saccept) in

the product automaton P. Recall that paccept is an accepting

state of P if and only if saccept is an accepting state of the

Buchi automaton Bf1
. The suffix is the projection onto the

global transition system T G of a cycle in P starting and

Fig. 5. One solution corresponding to the case in Section 6.1.1: the specification is to visit all the colored regions labeled r1 (brown),

r2 (green), r3 (red), and r4 (magenta) infinitely often, while avoiding the dark gray obstacles labeled o1, o2, o3, and o4. The gray dots

and arrows represent the 31 states and 116 transitions of the transition system T G, respectively. The starting configuration of the robot

(the initial state of T G) is denoted by the blue dot. The black arrows represent the satisfying run (finite prefix, suffix pair) found by

Algorithm 1. In this case, the prefix and suffix are composed of 15 and 18 states from T G, respectively.

Note: Colour version of the figure is available online.

Figu. 6. Transition systems obtained at earlier iterations corresponding to the solution shown in Figure 5 (to be read from left to right

and top to bottom). The blue dots and black lines represent the states and transitions of T G, respectively.

Note: Colour version of the figure is available online.

1018 The International Journal of Robotics Research 39(8)

ending at paccept. The robot must visit xaccept infinitely

many times, and is the starting and ending configuration of

a surveillance cycle.

We ran the off-line planner Algorithm 1 100 times and

obtained an average execution time of 696 ms (minimum

77, maximum 5575, standard deviation (SD) 799), out of

which the average of the incremental search procedure

Algorithm 2 was 89 ms (minimum 6, maximum 713, SD

110). The resulting global transition system had a mean

size of 37.39 states (minimum 12, maximum 92, SD 16.78)

and 239.64 transitions (minimum 22, maximum 1102, SD

198.62), while the corresponding product automaton had a

mean size of 142.67 states (minimum 41, maximum 356,

SD 65.84) and 909.45 transitions (minimum 78, maximum

4215, SD 757.56). The Büchi automaton corresponding to

f1 in (7) had 5 states and 19 transitions.

In each surveillance cycle, three dynamic requests are

created: two fire and one survivor shown in Figure 7. We

ran the on-line path planner Algorithm 6 to complete 100

surveillance cycles. The trajectory generated by the on-line

algorithm at several of its iterations is shown in Figure 7.

A local transition system T L generated to service a locally

sensed fire request is shown in Figure 8.

During the simulation, the local path planner Algorithm

7 was executed 10,579 times. The overall execution time

dedicated to local planning (lines 9–10 of Algorithm 6) for

a single surveillance cycle was on average 9.56 ms (mini-

mum 0.0159, maximum 2,162.05, SD 84.046). The mean

size of the generated local transition system is 54.56 (maxi-

mum 711, SD 87.436). The path planning algorithm com-

puted local paths that serviced 224 on-line requests. Thus,

we can conclude that the robot was able to satisfy the local

mission specification in almost all cases while also ensur-

ing the satisfaction of the global specification f1 in (7).

6.1.2. High-dimensional simulations. In this section, we

study the performance of the proposed algorithms with

respect to the dimension of the configuration space on syn-

thetic cases. A case study involving an arm of a Baxter

robot is presented in Section 6.2.2, where the configuration

space has dimension six. The simulations within this sec-

tion were performed on the desktop system described

previously.

Consider a fully actuated point robot with the workspace

shown in Figure 9, and the unit hypercube as its

Fig. 7. Consider the environment from Figure 5, and three local a priori unknown obstacles labeled LO (light gray). There are also three

dynamic requests, two fire and a survivor. (a) Replanning to service the fire request. (b) Replanning needed due to fire request’s movement.

(c) Servicing the second fire request. (d) After completing the surveillance prefix. (e) After completing the first surveillance cycle. (f) After

completing the second surveillance cycle. The circles around the on-line requests delimit their corresponding service area. The sensing area

of the robot is shown as a light blue circle of radius 0.9 around the current position of the robot (blue dot), see Figure 5. The gray lines and

dots represent the global transition system T G, while the satisfying off-line policy is shown as orange arrows. The trajectory of the robot is

shown as a sequence of black arrows. Figure (a) shows the trajectory of the robot after a few steps, and the on-line algorithm had to replan

to service the upper-right fire request. Owing to the request’s movement, the trajectory is modified to ensure servicing, see (b). Note that the

plan visits region r3, but does not need to visit the global state contained in r3. The local plan is connected to the global state with

minimum potential given current progress along the specification, i.e., visit of the colored regions. The last fire request is serviced as shown

in (c). The trajectory after completing the prefix, the first cycle, and second cycle are shown in (d), (e), and (f), respectively.

Note: Colour version of the figure is available online.

Vasile et al. 1019

configuration space C= ½0, 1�n. The submersion

H2(x)= (x1, x2) projects x 2 C onto the planar workspace

spanned by its first two components. The dimension n of C
is varied from 3 to 19.

Within the configuration space we have the following

regions: r1 = ½0, 0:2�× ½0, 0:2�× ½0, 1�n�2
, r2 = ½0:25, 0:4�

× ½0:4, 0:55�× ½0, 1�n�2
, r3 = ½0:7, 1�× ½0:4, 0:6�×

½0, 1�n�2
, r4 = ½0, 0:5�× ½0:9, 1�× ½0, 1�n�2

, o1 = ½0:2, 0:3�
× ½0:3, 0:35�× ½0, 1�n�2

, o2 = ½0:15, 0:2�× ½0:4, 0:6�×
½0, 1�n�2

, and o3 = ½0:5, 0:55�× ½0:3, 0:8�× ½0, 1�n�2
. These

configuration space regions are obtained from the regions

of interest and obstacles in the workspace (Figure 9) as pre-

images of H2. General methods to compute configuration

space regions from workspace ones exist for wide classes

of robots (Latombe, 2012; LaValle, 2006; Lozano-Perez,

1983).

In all simulations, the specification is to ‘‘visit regions

r1, r2, r3, r4 infinitely many times, while always avoiding

regions o1, o2, o3.’’ The LTL formula corresponding to this

specification is

f2 = (}r1 ^ }r2 ^ }r3 ^ }r4 ^ :(o1 _ o2 _ o3)) ð8Þ

The corresponding Büchi automaton has 5 states and 19

transitions. The initial configuration is x0 = (0:1, . . . , 0:1).
Similar to the planar case, we executed the off-line plan-

ner Algorithm 1 100 times for each configuration space

with dimension n 2 f3, . . . , 19g. The results are shown in

Figure 10. Both the number of iterations Figure 10(a) and

execution time Figure 10(b) grow exponentially with the

dimension of the configuration space. However, the sizes

of the computed transition systems Figures 10(d) and (e),

and corresponding product automata Figures 10(f) and (g)

seem to grow much slower.

To test the on-line planner Algorithm 7 we ran it to

complete 100 surveillance cycles for n 2 f3, . . . , 19g. The

robot is equipped with a sensor that detects local obstacles

and requests in the configuration space. The shape of the

sensing volume is a ball of radius 0:25
1
n around the current

robot’s configuration. We consider three local obstacles

marked with LO: ½0:45, 0:5�× ½0:75, 0:8�× ½0, 1�n�2
,

½0:9, 1�× ½0:5, 0:55�× ½0, 1�n�2
, and ½0:75, 0:8�× ½0:2,

0:25�× ½0, 1�n�2
. The projection of the three local obstacles

in the planar workspace is shown in gray and marked with

LO in Figure 9. Three requests are also present: two of type

Fig. 8. A local transition system T L is generated as an RRT tree within the sensing area of the robot at configuration

xc = (2:94, 2:35). The gray lines and dots represent the global transition system T G. The yellow arrow represents the connection to the

global transition system from the leaf of the tree that satisfies the detected request.

1020 The International Journal of Robotics Research 39(8)

1, and one of type 2, and move at constant speed along tri-

angular paths. The three requests’ paths are defined by 3-

tuples of configurations (½0:25, 0:1, 0:5, . . . , 0:5�,
½0:65, 0:1, 0, . . . , 0�, ½0:5, 0:25, 0, . . . , 0�),
(½0:1, 0:6, 0:5, . . . , 0:5�, ½0:25, 0:5, 0, . . . , 0�,
½0:25, 0:85, 0, . . . , 0�), and (½0:5, 0:9, 0:5, . . . , 0:5�,
½0:8, 0:9, 0, . . . , 0�, ½0:8, 0:6, 0, . . . , 0�), respectively. Their

servicing radii are set to 0:22
1
n, 0:20

1
n, and 0:21

1
n, respec-

tively. The local specification is to prioritize type 1 requests

over type 2 ones.

The results with respect to the number of planner calls,

execution time, size of the computed local transition sys-

tems, and number of serviced requests are shown in Figures

11(a), (b), (c), and (d), respectively. In the experiments,

owing to the random global transition system and the local

ones, the number of serviced requests fluctuates between

271 and 303 across dimensions, Figure 11(d), as well as the

number of times the local planner is called, Figure 11(a).

However, in all cases the on-line planning algorithm took

less than 1 s, Figure 11(b), to generate local transitions sys-

tem with less than 200 states, Figure 11(c).

6.1.3. Comparison with naı̈ve approaches. In this section,

we show how the performance of the off-line algorithm is

impacted the incremental and sparsity mechanisms are not

used. We consider the planar scenario presented in Section

6.1.1 for the comparison. All measures are reported as rela-

tive differences, i.e., (b� a)=a, where a and b represent

the values obtained with the proposed and naı̈ve (modified)

procedures, respectively.

Sparsity We consider Algorithm 1 without sparsity.

This is achieved by using the near function instead of the

far function with parameter h2 at line 7. We ran the modi-

fied off-line planner again 100 times and obtained an aver-

age execution time of 2122 ms (minimum 101, maximum

23,530, SD 3,701), out of which the average of the incre-

mental search procedure Algorithm 2 was 588 ms (mini-

mum 6, maximum 8,259, SD 1,332). It represents a

relative increase of 204.89% (minimum 31.17%, maximum

322.06%, SD 363.20%) in the total planning time, and of

560.67% (minimum 0%, maximum 1,058.35%, SD

1,218.81%) for the incremental update procedure. The

resulting global transition system had a mean size of 59.9

states (minimum 15, maximum 252, SD 41.34) and 864.41

transitions (minimum 50, maximum 9,647, SD 1,366.22),

while the corresponding product automaton had a mean

size of 228.8 states (minimum 57, maximum 980, SD

159.8) and 3,277.2 transitions (minimum 189, maximum

37,064, SD 5,213.53). The relative increase of the number

of states is 60.2% (minimum 25%, maximum 173.91%,

SD 146.36%), and for transitions is 260.71% (minimum

127.27%, maximum 775.4%, SD 587.85%). The product

automaton size changed similarly, the relative increase is

60.37% (minimum 39.02%, maximum 175.28%, SD

142.71%) for states, and 260.35% (minimum 142.30%,

maximum 779.34%, SD 588.2%) for transitions.

Incremental We consider Algorithm 1 without the

incremental maintenance of the product automaton and

associated SCCs procedure given in Algorithm 2. Instead,

the product automaton update steps at lines 10 and 19 of

Algorithm 1 are removed, transitions are always added (i.e.,

added is always true at lines 11 and 20), and the check for

a satisfying solution at line 4 is done by constructing a

product automaton from scratch. We ran the modified off-

line planner again 100 times and obtained an average exe-

cution time of 2,618 ms (minimum 121, maximum 63,953,

SD 6,853). It represents a relative increase of 276.14%

(minimum 57.14%, maximum 1,047.14%, SD 757.7%) in

the total planning time. The resulting global transition sys-

tem had a mean size of 46.1 states (minimum 17, maximum

94, SD 16.25) and 355.24 transitions (minimum 56, maxi-

mum 1257, SD 233.94), while the corresponding product

automaton had a mean size of 146.82 states (minimum 50,

maximum 310, SD 56.42) and 909.45 transitions (mini-

mum 78, maximum 4215, SD 757.56). The relative

increase of the number of states is 23.3% (minimum

41.67%, maximum 2.17%, SD �3.16%), and for transi-

tions is 48.24% (minimum 154.55%, maximum 14.07%,

SD 17.78%). The product automaton size changed simi-

larly, the relative increase is 2.91% (minimum 21.95%,

maximum �12.92%, SD �14.31%) for states, and �1.16%

(minimum 58.97%, maximum �17.01%, SD �16%) for

transitions.

Discussion In the case where we remove sparsity, all

measures, runtime, and models sizes increase significantly.

The larger transition system sizes are due to rejecting fewer

sampled states, which has a cascading effect on nearest-

Fig. 9. The planar workspace used in the cases from Section

6.1.2. The environment contains four regions labeled r1 (brown),

r2 (green), r3 (red), and r4 (magenta) that need to be visited

infinitely many times, while avoiding the dark gray obstacles

labeled o1, o2, o3. In addition, there are three a priori unknown

local obstacles labeled LO (light gray). The initial position of the

robot is y0 =H2(x0)= (0:1, 0:1) and shown as a blue dot.

Note: Colour version of the figure is available online.

Vasile et al. 1021

neighbor searches, transition violation checks, product

automata, and SCCs updates, and satisfying solutions

checks. Even though these operations are incremental, they

are more expensive than sampling, especially for more

expressive specifications. This also is advantageous for the

on-line algorithm. Note that this contrasts approaches of

sparsification as a post-processing step as in Dobson and

Bekris (2013), where exploration of the free space is more

sought, and rejection checks are local. Thus, there is less

penalty to creating large transitions systems. Our satisfac-

tion checks are global, and there is a substantial benefit

from maintaining sparseness at construction time. The

conclusion is that it is better to keep the transition system

size small. The non-incremental case also leads to a signifi-

cant increase in execution time. The main reason for this is

the naı̈ve construction of product automata for each satis-

faction check. Evidence for this is the small difference in

model sizes that can not account for the increase in execu-

tion time. We eliminated the transition violation checks and

product and SCCs updates that decrease the time spent on

each sample. The removal of these operations also leads to

adding states and transitions that potentially lead to viola-

tion of the specification. It explains the slight increase in

transition system sizes. The product automata, on the other

Fig. 10. Boxplots showing the results of across 100 simulated trials for each configuration space of dimension n 2 f3, . . . , 19g. (a)

The number of iterations needed to compute transitions systems containing satisfying paths. The plot highlights the trend of the sample

complexity of Algorithm 1 that imposes also the sparsity constraint using the Far primitive. The execution time is shown in (b), out of

which the duration dedicated to updating the product automaton is shown in (c). The execution times suffer both from the increased

number of iterations needed to compute the global transition systems, but also from increased complexity of the primitive functions

and collision checks as the dimension of the configuration space increases. However, owing to the sparsity constraint, the sizes of the

transition systems and corresponding product automata grow much slower as shown in (d) and (e), and (f) and (g), respectively.

1022 The International Journal of Robotics Research 39(8)

hand, do not increase, in size because of the reachability

construction from Definition 3, which does not expand vio-

lating transitions. The conclusion is that there is a signifi-

cant benefit from using incremental operations in

conjunction with sampling-based approaches.

6.2. Experiments

In this section, we present hardware experiments with two

robots, Cozmo and Baxter, in two reactive planning

applications.

6.2.1. Reactive planning with Cozmo. Consider the

bounded planar environment in Figure 12(a) of size

3:546m× 2:955m containing four colored regions, brown

r1, green r2, red r3, and blue r4, and black obstacles o1,

o2, and o3. The boundary of the environment is marked by

the black rim. A Cozmo robot (Figure 12(b)) is deployed to

perform a persistent surveillance mission to ‘‘visit all

colored regions infinitely often while always avoiding all

black obstacles’’ captured by the LTL formula:

�(}r1 ^ }r2 ^ }r3 ^ }r4 ^ :(o1 _ o2 _ o3)) ð9Þ

The robot’s position is tracked using the OptiTrack indoor

localization system, and its initial position is

x0 = (0:8865, 1:4775), where the origin of the reference

system is the bottom-left corner.

Three tagged cubes shown in Figure 12(b) are present in

the environment corresponding to a priori unknown

dynamic requests, two fire and one survivor, that the

Cozmo robot needs to service. The priority function prior

is defined such that survivor request have higher priority

than fire request. LEDs on the cubes mark whether the

requests are active (LEDs on), or have been serviced (LEDs

off). The cubes are detected using the Cozmo’s on board

RGB camera, while their position is given by OptiTrack.

Note that during the mission, we changed the positions of

the cubes, and we reset all cubes to the active state at the

beginning of each surveillance cycle.

Algorithm 1 was used to generate a global transition

system with 22 states and 72 transitions containing a satis-

fying policy with a prefix and suffix of lengths 18 and 21,

respectively, see Figure 12(c). The Buchi automaton corre-

sponding to (9) had 5 states and 19 transitions, while the

induced product automaton had 85 states and 276 transi-

tions. A few iterations of the global off-line algorithm are

Fig. 11. The figure shows the results of simulated trials with the on-line planner Algorithm 7 over 100 surveillance cycles in

configuration spaces of dimension n 2 f3, . . . , 19g. The number of calls to the procedure is shown in (a), while the boxplots in (b)

show the execution time. The sizes of the computed local transition systems, and the number of serviced requests during the runs are

shown in (c) and (d), respectively.

Vasile et al. 1023

shown in Figure 13. The procedure took 231 iterations and

496 ms to compute the global TS. The computation of the

potential function using Algorithm 3 took 2.71 ms.

The on-line Algorithm 6 was used to execute the prefix

and two surveillance cycles with the Cozmo robot. The

algorithm was executed 251 times, and serviced 5 on-line

requests. The RRT trees had an average size of 6 (minimum

2, maximum 8, SD 2.44) and took on average 3 ms (mini-

mum 0.983, maximum 43.353, SD 3.78) to compute. The

obtained trajectory is shown in Figure 12(d), where we used

a simple path following algorithm to drive the Cozmo along

the computed local policies. The experiment is shown in

Extension 1 (Appendix 1).

6.2.2. Experiments with Baxter’s arm. Consider a Baxter

robot in an environment containing a table and three areas

above it representing pans that the robot needs to persis-

tently attend, see Figure 14(a). We perform planning for the

6-DoF right arm of Baxter with configuration space

C= ½�3:, 3:�× ½0:, 2:6�× ½�1:69, 1:69�×
½�2:1, 1:�× ½�3:, 3:�× ½�1:5, 2:��. The workspace

D � H(C) is the reachable part of the 3D space around the

robot without collisions obtained from the forward kine-

matics map H. The three cylindrical regions of size

p(0:15m)2 × 0:27m= 0:0191m3 associated with the pans

are marked with region1 (red), region2 (green), and

region3 (blue), respectively. The rectangular volume of size

0:76m× 1:22m× 0:67m= 0:6212m3 above the table is

labeled with table. The global mission specification is to

‘‘Attend all pans infinitely may times while staying above

the table.’’, which is translated to the LTL formula

�(}region1 ^ }region2 ^ }region3 ^ table) ð10Þ

The position of the pans, the table, and Baxter’s right arm

end-effector are obtained from the OptiTrack motion cap-

ture system. The initial configuration is x0 = ½0, 0, 0, 0, 0, 0�
corresponding to the arm pose shown in Figure 14.

Fig. 12. The experimental area is shown in (a) and contains four colored regions of interest, and three black obstacles (shown in gray

for visibility in (c) and (d)). The Cozmo robot, and three tagged and powered cubes are placed in the environment (b). A global

transition system is shown in (c) as gray dots and lines. It contains a satisfying path shown as black arrows. The trajectory of the

Cozmo robot obtained by executing the on-line Algorithm 6 is shown in (d) as black arrows, where the off-line policy is shown in

orange.

1024 The International Journal of Robotics Research 39(8)

A local request type is defined with label

reactive region, and service radius 0:3m. Servicing is per-

formed in the workspace, and the end-effector needs to be

within the service radius to satisfy the request. A local

request is visible to the robot if it is a 0:6m× 0:6m× 0:4m
rectangular region on centered on top of the table.

Fig. 13. Transition systems obtained at earlier iterations corresponding to the solution shown in Figure 12(c) (to be read from left to

right and top to bottom). The blue dots and black lines represent the states and transitions of T G, respectively.

Note: Colour version of the figure is available online.

Fig. 14. The workspace of the robot is shown in (a), where three cylindrical regions corresponding to pans are present atop a table.

Baxter’s right arm is in its initial configuration. The submersion of a satisfying off-line policy into the workspace is shown in (b) as

black balls connected by red ribbons. The policy drives Baxter’s end-effector to the three regions while always staying above the table.

Note: Colour version of the figure is available online.

Vasile et al. 1025

The positions in the 3D workspace of the table, global

regions, local requests, and end-effector are given by the

OptiTrack in-door localization system, see Figure 14(a).

The reference frame is fixed at Baxter’s waist with the x

axis pointing away from its front, and the z-axis pointing

vertically upward. Forward kinematics, simulations, and

execution are done using MoveIt (Sucan and Chitta, 2018).

The global transition system was generated using

Algorithm 1 and had 32 states and 66 transitions. The com-

puted satisfying policy had a prefix and suffix of lengths

20 and 21, respectively. The workspace path associated

with the policy is shown in Figure 14(b). The Buchi auto-

maton corresponding to (10) had 4 states and 13 transi-

tions, while the induced product automaton had 94 states

and 196 transitions.

The on-line Algorithm 6 was used to execute the prefix

and one surveillance cycle with the Baxter robot. The algo-

rithm was executed 96 times, and serviced one on-line

requests. The RRT tree computed to service the request had

a size of 21, and took on 40s and 50 iterations to compute.

The end-effector’s trajectory and experiment are shown in

Extension 1 (Appendix 1).

7. Conclusions and future work

We presented a sampling-based framework for motion

planning with long-term temporal logic goals while also

satisfying short-term reactive requirements. The proposed

approach is decomposed into (a) an off-line planner that

generates a global transition system containing satisfying

paths with respect to the long-term mission goal expressed

as LTL formulae, and (b) an on-line planner that deviated

from the global structure to service locally sensed requests,

while always maintaining satisfaction with respect to the

global mission. Both planners are based on sampling-based

algorithms, RRG for the off-line planner to capture infinite

satisfying paths, and RRT for the local deviations. They

also leverage recent algorithms and results in incremental

computing, LTL monitoring, and potential functions for

Buchi product automata. We show that the algorithms are

probabilistically complete, the generated global transition

systems are sparse graphs, and the off-line algorithm has

the best possible complexity (under mild assumptions).

Finally, we highlighted the features of the algorithms and

their performance in simulated and experimental trials

involving ground robots and manipulators.

The present work has already been extended in Vasile

et al. (2016) to stochastic robots, in Penedo Álvarez et al.

(2016) and Vasile et al. (2017a) to timed specifications

using language-guided and robustness approaches, respec-

tively, and in Vasile et al. (2017b) and Karlsson et al.

(2018) to the self-driving vehicles domain. Plans for future

work include further improvements of the algorithms using

language-guided and robustness techniques to bias sam-

pling and increase convergence. Moreover, specializing the

algorithms for classes of robots (e.g., manipulators versus

robots with complex dynamics such as cars and quadro-

tors), and associated tasks would allow the use of heuristics

to speed up the planners. Environmental uncertainty and

timing constraints are also difficult challenges that need

further consideration.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: This

work was partially supported by the ONR (Grant Nos. MURI

N00014-09-1051 and MURI N00014-10-10952) and by the NSF

(Grant Nos. NSF CNS-1035588 and NSF NRI-1426907).

ORCID iD

Cristian Ioan Vasile https://orcid.org/0000-0002-1132-1462

Supplemental material

Supplemental material for this article is available online.

Note

1. In this article, we will assume that we have access to such a

function. For more details about planning under differential

constraints, see LaValle (2006).

References

Agha-mohammadi Aa, Chakravorty S and Amato NM (2014)

FIRM: Sampling-based feedback motion-planning under

motion uncertainty and imperfect measurements. The Interna-

tional Journal of Robotics Research 33(2): 268–304.

Aguiar AP and Hespanha JP (2007) Trajectory-tracking and path-

following of underactuated autonomous vehicles with para-

metric modeling uncertainty. IEEE Transactions on Automatic

Control 52(8): 1362–1379.

Baier C and Katoen JP (2008) Principles of Model Checking.

Cambridge, MA: MIT Press.

Bauer A, Leucker M and Schallhart C (2007) Runtime verification

for LTL and TLTL. Technical Report TUM-I0724, Institut für

Informatik, Technische Universität München.

Baykal C, Bowen C and Alterovitz R (2019) Asymptotically opti-

mal kinematic design of robots using motion planning. Auton-

omous Robots 43(2): 345–357.

Belta C, Isler V and Pappas GJ (2005) Discrete abstractions for

robot planning and control in polygonal environments. IEEE

Transactions on Robotics 21(5): 864–874.

Belta C, Yordanov B and Gol EA (2017) Formal Methods for Dis-

crete-Time Dynamical Systems. Berlin: Springer.

Bhatia A, Kavraki LE and Vardi MY (2010) Sampling-based

motion planning with temporal goals. In: IEEE International

Conference on Robotics and Automation (ICRA), pp. 2689–

2696.

Burns B and Brock O (2007) Sampling-based motion planning

with sensing uncertainty. In: IEEE International Conference

on Robotics and Automation (ICRA), pp. 3313–3318.

Chen Y, Tumova J and Belta C (2012) LTL robot motion control

based on automata learning of environmental dynamics. In:

IEEE International Conference on Robotics and Automation

(ICRA), Saint Paul, MN, pp. 5177–5182.

1026 The International Journal of Robotics Research 39(8)

https://orcid.org/0000-0002-1132-1462

Choset H, Lynch KM, Hutchinson S, et al. (2005) Principles of

Robot Motion: Theory, Algorithms, and Implementations. Bos-

ton, MA: MIT Press.

Conway JH and Sloane NJ (1999) Sphere Packings, Lattices and

Groups. 3rd edn. New York: Springer-Verlag.

Cranen S, Groote JF and Reniers M (2010) A linear translation

from LTL to the first-order modal m-calculus. Technical Report

10-09, Computer Science Reports, Eindhoven University of

Technology.

Ding XC, Kloetzer M, Chen Y and Belta C (2011) Automatic

deployment of robotic teams. IEEE Robotics and Automation

Magazine 18: 75–86.

Ding XC, Lazar M and Belta C (2014) LTL receding horizon con-

trol for finite deterministic systems. Automatica 50(2):

399–408.

Dobson A and Bekris KE (2013) Improving sparse roadmap span-

ners. In: IEEE International Conference on Robotics and Auto-

mation (ICRA), pp. 4106–4111.

Dobson A, Solovey K, Shome R, Halperin D and Bekris KE

(2017) Scalable asymptotically-optimal multi-robot motion

planning. In: International Symposium on Multi-Robot and

Multi-Agent Systems (MRS), pp. 120–127.

Duret-Lutz A, Lewkowicz A, Fauchille A, Michaud T, Renault E

and Xu L (2016) Spot 2.0 – a framework for LTL and v-auto-

mata manipulation. In: Artho C, Legay A and Peled D (eds.)

International Symposium on Automated Technology for Verifi-

cation and Analysis. Cham: Springer, pp. 122–129.

Frazzoli E, Dahleh MA and Feron E (2000) Trajectory tracking

control design for autonomous helicopters using a backstep-

ping algorithm. In: American Control Conference (ACC), Vol.

6, pp. 4102–4107.

Gastin P and Oddoux D (2001) Fast LTL to Büchi Automata

Translation. In: Berry G, Comon H and Finkel A (eds.) 13th

International Conference on Computer Aided Verification

(CAV) (Lecture Notes in Computer Science, Vol. 2102). Paris,

France: Springer, pp. 53–65.

Haeupler B, Kavitha T, Mathew R, Sen S and Tarjan RE (2012)

Incremental cycle detection, topological ordering, and strong

component maintenance. ACM Transactions on Algorithms

8(1): 3:1–3:33.

Hagberg AA, Schult DA and Swart PJ (2008) Exploring network

structure, dynamics, and function using NetworkX. In: Pro-

ceedings of the 7th Python in Science Conference (SciPy2008),

Pasadena, CA, pp. 11–15.

Hauser K (2011) Randomized belief-space replanning in partially-

observable continuous spaces. In: Hsu D, Isler V, Latombe JC

and Lin MC (eds.) Algorithmic Foundations of Robotics IX.

Berlin: Springer, pp. 193–209.

Hauser K and Zhou Y (2016) Asymptotically optimal planning by

feasible kinodynamic planning in a state–cost space. IEEE

Transactions on Robotics 32(6): 1431–1443.

He K, Lahijanian M, Kavraki LE and Vardi MY (2017) Reactive

synthesis for finite tasks under resource constraints. In: IEEE/

RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), pp. 5326–5332.

Kantaros Y and Zavlanos MM (2019) Sampling-based optimal

control synthesis for multi-robot systems under global tem-

poral tasks. IEEE Transactions on Automatic Control 64(5):

1916–1931.

Karaman S and Frazzoli E (2009) Sampling-based motion plan-

ning with deterministic m-calculus specifications. In: IEEE

Conference on Decision and Control (CDC), Shanghai, China,

pp. 2222–2229.

Karaman S and Frazzoli E (2011) Sampling-based algorithms for

optimal motion planning. The International Journal of

Robotics Research 30(7): 846–894.

Karaman S and Frazzoli E (2012) Sampling-based optimal motion

planning with deterministic m-calculus specifications. In:

American Control Conference (ACC), pp. 735–742.

Karlsson J, Vasile CI, Tumova J, Karaman S and Rus D (2018)

Multi-vehicle motion planning for social optimal mobility-

on-demand. In: IEEE International Conference on Robotics

and Automation (ICRA), Brisbane, Australia, pp. 7298–

7305.

Kavraki LE, Svestka P, Latombe JC and Overmars MH (1996)

Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. IEEE Transactions on Robotics and

Automation 12(4): 566–580.

Kingston Z, Moll M and Kavraki LE (2018) Sampling-based

methods for motion planning with constraints. Annual Review

of Control, Robotics, and Autonomous Systems 1(1): 159–185.

Kleinbort M, Solovey K, Littlefield Z, Bekris KE and Halperin D

(2019) Probabilistic completeness of RRT for geometric and

kinodynamic planning with forward propagation. IEEE

Robotics and Automation Letters 4(2): x–xvi.

Kloetzer M and Belta C (2008) A fully automated framework for

control of linear systems from temporal logic specifications.

IEEE Transactions on Automatic Control 53(1): 287–297.

Kress-Gazit H, Fainekos GE and Pappas GJ (2007) Where’s

Waldo? Sensor-based temporal logic motion planning. In:

IEEE International Conference on Robotics and Automation

(ICRA), pp. 3116–3121.

Kress-Gazit H, Lahijanian M and Raman V (2018) Synthesis for

robots: Guarantees and feedback for robot behavior. Annual

Review of Control, Robotics, and Autonomous Systems 1(1):

211–236.

Kuwata Y, Teo J, Fiore G, Karaman S, Frazzoli E and How JP

(2009) Real-time motion planning with applications to autono-

mous urban driving. IEEE Transactions on Control Systems

Technology 17(5): 1105–1118.

Lahijanian M, Maly MR, Fried D, Kavraki LE, Kress-Gazit H and

Vardi MY (2016) Iterative temporal planning in uncertain

environments with partial satisfaction guarantees. IEEE Trans-

actions on Robotics 32(3): 538–599.

Latombe JC (2012) Robot Motion Planning, Vol. 124. Berlin:

Springer.

LaValle SM (2006) Planning Algorithms. Cambridge: Cambridge

University Press.

LaValle SM and Kuffner JJJ (2001) Randomized kinodynamic

planning. The International Journal of Robotics Research

20(5): 378–400.

Lindemann SR and LaValle SM (2009) Simple and efficient algo-

rithms for computing smooth, collision-free feedback laws

over given cell decompositions. The International Journal of

Robotics Research 28(5): 600–621.

Livingston SC and Murray RM (2013) Just-in-time synthesis for

motion planning with temporal logic. In: International Confer-

ence on Robotics and Automation (ICRA), pp. 5048–5053.

Livingston SC, Prabhakar P, Jose AB and Murray RM (2013)

Patching task-level robot controllers based on a local m-calcu-

lus formula. In: International Conference on Robotics and

Automation (ICRA), pp. 4588–4595.

Vasile et al. 1027

Lozano-Perez T (1983) Spatial planning: A configuration space

approach. IEEE Transactions on Computers 32(2): 108–120.

Moore J, Cory R and Tedrake R (2014) Robust post-stall perching

with a simple fixed-wing glider using LQR-trees. Bioinspira-

tion and Biomimetics 9(2): 025013.

Muhayyuddin Moll M, Kavraki LE and Rosell J (2018) Rando-

mized physics-based motion planning for grasping in cluttered

and uncertain environments. IEEE Robotics and Automation

Letters 3(2): 712–719.

Murray RM, Sastry SS and Zexiang L (1994) A Mathematical

Introduction to Robotic Manipulation. 1st ed. Boca Raton, FL:

CRC Press.

Nilsson P, Hussien O, Balkan A, et al. (2016) Correct-by-construc-

tion adaptive cruise control: Two approaches. IEEE Transac-

tions on Control Systems Technology 24(4): 1294–1307.

Penedo Álvarez F, Vasile CI and Belta C (2016) Language-guided

sampling-based planning using temporal relaxation. In: Work-

shop on the Algorithmic Foundations of Robotics (WAFR), San

Francisco, CA, pp. 1–16. Available at: http://wafr2016.berke

ley.edu/papers/WAFR_2016_paper_22.pdf

Pierson A, Ataei A, Paschalidis IC and Schwager M (2016) Coop-

erative multi-quadrotor pursuit of an evader in an environment

with no-fly zones. In: IEEE International Conference on

Robotics and Automation (ICRA), pp. 320–326.

Raman V, Lignos C, Finucane C, Lee KCT, Marcus M and Kress-

Gazit H (2013) Sorry Dave, I’m Afraid I Can’t Do That:

Explaining unachievable robot tasks using natural language.

In: Robotics: Science and Systems (RSS), Berlin, Germany, pp.

1–8.

Reyes Castro LI, Chaudhari P, Tumova J, Karaman S, Frazzoli E

and Rus D (2013) Incremental sampling-based algorithm for

minimum-violation motion planning. In: IEEE Conference on

Decision and Control (CDC), pp. 3217–3224.

Schillinger P, Bürger M and Dimarogonas DV (2018) Simulta-

neous task allocation and planning for temporal logic goals in

heterogeneous multi-robot systems. The International Journal

of Robotics Research 37(7): 818–838.

Serlin Z, Leahy K, Tron R and Belta C (2018a) Distributed sen-

sing subject to temporal logic constraints. In: IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS),

pp. 4862–4868.

Serlin Z, Sookraj B, Belta C and Tron R (2018b) Consistent

multi-robot object matching via QuickMatch. In: International

Symposium on Experimental Robotics 2018 (ISER). Buenos

Aires, Argentina: IFRR, pp. 1–10.

Sucan IA and Chitta S (2018) MoveIt!. http://moveit.ros.org

Talata I (1998) Exponential lower bound for the translative kissing

number of d-dimensional convex bodies. Discrete and Compu-

tational Geometry 19: 447–455.

Tumova J, Reyes-Castro LI, Karaman S, Frazzoli E and Rus D

(2013) Minimum-violation LTL planning with conflicting

specifications. In: American Control Conference (ACC), pp.

200–205.

Ulusoy A, Marrazzo M and Belta C (2013a) Receding horizon

control in dynamic environments from temporal logic specifi-

cations. In: Robotics: Science and Systems (RSS), Berlin, Ger-

many, pp. 1–8.

Ulusoy A, Marrazzo M, Oikonomopoulos K, Hunter R and Belta

C (2013b) Temporal logic control for an autonomous quadro-

tor in a nondeterministic environment. In: IEEE International

Conference on Robotics and Automation (ICRA), pp. 331–336.

Ulusoy A, Smith SL, Ding XC, Belta C and Rus D (2013c)

Optimality and robustness in multi-robot path planning with

temporal logic constraints. The International Journal of

Robotics Research 32(8): 889–911.

van den Berg J, Abbeel P and Goldberg K (2011) LQG-MP: Opti-

mized path planning for robots with motion uncertainty and

imperfect state information. The International Journal of

Robotics Research 30(7): 895–913.

Vasile CI and Belta C (2013) Sampling-based temporal logic path

planning. In: IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Tokyo, Japan, pp. 4817–4822.

Vasile CI and Belta C (2014) Reactive sampling-based temporal

logic path planning. In: IEEE International Conference on

Robotics and Automation (ICRA), Hong Kong, China, pp.

4310–4315.

Vasile CI, Leahy K, Cristofalo E, Jones A, Schwager M and Belta

C (2016) Control in belief space with temporal logic specifica-

tions. In: IEEE Conference on Decision and Control (CDC),

Las Vegas, NV, pp. 7419–7424.

Vasile CI, Raman V and Karaman S (2017a) Sampling-based

synthesis of maximally-satisfying controllers for temporal

logic specifications. In: IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Vancouver, BC, pp.

3840–3847.

Vasile CI, Tumova J, Karaman S, Belta C and Rus D (2017b)

Minimum-violation scLTL motion planning for mobility-on-

demand. In: IEEE International Conference on Robotics and

Automation (ICRA), Singapore, pp. 1481–1488.

Webb DJ and van den Berg J (2013) Kinodynamic RRT*: Asymp-

totically optimal motion planning for robots with linear

dynamics. In: IEEE International Conference on Robotics and

Automation (ICRA), pp. 5054–5061.

Wongpiromsarn T, Topcu U and Murray RM (2009) Receding

horizon temporal logic planning for dynamical systems. In:

IEEE Conference on Decision and Control (CDC), pp. 5997–

6004.

Wood DR (2004) Bounded degree acyclic decompositions of

digraphs. Journal of Combinatorial Theory, Series B 90(2):

309–313.

Appendix. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior to

2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at http://

www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extensions

Extension Media type Description

1 Video Experiments

Extension 1: The video shows the construction of the global and local

transition systems, and the deployment of a robot in a simulated planar

environment. The video proceeds to show experiments with a Cozmo

robot and a Baxter arm in environments with dynamic, locally sensed

requests.

1028 The International Journal of Robotics Research 39(8)

http://wafr2016.berkeley.edu/papers/WAFR_2016_paper_22.pdf
http://wafr2016.berkeley.edu/papers/WAFR_2016_paper_22.pdf
http://moveit.ros.org
http://www.ijrr.org
http://www.youtube.com/user/ijrrmultimedia
http://www.youtube.com/user/ijrrmultimedia

