
Planning for Heterogeneous Teams of
Robots with Temporal Logic, Capability,
and Resource Constraints

The International Journal of Robotics
Research
XX(X):1–20
©The Author(s) 2024
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Gustavo A. Cardona1 and Cristian-Ioan Vasile1

Abstract
This paper presents a comprehensive approach for planning for teams of heterogeneous robots with different
capabilities and the transportation of resources. We use Capability Temporal Logic (CaTL), a formal language that
helps express tasks involving robots with multiple capabilities with spatial, temporal, and logical constraints. We
extend CaTL to also capture resource constraints, where resources can be divisible and indivisible, for instance,
sand and bricks, respectively. Robots transport resources using various storage types, such as uniform (shared
storage among resources) and compartmental (individual storage per resource). Robots’ resource transportation
capacity is defined based on resource type and robot class. Robot and resource dynamics and the CaTL mission
are jointly encoded in a Mixed Integer Linear Programming (MILP), which maximizes disjoint robot and resource
robustness while minimizing spurious movement of both. We propose a multi-robustness approach for Multi-Class
Signal Temporal Logic (mcSTL), allowing for generalized quantitative semantics across multiple predicate classes.
Thus, we compute availability robustness scores for robots and resources separately. Finally, we conduct multiple
experiments demonstrating functionality and time performance by varying resources and storage types.

Keywords
Formal methods, multi-robot systems, planning, transportation, capabilities.

1 Introduction

Advancements in multi-robot platforms have enabled
new applications that use multiple robots with different
capabilities. Such applications include aerial surveillance,
disaster response, and planetary exploration, which could
involve aerial and ground robots working together Dixit
and Dhayagonde (2014); Tripicchio et al. (2015); Bresina
et al. (2005); Cardona and Calderon (2019); Cardona et al.
(2021). Having a team of heterogeneous robots can be very
useful when it comes to satisfying tasks. By using their
capabilities, they can explore different solutions and make
the mission more resilient and robust. However, finding the
best solution becomes difficult when the number of robots or
classes increases. This is because considering all the different
combinations and possibilities can be very complex and
time-consuming. In fact, many existing planning algorithms
become impractical or less effective when dealing with many
robots and complex mission specifications.

Temporal logic has become increasingly popular for
specifying tasks when synthesizing plans for large homo-
geneous and heterogeneous teams Guo and Dimarogonas
(2017, 2015); Kantaros et al. (2019); Diaz-Mercado et al.
(2015); Pant et al. (2018); Cardona et al. (2022, 2023c).
This tool is especially useful for expressing spatial and
temporal requirements for complex missions, such as the
type of robots needed in a particular area at a specific time.
While Linear Temporal Logic (LTL) Bhatia et al. (2010);
Ulusoy et al. (2013); Karaman and Frazzoli (2011) is a
commonly used temporal logic formalism in robotics, it
only reasons over untimed sequences (e.g., ”Visit region
A before going to region B”), which may not be suitable

Figure 1. Schematic of a construction motion coordination
problem. Connected circles correspond to construction areas
(light blue) or warehouse storage (light brown). There are four
resources, two indivisible (bricks and wooden beams) and two
divisible (construction sand and water). The circle color on the
robots indicates the agent class (set of capabilities each robot
has). Uniform storage type is shown in the robots; however, a
robot with compartmental storage capacities can be seen in the
top-left corner.

for time-sensitive missions. To accommodate explicit timing

1Department of Mechanical Engineering and Mechanics, Lehigh
University, Bethlehem, PA 18015, USA.

Corresponding author:
Gustavo A. Cardona, Department of Mechanical Engineering and
Mechanics, Lehigh University, Bethlehem, PA 18015, USA.
Email: gcardona@lehigh.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

http://orcid.org/0000-0002-4257-9415
http://orcid.org/0000-0002-1132-1462


2 The International Journal of Robotics Research XX(X)

constraints, various other temporal logics have been pro-
posed, such as Signal Temporal Logic (STL) Maler and
Nickovic (2004), weighted-STL (wSTL) Mehdipour et al.
(2020); Cardona et al. (2023a), Time Window Temporal
Logic (TWTL) Vasile et al. (2017), Bounded Linear Tem-
poral Logic (BLTL) Tkachev and Abate (2013), and Metric
Temporal Logic (MTL) Brzoska (1998).

Among the formalisms that capture explicit time, STL
specifications have additional advantages by considering
predicates that allow reasoning about signals with relation
operators instead of atomic propositions. For instance, it can
express whether a car’s speed limit should remain within
70 miles per hour by expressing the predicate ”speed ≤
70”. It also can be applied to discrete-valued signals,
such as indicating the number of robots per class required
for heterogeneous multi-robot frameworks. Additionally,
unlike LTL or MTL, which only provide feedback on task
satisfaction, STL offers a margin of satisfaction, also known
as robustness Fainekos and Pappas (2009); Donzé and Maler
(2010), which indicates the extent to which the mission is
satisfied or violated. For example, if a car maintains a speed
of 65 miles per hour when the speed limit is 70 miles per
hour, the mission is considered satisfied with a robustness
of 5. Nevertheless, even when considering a complex STL
specification or a multi-agent approach Sun et al. (2022);
Mehdipour et al. (2019); Cardona et al. (2022), robustness
will be a single value computed by a recursive definition
over the STL operators. The single robustness value lacks
interpretability when considering an STL specification
using different predicate classes, i.e., semantically different
variables, e.g., reasoning about agents and resources. Instead,
we propose a multi-robustness for Multi-Class Signal
Temporal Logic (mcSTL), which generalizes the quantitative
semantics for STL specifications with different predicate
classes to compute disjoint robustness scores.

This work builds upon Jones et al. (2019); Leahy
et al. (2021), which introduces Capability Temporal Logic
(CaTL), an STL fragment allowing a team of robots with
varying sets of capabilities, to satisfy different requests.
We extend CaTL to also account for resources required to
perform tasks. Tasks specify the type of robot capabilities
and resources, the robot and resource quantities, the specific
location in an environment, and the time robots need to
be there. In the case of resources, they disappear once the
satisfaction of the task starts. Satisfaction of a task is robot
agnostic, i.e., there is no explicit allocation of a specific agent
to the task; instead, any robot or team of robots with the
required capabilities can complete the task. The resources
are transported by robots with different storage types and
capacities, such as uniform (i.e., regardless of the resource,
all share the same space and robot’s storage capacity) and
compartmental (i.e., each resource has its own dedicated
space and storage capacity). Agent and resource assignments
and trajectories are created after computing a solution for
agents’ and resource flows. Additionally, multiple types of
resources are considered, such as indivisible (e.g., bricks) or
divisible (e.g., sand).

1.1 General Overview of the Approach
Here, we provide an overview of our approach to addressing
route planning challenges in heterogeneous robots and

resource transportation teams. Our method involves utilizing
Capability Temporal Logic (CaTL Jones et al. (2019);
Leahy et al. (2021)), a fragment of STL, to specify
mission objectives. We have extended the semantics of
CaTL* to capture multiple resource transportation modes and
capacities.

Our model incorporates the dynamics of agents and
resources and formulates an optimal route planning problem
under CaTL specification using a Mixed Integer Linear
Programming (MILP) approach. Fig. 2 provides a schematic
overview of the problem, where only the CaTL formula
and the scene description are needed as input. The CaTL
formula describes the desired tasks, including their duration,
the number of agent capabilities required, and the amount
of resources needed to complete the task. Logical and
temporal constraints can also be included. For the scene
description, the user specifies the environment as a transition
system, indicating the states, transitions, durations, and
initial distribution of agents and resources.

The CaTL formula is parsed, and its associated Abstract
Syntax Tree (AST) Hopcroft et al. (2001) is constructed
using an LL(*) parser Parr (2007). We then translate
the CaTL formula into an equivalent STL formula
in the AST representation (refer to PyTeLo Cardona
et al. (2023b) for more details). Using PyTeLo, we
recursively translate the STL specification AST into a MILP,
capturing the quantitative semantics of the specification. The
environment, robot, and resource dynamics encoding are
automatically generated as a MILP using the formulation
in Sec. 6. Then, we utilize a MILP solver such as
Gurobi Gurobi Optimization (2020) to solve the equivalent
MILP, capturing the specification and dynamics and
generating the solution as trajectories for agents and
resources in the environment. The solution to the MILP
provides trajectories for the flows of agents and resources
in the environment. However, these trajectories do not assign
specific robots to tasks or resources to be transported, as they
are agent-agnostic. Instead, they rely on the number of agents
per class and the amount of resources needed for satisfaction.
Therefore, the final step is allocating agents and resources to
flows (i.e., trips) according to the solution provided by the
MILP. The overall result consists of trajectories for all agents
and resources that they need to pick-up, transport, and drop-
off over the mission horizon.

The main contributions of this paper are

1. Extending CaTL Leahy et al. (2021) to include tasks
that require both agents and resources.

2. Defining and modeling resource transportation that
can accommodate various types of resources (divisi-
ble, indivisible, packets, etc.) and considers different
storage types (uniform, compartmental) and capacities
for agents.

3. Defining Multi-Class Temporal Logic (mcSTL),
an extension of STL that considers predicates
from multiple semantic classes. We also define a

∗We decided to retain the name CaTL name of the specification language
that now considers resources required for tasks and not just agent
capabilities as in Leahy et al. (2021)

Prepared using sagej.cls

https://github.com/erl-lehigh/PyTeLo


Cardona and Vasile 3

Figure 2. Schematic overview of CaTL with resource constraints.

multi-robustness score that enables quantification of
satisfaction for each predicate class.

4. Applying the multi-robustness mcSTL in the context
of CaTL to independently compute the robustness of
robots and resources.

5. Proposing an efficient MILP-based planning approach
that captures the CaTL specification, robots and
resources dynamics, and transportation constraints.
The MILP aims to maximize disjoint robots’ and
resources’ robustness while minimizing spurious
motion.

6. Evaluating the performance of the planning approach
on construction scenarios to gain insights into the
problem’s characteristics and practical application.

The rest of the paper is organized as follows. First, Sec. 2,
briefly reviews the related literature. Sec. 3, introduces some
of the notation, STL syntax, and qualitative and quantitative
semantics. Sec. 4, shows the formulation of the problem
and the definitions of the environment, robots, capabilities,
resources, and CaTL with resource constraints. Sec. 5,
introduces the multi-robustness of mcSTL, capturing the
different classes of predicates. Sec. 6, shows the mixed
integer linear programming planning encoding. Sec. 7, shows
some generalizations of the storage types and the use of
resources. Sec. 8, shows the analysis and results of solving
the MILP encoding for different case studies. Finally, Sec. 9,
has the conclusions and future directions of the work.

2 Literature Review
Temporal logics have witnessed success in the domain
of high-level planning for robotics, from single-agent sys-
tems Baier and Katoen (2008); Belta et al. (2017) and,
increasingly, in multi-agent systems Guo and Dimarog-
onas (2015, 2016); Diaz-Mercado et al. (2015); Pant
et al. (2018), including scenarios involving heterogeneous
teams Schillinger et al. (2018). One of the most predom-
inant temporal logic formalisms is Linear Temporal Logic
which traditionally embraced automata theory as the primary
paradigm Chen et al. (2011); Leahy et al. (2015); Baier and
Katoen (2008); Belta et al. (2017); Finucane et al. (2010);
Kamale et al. (2021); Badithela et al. (2023); Ulusoy et al.
(2011); Nikou et al. (2016). However, applying automata-
based methodologies in multi-robot scenarios introduces
substantial challenges related to scalability and computa-
tional complexity, primarily owing to the requisite compu-
tation of automata products. Other works have considered
a decomposition of tasks to allocate to single agents so
that, by the composition of all agents, the satisfaction of the

mission is guaranteed Tumova and Dimarogonas (2016); Yu
and Dimarogonas (2021). Also, there is promising work on
avoiding the need for automata products by incorporating
fixed Petri nets approaches Hustiu et al. (2023); Lacerda and
Lima (2019); Kloetzer and Mahulea (2014); Madridano et al.
(2021). Nonetheless, handling large numbers of agents is still
a challenge since the problem and its variants are NP-hard.

To alleviate these challenges, recent approaches have
shifted their focus towards Mixed-Integer Linear Programs
(MILP), benefitting from advancements in solution tech-
niques and leveraging optimized off-the-shelf tools like
Gurobi Gurobi Optimization (2020). This transition has
proven effective, enabling MILP to handle a significantly
larger number of variables and constraints with reasonable
computational resources. Existing works adopting MILP
strategies for multi-robot systems planning, particularly
when subject to Signal Temporal Logic (STL) specifications,
are evident in the literature Sun et al. (2022); Cardona and
Vasile (2022); Caballero and Silano (2023); Liu et al. (2017);
Buyukkocak and Aksaray (2022); Yu et al. (2023); Sewlia
et al. (2023); Cardona and Vasile (2023), one of their main
advantage is that they are complete, i.e., if there exists a solu-
tion it will be found. Compared to Linear Temporal Logic
(LTL), Signal Temporal Logic (STL) allows for the explicit
definition of time, which enhances the expressiveness of
the mission by enabling the inclusion of timing constraints.
However, existing STL methods focus on computing a solu-
tion by maximizing a single robustness score, even when
predicates may belong to semantically different classes. In
contrast, our research proposes a new approach by using
a multi-robustness strategy for multi-class Signal Temporal
Logic (mcSTL). This unique method allows us to formulate
a multi-predicate class within the CaTL language, where
the robustness of both resources and robots is maximized
simultaneously but independently.

In high-level planning for multi-robot systems, besides
the mission specification, the abstraction of the environment
is crucial for handling the complexity of the problem.
Allocating heterogeneous agents and resources to tasks with
temporal logic constraints is a difficult problem known to
be NP-hard. Previous works have explored the use of Petri
nets and graph-based models to tackle this problem Hustiu
et al. (2023); Lacerda and Lima (2019); Kloetzer and
Mahulea (2014); Madridano et al. (2021). Other works
have considered occupancy grids Sundram et al. (2018);
Birk and Carpin (2006), cell decomposition maps Berman
et al. (2009); Choset (2000), or Voronoi tessellation
approaches Notomista et al. (2019); Fu et al. (2009).
However, our approach incorporates dynamics efficiently by

Prepared using sagej.cls



4 The International Journal of Robotics Research XX(X)

imposing flow dynamic constraints over a transition system
and strategically abstracting agents and resources. We define
the joint state of the team as the count of agents with
each capability and resource in each region at a given time.
This abstraction model, combined with the use of the robot
and resource routing flows problem approach, enhances the
efficiency and scalability of our approach.

Some of the works closely related to our approach
are Sahin et al. (2017, 2019), which have incorporated
censusSTL Xu and Julius (2016) into (cLTL+) to enable
agent or capability counting in abstracted time specifications.
However, these works have not accounted for tasks involving
robots and resource constraints. Related works considering
capabilities and resource constraints in heterogeneous multi-
robot systems are Schillinger et al. (2018); Guo and
Zavlanos (2017). More specifically, in Guo and Zavlanos
(2017), authors consider agents capable of gathering data,
receiving, and uploading via buffers, defining in this way
a resource transportation. Still, both use LTL language to
express mission specifications, lacking the expressivity to
account for time explicitly. The concept of resources is
presented dually in the paper Schillinger et al. (2018).
Firstly, it involves incorporating a proposition in LTL format,
which is expressed as (ς > µ), where ς denotes a specific
resource, such as the battery power of a robot, while µ
sets the threshold. Secondly, regions in the environment
are labeled as either true or false, and their state is
updated based on the actions taken in an automaton that
captures resource constraints. In contrast, we expand on the
notion of resource planning by considering divisible and
indivisible types. Also, robots might have different storage
types (compartmental and uniform) and adjustable storage
capacity. Our proposed planning model does not include
unnecessary binary variables for routing the resources while
robots move in the environment.

3 Preliminaries and Notation
This section presents the notation and a glossary of symbols
used throughout the paper and provides preliminaries about
STL.

Let Z, R, and B denote the sets of integers, real numbers,
and {0,1}, respectively. The set of integers greater than or
equal to a is Z≥a. For a set S , 2S and ∣S ∣ represent its
power set and cardinality. For S ⊆ R and α ∈ R, we have
α + S = {α + x ∣ x ∈ S}. The integer interval (range) from a
to b is [a..b]. For a range I = [a..b], we use I = a and Ī = b.
Let x ∈ Rd be a d-dimensional vector. The i-th component of
x is given by xi, i ∈ [1..d]. The empty set is denoted by ∅.
For ease of reference, a glossary of the main notation in the
problem formulation Sec. 4.3 and the MILP encoding Sec. 6
is provided in Tab. 1.

3.1 Signal Temporal Logic
This section explains STL’s syntax and qualitative and
quantitative semantics. We also discuss its computation of
time-bound and the description of its soundness property.
These concepts are used later in the paper for STL extension
languages mcSTL, mcSTL∗, proposed in this paper, and its
fragment CaTL Jones et al. (2019); Leahy et al. (2021),
which is extended to accept resource predicates.

Let s ∶ Z≥0 →M be a discrete-time signal with values in
the compact space M ⊆ RN . Signal Temporal Logic (STL),
introduced in Maler and Nickovic (2004), is a specification
language expressing real-time properties over signals.

The syntax of STL Maler and Nickovic (2004) over linear
predicates is given by

φ ∶∶= ⊺ ∣ si ≥ µ ∣ φ1 ∧ φ2 ∣ φ1 ∨ φ2 ∣ ¬φ ∣ ♢Iφ ∣ ◻Iφ ∣ φ1UIφ2,
(1)

where φ, φ1, and φ2 are STL formulae, ⊺ is the logical
True value, si ≥ µ is a linear predicate with threshold value
µ ∈ R over the i-th component of signal s, ¬, ∨, and
∧ are the Boolean negation, disjunction, and conjunction
operators, and discrete-timed temporal operators eventually
♢I , always ◻I , and UI is the timed until operator with
discrete-time interval I ⊆ Z≥0. The logical False value is
� = ¬⊺. Predicates s ∼ µ, with ∼ ∈ {>,≥,≤,<}, follow via
negation and sign change.

The (qualitative) semantics of STL formulae over signals s
at time t is recursively defined in Maler and Nickovic (2004)
as

(s, t) ⊧ (si ≥ µ) ≡ si(t) ≥ µ,
(s, t) ⊧ ¬φ ≡ (s, t) ⊭ φ,

(s, t) ⊧ φ1 ∧ φ2 ≡ ((s, t) ⊧ φ1) ∧ ((s, t) ⊧ φ2),
(s, t) ⊧ φ1 ∨ φ2 ≡ ((s, t) ⊧ φ1) ∨ ((s, t) ⊧ φ2),

(s, t) ⊧ ♢Iφ ≡ ∃t′ ∈ t + I s.t. (s, t′) ⊧ φ,
(s, t) ⊧ ◻Iφ ≡ ∀t′ ∈ t + I s.t. (s, t′) ⊧ φ,

(s, t) ⊧ φ1UIφ2 ≡ ∃t′ ∈ t + I s.t. (s, t′) ⊧ φ2∧
∀t′′ ∈ [t..t′](s, t′′) ⊧ φ1,

(2)

where ⊧ and ⊭ denote satisfaction and violation, respectively.
A signal s satisfying φ, denoted as s ⊧ φ, is true if (s,0) ⊧ φ.

In addition to Boolean semantics, STL admits quantitative
semantics, called robustness, that indicates how much a
signal satisfies or violates a specification Fainekos and
Pappas (2009); Donzé and Maler (2010). The robustness
score ρ(s, φ, t) is recursively defined as

ρ(s,⊺, t) =ρ⊺,
ρ(s, si ≥ µ, t) =si(t) − µ,
ρ(s,¬φ, t) = − ρ(s, φ, t),

ρ(s, φ1 ∧ φ2, t) =min(ρ(s, φ1, t), ρ(s, φ2, t)),
ρ(s, φ1 ∨ φ2, t) =max(ρ(s, φ1, t), ρ(s, φ2, t)),

ρ(s,◻Iφ, t) = min
t′∈t+I

ρ(s, φ, t′),

ρ(s,♢Iφ, t) = max
t′∈t+I

ρ(s, φ, t′),

ρ(s, φ1UIφ2, t) = max
t′∈t+I

{min{ρ(s, φ2, t
′),

min
t′′∈[t..t′]

ρ(s, φ1, t
′′)}},

(3)

where ρ⊺ = sups,µ{si − µ} is the maximum robustness.

Theorem 1. Soundness Donzé and Maler (2010). Let s be
a signal and φ an STL formula. It holds ρ(s, φ, t) > 0⇒
(s, t) ⊧ φ for satisfaction and ρ(s, φ, t) < 0⇒ (s, t) ⊭ φ for
violation.

Prepared using sagej.cls



Cardona and Vasile 5

Problem Variables Sec. 4 MILP Variables Sec. 6
Notation Description Notation Description
AP set of atomic propositions K planning time horizon

q ∈ Q state in the environment zq,g,k
number of agents of class g ∈ G at time k = ∆t
at state q ∈ Q

e ∈ E edge in the environment ue,g,k
number of agents of class g ∈ G at time k = ∆t
at edge e ∈ E

W(e) duration of traversing e ∈ E yq,h,k
quantity of resource h ∈H at time k ∈ [0..K]
at state q ∈ Q

J index set of agents ve,h,k
quantity of resource h ∈H entering edge e ∈ E
at time k ∈ [0..K]

C set of capabilities Cq,h,k
cross-consumption of resource h ∈H used only
once at any state q ∈ Q or time k ∈ [0..K]

G set of agent classes zπ,q,c,k
amount of agents with capability c at time step k
at every state q using label π

H set of resources yπ,q,h,k
amount of resource h at time step k at every state q
using label π

Ωg, Ωh,g
agent transportation capacity
(uniform, compartmental) zς(π,c),k

number of agents with capability c required at time k
for satisfaction of a task

sj , sJ agent and team trajectories yς(π,h),k
amount of resource h required at time k for
satisfaction of a task

bh, bH resource and all resources trajectories Λ(q) set of all tasks satisfied at state q

nq,c(t) number of agents at state q ∈ Q with capability
c ∈ C at time t ∈ Z≥0 xφT ,k satisfaction or violation of task T at time k

mj(t, h) assignment of resource amount h ∈H at time
t ∈ Z≥0 to agent j ∈ J τu agents total travel time

T Task γu agents travel time regularization term
φ CaTL formula τv resources total travel time

ρa, ρh agent and resource robustness γv resources travel time regularization term
Table 1. Table of symbols for variables used in the problem formulation and MILP encoding sections.

The time horizon of an STL formula Dokhanchi et al.
(2014) is defined as

∥φ∥ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if φ = s ≥ µ,
∥φ1∥, if φ = ¬φ1,

max{∥φ1∥, ∥φ2∥}, if φ = {φ1 ∧ φ2, φ1 ∨ φ2},
Ī + ∥φ∥, if φ = {♢Iφ,◻Iφ},
Ī +max{∥φ1∥, ∥φ2∥}, if φ = φ1UIφ2.

(4)
An STL formula is said to be in positive normal form

(PNF) if it satisfies two conditions. First, all its predicates are
of the si ≥ µ form. Second, it does not contain the negation
operator.

4 Problem Formulation
In this section, we define the route planning problem for
heterogeneous teams of robots performing missions specified
as Capability Temporal Logic formulae (CaTL) Jones et al.
(2019); Leahy et al. (2021). We extend CaTL to account
for the capabilities and resources required to fulfill tasks.
Additionally, we extend the agent model with various
resource transportation modalities and capacities. Finally, we
conclude the section with the optimal route planning problem
under capability temporal logic task and resource constraints.

The following example motivates the problem class
we consider in this paper, where resources are required
at locations of interest in the environment to perform
tasks by agents with heterogeneous task and transportation
capabilities.

Example 1. Consider an environment with areas
q1, q3, q5, q6, q9 under construction and warehouses at

q2, q4, q7, q8. A fleet of ground-based robots with different
capabilities, such as bricklaying, digging, sample extraction,
video surveillance, and structure inspection, is deployed
to assist in the construction areas. Each robot has a
combination of task capabilities defining a robot class (e.g.,
a robot can have the capabilities of bricklaying and digging)
and transportation. Each robot class has a storage capacity
to transport resources such as sand, water, bricks, and
wooden beams from warehouses to construction areas. As
usual in a construction area, not all capabilities or resources
are needed simultaneously and change daily depending on
the progress of construction. An example of a list of tasks the
robots need to perform during a workday is given in List 1.

1. From deployment to the end of the day, one video
surveillance is required at every construction area.

2. Within 1 to 6 hours after deployment, digging is
required for 2 hours and 2 wooden beams in every
construction area.

3. Within 4 and 12 hours after deployment, structure
inspection is required in every construction area for 1
hour. Afterward, 10 kg of sand and 10 liters of water
are required for foundation-laying tasks.

4. Within 12 hours after deployment to the end of the day,
2 bricklaying and 200 bricks are required for 6 hours
at every construction area.

LIST 1: Example list of construction tasks requiring
capabilities and resources.

Based on this example, we introduce the environment,
capabilities, resources, and robot models.

Prepared using sagej.cls



6 The International Journal of Robotics Research XX(X)

4.1 Environment, Agent, and Resource
Models

Consider a team of heterogeneous agents deployed in a
bounded environment Env = (Q,E ,W), where Q is a finite
set of locations of interest (states), E ⊆ Q ×Q is the set
capturing the possible transitions between locations, and
W ∶ E → Z≥1 maps each transition to its travel duration. We
assume that time is discretized, and all weights W(E) are
integer multiples of a discretization time ∆t > 0. States are
labeled with atomic propositions from a setAP . The labeling
function is denoted by L ∶ Q→ 2AP . An agent stationary
at q ∈ Q is modeled as a unit-weight self-transition, i.e.,
(q, q) ∈ E for all q ∈ Q, andW((q, q)) = 1.

We consider heterogeneous agents with varying capabil-
ities for performing tasks and transporting resources. The
finite set of agents is denoted by J with tasks capabilities
from the finite set C. Continuing Example 1, the capabil-
ities of a robot may include bricklaying, digging, sample
extraction, video surveillance, and structure inspection using
ultrasound sensors. The capability set of agent j ∈ J is cj ⊆
C, and defines the agent’s class g = cj . The set of all agent
classes is G ⊆ 2C .

We also consider that each agent is capable of transporting
resources. Consider the finite set of resources H. Resources
can be divisible (e.g., sand, water, fuel) or indivisible
(e.g., bricks, wooden beams, solar panels). We consider
multiple resource storage modes for transportation, uniform
storage and compartmental storage. In the uniform storage
case, agents’ storage can hold all resource types and is
characterized by a maximum transportation capacity Ωg >
0 for each agent class g ∈ G. For example, the trunk of
a car can hold various resources such as bags, tools, and
construction materials. In the compartmental storage case,
each resource h ∈H has its own compartment with a given
maximum transportation capacity Ωh,g ≥ 0 in the agents’
storage, g ∈ G. In this case, we denote the set of agent classes
that can transport resource h ∈H by Gh = {g ∈ G ∣ Ωh,g > 0}.
For example, the reservoir of a car can only hold fuel; Robots
for science missions have limited unique storage slots for
samples collected from the environment.

Remark 1. The proposed modeling framework and solution
can accommodate a mixture of storage modes. For simplicity,
we only consider the extreme cases of uniform (single storage
for all resources), and compartmental (specialized storage
for each resource) storage in the problem formulation and
solution description. In Sec. 7.1, we show how to generalize
and adapt the algorithms for custom storage configurations.
Moreover, we consider storage defined by agent classes for
performance reasons. However, we can accommodate cases
of agents with the same capability sets but distinct storage,
as discussed in Sec. 7.1.

Each agent, j ∈ J , is characterized by its initial state q0,j ∈
Q, and capability set cj gives its class. The trajectory of an
agent j in environment Env is defined as sj ∶ Z≥0 → Q ∪ E
such that sj(t) is the state occupied or transition traversed
by agent j at time t ∈ Z≥0, and every agent starts at the initial
state sj(0) = q0,j . The synchronous trajectory of a set of
agents J is sJ ∶ Z≥0 → (Q ∪ E)∣J ∣. The number of agents

at state q ∈ Q with capability c ∈ C at time t ∈ Z≥0 is

nq,c(t) = ∣{j ∈ J ∣ q = sj(t), c = cj}∣.

Similarly, the trajectory (distribution) of resource h ∈H
over the environment is bh ∶ Z≥0 × (Q ∪ E)→ R≥0. Note that
for indivisible resources bh ∈ Z≥0. The initial distribution of
resources, bh(0,Q) for all h ∈H, is given, and we assume
that all resources are at states, i.e., bh(0, e) = 0 for all e ∈ E .
The trajectory of all resources is denoted by bH.

For simplicity, we enforce that agents pick up, drop off,
and transfer resources between themselves only at states q ∈
Q. A transportation plan for agents J with respect to their
trajectory sJ is a set of assignments mj ∶ Z≥0 ×H → R≥0

that define the quantity of resource h ∈H associated with
agent j ∈ J at time t ∈ Z≥0. We impose mj(t, h) = 0 for
all h ∈H whenever sj(t) ∈ Q which captures pick-up, drop-
off, and transfer of resources in a unified way, and may not
correspond to physical operations (e.g., a robot that passes
through a state q ∈ Q does not need to drop off and pick up
the resources it is carrying). A transportation plan is feasible
if the transportation capacity of agent j is satisfied at all
times,

mj(t, h) ≤ Ωh,g,∀h ∈H, ∀t ≥ 0 (compartmental),

∑
h∈H

mj(t, h) ≤ Ωg, ∀t ≥ 0 (uniform).

Now that we have introduced the environment, agents,
capabilities, and resources models, we are ready to introduce
CaTL with task and resource constraints.

4.2 Capability Temporal Logic with Resource
Constraints

We extend the Capability Temporal Logic (CaTL) †

Specification language from Jones et al. (2019) to account
for resource constraints when performing tasks. The core
units of CaTL are tasks that capture the required number of
agents with each capability required in a location of interest.
We extend the task definition to specify required resource
quantities as follows

Definition 1. A task is a tuple T = (d, π, cp, rs), where
d ∈ Z≥1 is a discrete duration of time (i.e., multiple time
steps ∆t), π ∈ AP is an atomic proposition, cp ∶ C → Z≥0

and rs ∶H → R≥0 are counting maps specifying how many
agents with each capability and how many resources of each
type should be in each region labeled π, respectively. Note
that for divisible resources rs(h) ∈ R≥0, while for indivisible
ones rs(h) ∈ Z≥0.

A capability c not required to perform task T is defined
by cp(c) = 0. Similarly, rs(h) = 0 indicates that h is not
required to perform T . We denote the set of capabilities and
resources necessary for a task T by cpT = {c ∈ Cap ∣ cp(c) >
0}, and rsT = {h ∈H ∣ rs(h) > 0}, respectively.

†We have decided not to introduce a new name for the extension of CaTL
with resources. Instead, throughout the paper, when we refer to CaTL, we
mean the version defined in this section.

Prepared using sagej.cls



Cardona and Vasile 7

Definition 2. The syntax of CaTL Jones et al. (2019) is
a fragment of STL described in (1). The CaTL syntax in
Backus-Naur form is

φ ∶∶= T ∣ φ1 ∧ φ2 ∣ φ1 ∨ φ2 ∣ φ1UIφ2 ∣ ♢Iφ ∣ ◻Iφ

where φ is a CaTL formula, T is a task containing
capability and resource constraints, ∧ and ∨ are the Boolean
conjunction and disjunction operators, UI , ♢I , and ◻I are
the time-bounded until, eventually, and always operators,
respectively.

Example 2. (Continuation of Example 1). Thus, the mission
described in List 1 can now be expressed as

φ = ◻[0,24]T1 ∧ ♢[1,6]T2 ∧ ♢[4,12]T3 ∧ ♢[12,24]T4,

with the set of tasks defined as follows

T1 =(1, πcons,{(Struct.Insp.,1)},∅),
T2 =(2, πcons,{(Digging,1)},{(woodbeams,2)}),
T3 =(1, πcons,{(Struct.Insp.,1)},{(sand,10), (water,10)}),
T4 =(6, πcons,{(bricklaying,2)},{(bricks,200)}),

where πcons ∈ AP , captures all regions under construction
L−1(πcons) = q1, q3, q5, q6, q9.

Remark 2. As in Jones et al. (2019), CaTL does not include
negation since the negation of tasks does not have a well-
defined meaning. This is feasible because any STL formula
can be put in its positive normal form Sadraddini and Belta
(2015), and CaTL is a fragment of STL.

Definition 3. The Boolean (qualitative) semantics of CaTL
are defined over trajectories sJ of agents and bH of
resources. At time t, satisfaction of a task T is defined by

(sJ , bH, t) ⊧ T ⇔ ∀τ ∈ [t .. t + d],∀q ∈ L−1(π),
∀c ∈ cpT ,∀h ∈ rsT ,
nq,c(τ) ≥ cp(c) ∧ bh(t, q) ≥ rs(h) .

The Boolean and temporal operators’ semantics are the
same as for STL, (2). A pair of team and resource
trajectories satisfy a CaTL formula φ, denoted (sJ , bH, t) ⊧
φ if (sJ , bH,0) ⊧ φ.

Tasks require resources only at the time of satisfaction,
unlike agents required throughout their duration. Resources
associated with a task T are consumed when T is satisfied
and disappear from the environment in the next time
step in the amount rs(h) required by T , for all h ∈ rsT .
However, we must ensure that concurrent tasks using the
same resource type at overlapping locations do not exceed
the total resources available at these locations. In such
a case, not all tasks requiring the same resource can be
satisfied simultaneously. We refer to this property as the
cross-consumption constraint.

Next, we review the agent availability robustness
from Jones et al. (2019), and propose a counterpart for
resources.

Definition 4. Agent Availability Robustness Jones et al.
(2019). The agent availability robustness of a task is defined

as

ρa(sJ , T, t) = min
c∈cpT

min
t′∈[t..t+d]

min
q∈L−1(π)

nq,c(t′) − cp(c). (5)

For Boolean and temporal operators, robustness is defined
recursively as for STL, (3).

The agent availability robustness of a task captures the
deviation from the number of agents needed to perform the
task over its duration, capabilities involved, and locations
spanned. Positive values indicate the maximum number of
arbitrary agents whose failure leads to failing the task. We
compute ρa based only on the agents’ trajectory sJ .

We propose resource availability defined similarly.

Definition 5. Resource Availability Robustness. The
resource availability robustness of a task is defined as

ρh(bH, T, t) = min
h∈rsT

min
q∈L−1(π)

bh(t, q) − rs(h). (6)

Again, for Boolean and temporal operators, robustness is
defined recursively as for STL, (3).

Resource robustness captures the surplus and shortage of
resources required to satisfy a task and is computed only
from the resource trajectory bH.

4.3 Problem Statement
Before we state the problem, let us explain how the agents’
trajectories with resource trajectories are linked. We say that
a resource trajectory bH is consistent with agents’ trajectory
sJ if a feasible transportation plan exists for all agents j ∈ J
with respect to sJ that induces bH. Specifically, resource
quantities at states and transition at each time step result from
agents carrying them via some transportation plan. We can
now formally introduce the problem as follows.

Problem 1. Given a set of agents J with initial states q0,j ,
capabilities cj ⊆ C deployed in environment Env with initial
resources distribution bH(0,Q), and CaTL specification φ,
find trajectories sj and bh for agents and resources such
that (sJ , bH) ⊧ φ, bH is consistent with sJ , bH satisfies the
cross-consumption constraint at all times, and the robustness
score

F = ρa(sJ , φ,0) + γ ⋅ ρh(bH, φ,0), (7)

is maximized, where γ ∈ R>0 is a positive constant value.

Pb. 1 captures the goal of using a fleet of heterogeneous
robots (agent classes defined by the set of capabilities)
to satisfy CaTL tasks considering capabilities, resources,
and logical and temporal constraints. Note that instead of
routing resources and enforcing correspondence between
agents and resources, we want to exploit the constraint
that the transportation plan (flows of resources) has to
follow agents’ trajectory (flows of agents). Thus, we avoid
introducing complex agent-resource assignment constraints.
The robustness score F corresponds to finding a plan that
maximizes the number of robots with specific capabilities
and the number of resources available at locations asked in a
specification.

Pb. 1 is solved by encoding the models as a Mixed Integer
Linear Program (MILP). This allows us to use off-the-shelf

Prepared using sagej.cls



8 The International Journal of Robotics Research XX(X)

solvers that are orders of magnitude faster than standard
automata-based approaches. We show the encodings in
Sec. 6.

Note that for STL specifications, a positive robustness
guarantees Boolean satisfaction (Soundness, Thm. 1).
However, in this paper, we work with multiple robustness
variables, such as agent and resource availability, which
means that a positive result to the weighted addition of ρa
and ρh in (7) does not guarantee the satisfaction of a CaTL
specification formula (an example and formal results are
presented in Sec. 8.3). Furthermore, in the syntax of STL
presented in Sec. 3, there is no distinction when computing
the robustness of the STL specification formula that uses
multiple predicate classes. To address this issue, in the next
section, we introduce a semantic extension of STL called
Multi-class STL (mcSTL). mcSTL can handle multiple
predicate classes and compute their respective robustness
scores.

5 Multi-robustness for STL Specifications
with Disjoint Predicate Classes

The standard robustness score (3) for STL specifications
considers that all predicates (ς = si ∼ µ) are the same, belong
to the same class Sadraddini and Belta (2015); Kurtz and Lin
(2022); Mehdipour et al. (2019); Raman et al. (2014). Thus,
even when signal components have different meanings, the
robustness score (3) treats them all the same and combines
them into a single number. However, application settings
may consider multiple robustness scores from the same
specification, e.g., in Pb. 1, we consider capability and
resource predicates stemming from semantically disjoint
variables. To capture this, we introduce the multi-robustness
semantics of an STL specification, which generalizes the
standard quantitative semantics to multiple predicate classes.
The definition follows for CaTL since it is a fragment of STL.
Throughout the paper, we assume that STL formulas are in
PNF form.

Definition 6. Multi-robustness for Multi-Class STL. A
Multi-Class STL (mcSTL) formula is a tuple ψ = (φ,Σ,L),
where φ is an STL formula, Σ is a set of predicate classes, L ∶
P(φ)→ Σ is a function that maps each predicate ς ∈P(φ)
to its predicate class σ ∈ Σ, and P(φ) is the set of predicates
of φ. The multi-robustness score ρσ with respect to class σ of
a predicate ς = si ≥ 0 is

ρσ(s, φ, t) ∶∶= { ς(si(t)), φ = ς, L(ς) = σ,
∅, φ = ς, L(ς) ≠ σ, (8)

where s is a signal. The robustness of temporal and logical
operators ‡ are computed in the same manner as in (3).
When ∅ is encountered in a computation, the operand is
ignored, i.e., a⊗∅ = a, ∅⊗∅ = ∅, and −∅ = ∅ where a ∈ R
and ⊗ ∈ {min,max}.

Note that ρσ(s, φ,0) = ∅ if and only if predicates from the
class σ do not appear in φ, i.e., L−1(σ) = ∅.

In the following, we show that the classes’ robustness
are novel scores ρσ , σ ∈ Σ, that capture different aspects of
satisfaction and violation than the overall robustness.

Figure 3. Ex. 3: Four different solution trajectories for φex1 , φex3 ,
φex3 , and φex4 .

Figure 4. Ex. 3: AST for φex1 , φex2 , φex3 , and φex4 .

Example 3. Consider the following STL specifications φex1 =
◻[1,2](ς1 ∧ ς2), φex2 = ♢[1,2](ς1 ∨ ς2), φex3 = ♢[0,1](ς1 ∧ ς2),
and φex4 = ◻[0,1](ς1 ∨ ς2). with ς1 = sx > 0, ς2 = sy > 0, ς1 ∈
σ1, ς2 ∈ σ2 and Σ = {σ1, σ2}. The three specifications’
abstract syntax trees (AST) are shown in Fig. 4. The
following formulas give the robustness scores for the three
specifications and a signal s:

ρ(s, φex1 ,0) =min{min{sx(1), sy(1)},min{sx(2), sy(2)}},
ρ(s, φex2 ,0) =max{max{sx(1), sy(1)},max{sx(2), sy(2)}},
ρ(s, φex3 ,0) =max{min{sx(0), sy(0)},min{sx(1), sy(1)}},
ρ(s, φex4 ,0) =min{max{sx(0), sy(0)},max{sx(1), sy(1)}}.

We obtain the robustness scores for σ1 and σ2 by replacing
sx(t) and sy(t) for t ∈ 1,2 with∅, respectively. For example,
ρσ1(s, φex1 ,0) = min{min{sx(1),∅},min{sx(2),∅}} =
min{sx(1), sx(2)}.

Consider the blue, green, and orange trajectories in Fig. 3.
The overall and class robustness scores computed using (3)
and (8), respectively, are given in Table 2.

Signal φ ρ ρσ1 ρσ2

sblue φex1 1 1 1
sgreen φex1 -0.5 0.5 -0.5
sorange φex1 -1 -1 -1
sblue φex2 1 1 1
sgreen φex2 0.5 0.5 -0.5
sorange φex2 -1 -1 -1
spurple φex3 -0.5 1 0.5
−spurple φex4 0.5 -1 -0.5

Table 2. STL robustness scores for the overall formula and for
classes σ1 and σ2.

Positive overall robustness does not imply that any
class robustness score needs to be positive. The counter-
examples at lines 5 and 8 of Table 2 illustrate cases
with 1 and 2 negative class robustness scores and positive
overall robustness, respectively. Similarly, negative overall
robustness provides no information on the class scores.

‡For brevity, we identify the mcSTL formulaψ with its STL formula φwhen
the classes and labeling functions are clear from context.

Prepared using sagej.cls



Cardona and Vasile 9

Counter-examples at lines 2, 3, and 7 of Table 2 have
negative overall robustness, but 1, 2, and 0 have negative
class robustness scores, respectively.

As shown in Ex. 3, there is no relation between the signs
of the multi-robustness values for mcSTL and the sign of
the overall robustness. Thus, there is no direct soundness
property stemming from multi-robustness. The combination
of min and max operators from Boolean and temporal
operators hinders the consistency when predicate classes are
modulated. To address this inconsistency, we introduce a
fragment of STL called class-complete mcSTL (mcSTL∗),
defined as follows.

Definition 7. Class-complete mcSTL. A class-complete
mcSTL (mcSTL∗) is an mcSTL formula ψ = (φ,Σ,L) that
has the following properties. For all ς ∈P(φ)

(1)paφ(ς) = ∧,
(2)∀σ′ ∈ Σ ∖ {L(ς)}, ∃ς ′ such that, L(ς ′) = σ′,

and ς ′ ∈ chφ(paφ(ς)),

where paφ(φ′) and chφ(φ′) return the parent and children
formulas of φ′ based on the AST of φ, respectively.

The two properties of mcSTL∗ mean that every
predicate ς ∈P(φ) has a conjunction operator as its parent,
and has sibling predicates from all predicate classes.
When computing (8) over an mcSTL∗ specification ψ, a
consistency property exists that relates class robustness to the
overall specification robustness.

Theorem 2. mcSTL∗ Multi-robustness consistency. Let
s be a signal and ψ = (φ,Σ,L) an mcSTL∗ formula with
predicate set P(φ) ≠ ∅ from classes Σ. The following
property holds for all t ≥ 0 and σ ∈ Σ

ρσ(s, φ, t) ≥ ρ(s, φ, t).

The proof of Thm. 2 is in Appendix A.

Corollary 1. Under the same setting as in Thm. 2 and
ρ(s, φ, t) > 0, it follows that ρσ(s, φ, t) > 0 for all σ ∈ Σ.

Cor. 1 implies the necessary condition that all robustness
class values ρσ(s, φ,0) are positive for the overall robustness
ρ(s, φ,0) to be positive. However, it is not sufficient.

5.1 mcSTL and mcSTL∗ Discussion about
Limitations and Connections

Here, we discuss the connections and limitations of all
temporal logic formalisms introduced in this paper: STL,
CaTL, mcSTL, and mcSTL∗. STL is a powerful language
that enables users to reason about continuous signals while
abiding by logical and temporal constraints. It allows
for incorporating multiple signal components and the
computation of both qualitative and quantitative semantics.
The qualitative semantics defined in (2) determine whether
operators are satisfied or violated, while the quantitative
semantics determine the degree of satisfaction as defined in
(3). Furthermore, STL has been shown to possess soundness
properties about its quantitative semantics, as demonstrated
in Thm. 1. This theorem establishes a connection between

Figure 5. Set of expressivity definition of STL, CaTL, mcSTL,
and mcSTL∗.

an STL formula’s satisfaction and its robustness score being
greater than zero. However, when considering semantically
unrelated predicates on a single specification, it amalgamates
all predicate categories to calculate a single robustness score,
which may not be ideal. For instance, consider predicates that
pertain to the position and velocity of a vehicle and establish
a specification that encompasses the car’s safety regulations.
It becomes imperative to determine if the vehicle’s position is
in proximity to violating safety standards and colliding with
other vehicles, regardless of whether it abides by speed rules.
If the velocity margin satisfaction is significantly larger, it
could mask the potential danger of violating position rules
when calculating the overall robustness score.

Motivated by computing robustness scores over a single
specification that contains multiple classes of predicates that
are semantically disjoint between them, we have defined
a semantic extension called multi-class Signal Temporal
Logic (mcSTL), therefore, STL ⊆mcSTL. Nevertheless,
even though we can now define multiple types of predicates
σ ∈ Σ over the same specification, their individual robustness
class ρσ(s, φ, t) and overall robustness scores ρ(s, φ, t)
have not an evident correlation in their signs as shown in
Table 2. The combination of min and max operators hinders
the consistency of the signs when signals are modulated,
making it difficult to determine the overall satisfaction of
the specification. This poses a considerable limitation of
this semantic extension on determining satisfaction without
extensive bookkeeping of variables.

We define class-complete multi-class Signal Temporal
Logic (mcSTL∗) to address this inconsistency with
mcSTL∗ ⊆mcSTL. mcSTL∗ requires that every predicate
in the specification has as parent node a conjunction operator
and all other classes existing as siblings. Consider, as
an example, specifications φex1 = ◻[1,2](ς1 ∧ ς2) and φex3 =
♢[0,1](ς1 ∧ ς2) in Ex. 3, where Σ = {σ1, σ2} with σ1 = {ς1}
and σ2 = {ς2}. For this type of specification, we have that
all robustness classes have to be positive for the overall
robustness to be positive, implying that the specification will
be satisfied only if all individual classes are satisfied, as
shown in Th. 2 and Cor. 1. Nonetheless, mcSTL∗’s most
significant limitation is its definition, requiring applications
involving all predicate classes in conjunction whenever we
want to define predicate properties in the specification.

In contrast to all other temporal logic formalisms
discussed, CaTL allows us to give meaning to predicates for
the number of agents and amount of resources. Note that
the resource and agent availability problem studied in this

Prepared using sagej.cls



10 The International Journal of Robotics Research XX(X)

paper is just a particular case of the multi-robustness for
mcSTL∗. The definition of a CaTL task in Def. 3 includes
the predicate classes in conjunction, in accordance with the
mcSTL∗ properties. We have Σ = {σa, σh}, where σa defines
the agents’ class of predicates and σh the resources class
of predicates. Allowing the linear combination computation
of the robustness of different predicate classes such as
agents’ availability ρa(sJ , φ,0) and resources availability
ρh(bH, φ,0) shown in (7).

Therefore, some of the relations and properties of CaTL,
STL, mcSTL∗, and mcSTL are shown in Fig. 5 and Table 3.

CaTL STL mcSTL∗ mcSTL
Logical operators ✓ ✓ ✓ ✓
Temporal operators ✓ ✓ ✓ ✓
Robustness ✓ ✓ ✓ ✓
Multi-class ✓ 7 ✓ ✓
Tasks ✓ 7 7 7

Multi-robustness
consistency ✓ NA ✓ 7

Table 3. Properties hold for every semantic extension or
fragment of STL discussed in this work.

We have defined a framework that allows us to handle
specifications with multiple predicate classes and have
mission satisfaction guarantees on their individual robustness
computation being greater than zero. In the next section,
we translate the problem formulation described in Sec. 4
into its corresponding MILP encoding. This enables us to
compute agent and resource trajectories that satisfy the CaTL
specification and dynamics constraints.

6 Mixed Integer Linear Programming
Encoding

This section describes the encoding of agents’ and resource
dynamics, CaTL specifications defined in Sec. 4 as a MILP.
We formulate Pb. 1 using these variables and define an
objective function that captures the desired behavior of the
robot fleet, maximizing the robot availability and resource
availability robustness while minimizing the total travel time
of robots and resources.

6.1 Agents’ Dynamics Encoding
We introduce agent class decision variables for all states
and edges in the environment Env over the planning time
horizon K = ∥φ∥ as in (4) to encode agent dynamics.

Let zq,g,k ∈ Z≥0 represent the number of agents of class
g ∈ G at time k = ∆t at state q ∈ Q, and ue,g,k ∈ Z≥0 the
number of agents of class g ∈ G entering edge e ∈ E at time
k, for all k ∈ [0..K]. Then the agents’ dynamics Jones et al.
(2019) for all q ∈ Q, g ∈ G, k ∈ [0..K] is captured as follows

zq,g,0 = ∣{j ∈ J ∣ q0,j = q, cj = g}∣, (9)

zq,g,k = ∑
(q′,q)∈E

u(q′,q),g,k−W((q′,q)), (10)

∑
(q,q′)∈E

u(q,q′),g,k = ∑
(q′,q)∈E

u(q′,q),g,k−W((q′,q)), (11)

where (9) captures the initial agent distribution over the
environment; specifically, the number of agents j ∈ J with
a capability set cj related to class g at k = 0 present at region

q ∈ Q. Note that the same agent cannot be at two places
simultaneously and that no agent is allowed to be initially at
edges E . On the other hand, (10) and (11) capture the agent
distribution at every time k such that the flow of agents is
conserved over the environment Env at all times. Thus, the
number of agents entering a node (q′, q) ∈ E must equal the
number of agents going out (q, q′) ∈ E . This covers the case
of agents staying at state q modeled as taking the self-loop
(q, q) ∈ E for a one-time unit.

6.2 Resource Dynamics Encoding
Similarly, as for agents’ dynamics, we encode resource
dynamics by imposing flow constraints using the following
variables. Let yq,h,k ∈ H represents the quantity of resource
h ∈H at time k ∈ [0..K] at state q ∈ Q, and ve,h,k ∈ H
represents the quantity of resource h ∈H entering edge e ∈ E
at time k ∈ [0..K]. Note that resources can be divisible H =
R≥0, indivisible H = Z≥0, or binary H = B. Lastly, let Cq,h,k
be the cross-consumption constraint, which ensures that the
same resource is not used more than once in case different
tasks ask for the same resource simultaneously and at the
same location. Then resource dynamics for all q ∈ Q, h ∈H,
and k ∈ [0..K], is encoded as follows

yq,h,0 = bH(0, q), (12)

yq,h,k = ∑
(q′,q)∈E

v(q′,q),h,k−W((q′,q)), (13)

Cq,h,k + ∑
(q,q′)∈E

v(q,q′),h,k = ∑
(q′,q)∈E

v(q′,q),h,k−W((q′,q)),

(14)
where (12) captures how the resources h ∈H are distributed
over the environment Env at time k = 0. Similarly, (13) and
(14) represent the resource distribution at every time step
k ∈ [0..K], and impose the conservation of resource flows
while considering cross-consumption constraint (23) defined
below.

We can now impose the transportation constraints that
resources must be carried by agents using the agent and
resource flow variables. These constraints depend on the
transportation type, either uniform or compartmental, as
described in Sec. 4.1. The motion for all of the resources
h ∈H, over every edge e = (q, q′) ∈ E for all k ∈ [0..K], is

ve,h,k ≤ ∑
g∈Gh

Ωh,gue,g,k, (compartmental), (15)

∑
h∈H

ve,h,k ≤ ∑
g∈G

Ωgue,g,k, (uniform), (16)

where ue,g,k is the number of agents of class g ∈ G entering
edge e ∈ E at time k defined in Sec. 6.1 and Ωh,g, Ωg
are the transportation capacities for the compartmental and
uniform cases, respectively. Thus, (15) and (16) guarantee
the total amount of resource h ∈H transported by agents do
not exceed the maximum capacity that agents can transport
based on storage capacity and type. Variable ve,h,k is
bounded by

ve,h,k = min{∣J ∣ ⋅max
g∈G

Ωg,h,∑
q∈Q

bh(0, q)},

for compartmental transportation, for all h ∈H, and

ve,h,k = min{∣J ∣ ⋅max
g∈G

Ωg,∑
q∈Q

∑
h∈H

bh(0, q)},

Prepared using sagej.cls



Cardona and Vasile 11

for uniform transportation. In the case of package
transportation (binary resource), we set yq,h,k and ve,h,k as
binary variables.

Remark 3. The main insight of the encoding is that we do
not need to assign resources to agents explicitly. We only
need to ensure that agents can transport resources along
their routes. Thus, we extract the resource trajectories from
resource flows similar to the agent case, see Sec. 6.6 for
details. Moreover, no binary and integer auxiliary variables
are required to enforce a satisfiable solution.

6.3 CaTL Specification Encoding
We translate the CaTL specification φ to be captured into the
MILP in three steps.

First, we introduce the variables zπ,q,c,k ∈ R≥0, yπ,q,h,k ∈
R≥0 that capture the amount of agents with capability c ∈
C and resources h ∈H at time step k ∈ [0..K] at every
state q ∈ Q using label π ∈ AP . We couple them with
the system variables for agents and resources, zq,g,k and
yq,h,k, respectively. The following constraints ensure that
capabilities and resources are not counted more than once
in all regions with atomic proposition π labeled with L(q)

∑
π∈L(q)

zπ,q,c,k = ∑
g∶c∈G

zq,g,k, (17)

∑
π∈L(q)

yπ,q,h,k = yq,h,k. (18)

Second, we introduce variables zς(π,c),k ∈ R for agents
and yς(π,h),k ∈ R for resources, coupled with the counting
proposition variables (see (21) and (22) for definitions,
respectively). We use these variables to guarantee that the
number of agent capabilities and resources in the regions is
at least the amount requested in the counting propositions.
We have

zς(π,c),k ≤ zπ,q,c,k, (19)
yς(π,h),k ≤ yπ,q,h,k, (20)

for all q ∈ L−1(π), c ∈ C, h ∈H, π ∈ AP , and k ∈ [0..K].
Lastly, we encode the CaTL specification for the

satisfaction of tasks by translating it into an STL
specification. This is possible since CaTL is a fragment of
STL. CaTL allows intuitive, compact encodings of tasks, and
like STL, it can be efficiently encoded as a MILP Leahy
et al. (2021); Cai et al. (2021); Liu et al. (2023); Cardona and
Vasile (2022) by recursively encoding the specification based
on the robustness definition (3). A task T = (d, π, cp, rs)
defined as in Def. 1 is semantically equivalent to the
following STL specification formula

φT = ⋀
h∈H

ς(π,h) ∧ ◻[0,d] ⋀
c∈C

ς(π, c),

where ς(π, c) and ς(π,h) are

ς(π, c) = min
q∈L−1(π)

{nq,c} ≥ cp(c), (21)

ς(π,h) = min
q∈L−1(π)

{bh(⋅, q)} ≥ rs(h). (22)

Therefore, CaTL specification can be fully translated into
an STL specification and further added into the MILP

by encoding the operators using (8). Satisfaction can be
guaranteed via the binary variable associated with the
satisfaction of the overall STL specification Raman et al.
(2014); Sadraddini and Belta (2015); Mahajan (2010).

6.4 Resources Cross-consumption Encoding

Before introducing the objective function, we define the
cross-consumption constraint which ensures that a resource
is used once and immediately consumed in the required
amount at the start of a task’s satisfaction. Let Λ(q) = {T =
(d, π, cp, rs) ∣ π ∈ L(q)} be the set that captures all the tasks
that are going to be satisfied at the same location. Resource
cross-consumption is given by

Cq,h,k = ∑
T ∈Λ(q)

rs(h) ⋅ xφT ,k, (23)

where xφT ,k ∈ B, capture whether or not the task T in the set
Λ(q) is satisfied. Thus, the cross-consumption constraint is

Cq,h,k ≤ yq,h,k, (24)

for all q ∈ Q, h ∈H, k ∈ [0..K]. In other words, (24) ensures
that the total amount of resources needed to satisfy multiple
tasks in overlapping regions is less or equal to the number of
resources at that location.

6.5 Objective Definition

Here, we formulate Pb. 1 as an optimization problem
(MILP), which can be solved using any off-the-shelf
software tool. In addition to the objective in Pb. 1, we
want to account for agents’ and resources’ travel time and
eliminate inefficient behavior, i.e., spurious motion. For
instance, agents taking longer paths or transporting resources
even when they are not required to satisfy tasks wastes
time and energy. We use regularization terms based on the
weighted total travel times for agents and resources

τu =
K

∑
k=0

∑
g∈G

∑
e=(q,q′)∈E,q≠q′

ue,g,k, (25)

γu =
αu

K ⋅ ∣J ∣ , (26)

τv =
K

∑
k=0

∑
h∈H

∑
e=(q,q′)∈E,q≠q′

ve,h,k, (27)

γv =
αv

K ⋅maxh∑q∈Q bh(0, q)
, (28)

where αv, αu ∈ [0,1] and τu, τv are the total travel times
of the agents and resources moving along edges in the
environment. The weights γu, γv scale the regularization
terms to ensure that agents and resources robustness have
higher priority; agent and resource regularization does not
come at the expense of maximizing either agents or resources
robustness.

Finally, the overall optimization problem of maximizing
agents and resources’ robustness while minimizing agent and

Prepared using sagej.cls



12 The International Journal of Robotics Research XX(X)

resource traveling time is

max
z,u,y,v

ρa + γρh − γuτu − γvτv,

s.t. (sJ , bH) ⊧ φ,
(9), (10), (11), (Agent dynamics),
(12), (13), (14), (Resource dynamics),
(15) or (16), (Agent resource capacity),
(17) − (20), (Task satisfaction),
(23) and (24), (Resources cross-consumption).

(29)
Note that the solution to the problem provides us with

the counts of agents and amounts of resources required to
meet the mission specification and dynamics constraints.
However, it does not explicitly assign agents for transporting
and fulfilling the tasks. To solve this issue, the next section
introduces an algorithm that can be used for agent and
resource assignments.

6.6 Agent and Resource Assignments
The outcome of solving (29) are zq,g,k, yq,h,k, u(q,q′),g,k,
and v(q,q′),h,k capturing the number of robots of each class
g ∈ G and the amount of resource h ∈H at time k ∈ [0..K] at
either state q ∈ Q or traversing edge (q, q′) ∈ E , respectively.
However, these values do not provide explicit information
about the trajectories of individual robots or the assignment
of resources to robots. Therefore, we extend the approach
presented in Leahy et al. (2021) for extracting individual
robot trajectories and assigning resource transportation to
robots. The method is described in the Alg. 1.

The sets UE,G,K = {ue,g,k ∣ e ∈ E , g ∈ G, k ∈ [0..K]}, and
VE,H,K = {ve,h,k ∣ e ∈ E , h ∈H, k ∈ [0..K]} representing the
MILP solution are the inputs of the method. Alg. 1 is
executed for each time step, generating a trajectory for
each agent and assigning resources to agents that fulfill
the mission specification φ. The trajectory of a robot j
is represented as a sequence of states and edges sj(k) =
q0,j . . . (q, q′) . . . qK,j , where k ∈ [0..k] starting at the initial
position sj(0) = q0,j of agent j ∈ J , see Sec. 4. Let Jq,g,k
be the set of agents of class g ∈ G, at state q ∈ Q, at time
k ∈ [0..K]. The transportation assignment of resource h to
agent j at time k is denoted by BH(j, h, k). The procedure
initializes each agent j’s trajectory with its initial state q0,j ,
and the sets of agents at each state q of class g at time 0,
lines 1-2. For each time step, the algorithm propagates agents
from states onto outgoing transitions (line 4), iteratively
computes the agents trajectories (lines 5-7), recomputes
agents at states (line 8), and allocates resources to agents
for transportation (line 9-10). In the first step of the loop,
the set of agents at each state q from each class g is
partitioned over the outgoing transitions E+(q) = {(q, q′) ∈
E} using function Part() based on the agent numbers from
the solution UE+(q),g,k, line 4. The trajectories of agents
Je,g,k departing on each outgoing transition e = (q, q′) are
extended over the transition’s durationW(e), lines 5-7. The
third step, computes the agents Jq,g,k+1 from each class
g arriving at each state q at time k + 1 as the union over
incoming transitions E−(q) = {(q′, q) ∈ E}, line 8.

Finally, we use the Alloc(⋃g∈G Je,g,k, (ve,h,k)h∈H)
function to assign resources that must be transported

Algorithm 1: Robot trajectories and resource
transportation assignments.

Input: UE,G,K ,VE,H,K
Output: SJ , BH

1 sj(0)← q0,j ,∀j ∈ J
2 Jq,g,0 ← {j ∈ J ∣ q = q0,j , g = cj}
3 for k ∈ [0..K − 1] do

// Propagate - departing robots
4 JE+(q),g,k ← Part(Jq,g,k,UE+(q),g,k) ∀q ∈ Q,∀g ∈ G

// Extend trajectories
5 for j ∈ Je,g,k, ∀q ∈ Q,∀g ∈ G, where e = (q, q′) do
6 sj((k + 1)..(k +W(e) − 1))← e
7 sj(k +W(e))← q′

// Accumulate - arriving robots
8 Jq,g,k+1 ← ⋃e∈E−(q)Je,g,k+1−W(e),∀q ∈ Q,∀g ∈ G
9 for e ∈ E , k′ ∈ [k..k +W (e)] do

10 BH(⋅, ⋅, k′)← Alloc(⋃g∈G Je,g,k, (ve,h,k)h∈H)

11 return SJ ,BH

Algorithm 2: Resource Assignments – Alloc()
Input: J ⊆ J , V ∶H → R≥0
Param: Ωg or Ωh,g , ∀g ∈ G, h ∈H, type
Output: (ξ∗j,h)j∈J,h∈H – amount of h transported by agent

j

1 Create ξj,h ∈ R≥0, ∀j ∈ J,h ∈H
2 CS = {∑j∈J ξj,h = V (h) ∣ h ∈H}
3 if type = ’uniform’ then
4 CS ← CS ∪ {∑h∈H ξj,h ≤ Ωcj ∣ ∀j ∈ J}
5 else if type = ’compartmental’ then
6 CS ← CS ∪ {ξj,h ≤ Ωh,cj ∣ ∀j ∈ J,h ∈H}
7 Solve LP ξ∗j,h = arg minξj,h 1 s.t. CS
8 return (ξ∗j,h)j∈J,h∈H

by agents traveling along edges e ∈ E according to their
corresponding storage type and capacity, lines 9-10,
described in Alg. 2. It formulates a Linear Programming
(LP) problem to allocate amount ξj,h ∈ R≥0 of resources h to
be transported by agent j ∈ J according to its storage type
and capacity. The LP’s variables are ξj,h and are created
for all agents in the input set J , line 1. Next, we create the
constraints set CS for resource allocation. The first constraint
requires the exact allocation of the amount v(h) for each
resource h ∈H among agents in j, line 2. If the storage type
is uniform, we add the total transportation capacity bound
Ωcj for each agent j, lines 3-4. Conversely, if the storage
type is compartmental, we add the capacity bounds Ωh,cj for
each resource h and each agent j, lines 5-6. Finally, we solve
the LP and allocate the amounts of resource ξ∗j,h to agent j,
line 7.

7 Encoding Generalization

In this section, we show extensions to the solution presented
in Sec. 6, that handle generalized storage configurations
and external resource dynamics, i.e., resource creation and
destruction during deployment. Moreover, we present an
encoding for gradual resource creation during a task’s
satisfaction.

Prepared using sagej.cls



Cardona and Vasile 13

Figure 6. Example of generalization of storage type: a
combination of compartmental and uniform storage.

7.1 Generalized storage configurations
In Sec. 6, we showed uniform and compartmental storage
setups encodings. However, robots may have a complex
combination of these storage types. See the example in
Fig. 6.

Let Ha ⊆H define the storage compartment a ∈ A as the
set of resources that it can store. All resources must be
handled, i.e.,H = ⋃a∈AHa. Compartmental storage requires
∣Ha∣ = 1 for all a ∈ A, while uniform storage corresponds
to ∣A∣ = 1. Let Ωa,g be the total transportation capacity of
compartment a on an agent from class g ∈ G for all resources
Ha. Next, we consider first the case where resources are
stored only in one compartment and then generalize it to the
case of multiple compartments.

7.1.1 Case 1 (Mutually Exclusive): In this case, each
resource can be stored only in a single compartment. Thus,
the compartments are mutually exclusive and partition the set
of resources. Formally,Ha ∩Ha′ = ∅ for all a ≠ a′.

The resource transportation capacity constraints become

∑
h∈Ha

ve,h,k ≤ ∑
g∈Ga

Ωa,gue,g,k, (30)

for all e ∈ E , k ∈ [0..K], a ∈ A, where Ga = {g ∣ Ωa,g > 0} is
the set of agent classes that have compartment a ∈ A. The
constraints in (15) and (16) are special cases of (30).

7.1.2 Case 2 (Overlapping): When resources can be
stored in multiple compartments, we must track the amount
of each resource in each compartment. Let A(h) = {a ∈
A ∣ h ∈Ha} ≠ ∅ be the set of compartments that can store
resource h ∈H.

We introduce variables ve,h′a,k that indicate the amount of
resource h in compartment a, and the constraints

ve,h,k = ∑
a∈A(h)

ve,h′a,k (31)

∑
h∈Ha

ve,h′a,k ≤ ∑
g∈Ga

Ωa,gue,g,k (32)

for all e ∈ E , k ∈ [0..K], a ∈ A. When ∣A(h)∣ = 1, we have
the previous case. Specifically, (31) and (32) become ve,h,k =
ve,h′a,k and (30), respectively.

7.2 Generalized creation, destruction, and
gradual consumption of resources

The encoding discussed in Sec. 6 assumes predetermined
total amounts for each resource. However, resources may
be added or removed from the environment by external

processes (e.g., delivery and material loss) or by agents’
actions (e.g., mining). Additionally, when the resources are
used to satisfy a task, we consider these to disappear from
the environment at the beginning of a task and are no longer
available. However, commonly resources are consumed
gradually by tasks.

7.2.1 Creation and destruction of resources: We con-
sider two cases of creation and destruction of resources: (a)
robot independent that captures external processes, and (b)
robot dependent that requires agent action.

Robot independent: Let us introduce the rates C+
q,h ≥ 0

and C−
q,h ≥ 0 of creation and destruction for all resources h ∈

H at each state q ∈ Q, respectively. These constants define
external, independent processes that govern resources in the
environment. We adjust the resource flow dynamics in (13)
to account for the net resource change C+

q,h −C−
q,h per time

step

yq,h,k = max{ ∑
(q′,q)∈E

v(q′,q),h,k−W((q′,q)) +C+
q,h −C−

q,h,0},

where the max ensures resource amounts remain non-
negative. The bound on variables ve,h,k becomes ve,h,k∗ =
ve,h,k + k ⋅∑q∈QC+

q,h. Lastly, the RHS of (14) is set to the
new yq,g,k.

Robot dependent: Each robot class g has a rate of
creation C+

h,g > 0 and destruction C−
h,g > 0 of resources h ∈

H. We denote the sets of classes that can create and destroy
resource h by G+h and G−h , respectively. We modify the
resource flow constraints (13) to account for agents’ resource
creation and destruction work while stationary at states q

yq,h,k = max{ ∑
(q′,q)∈E

v(q′,q),h,k−W + ∑
g∈G+

h

C+
h,gu(q,q),g,k

− ∑
g∈G−

h

C−
h,gu(q,q),g,k,0},

where, again, we use the max operator to disallow negative
resource amounts. The bound of ve,h,k becomes ve,h,k∗ =
ve,h,k + k ⋅ ∣J ∣ ⋅∑g∈G+

h
C+
h,g . As before, the RHS of (14) is

set to the new expression of yq,g,k.

7.2.2 Creation of resources on demand: Previously,
we have explored situations where resources were either
produced or depleted based on the environment or robot.
However, resources may be generated only when and as
much as needed for specific tasks. Consider ι+q,k ∈ H+ as
a resource creation on demand variable at state q ∈ Q and
at time k ∈ [0..K], where H+ = B if the resource is binary,
H+ = [0..C+

q,h,k] if it is indivisible, and H+ = [0,C+
q,h,k] if it

is divisible. The updated resource flow constraint is

yq,h,k = ∑
(q′,q)∈E

v(q′,q),h,k−W + ι+(q,q),h,k,

To avoid the unrestricted creation of resources that may lead
to trivial solutions and numerical issues, we incorporate a
penalty for creating on-demand resources in the objective
function. The modified optimization function is

J = ρa + γρh − γuτu − γvτv − γc∑
q
∑
k

Pq,k ⋅ ι+q,k,

where Pq,k > 0 is the cost for creating a resource at state
q ∈ Q at time k ∈ [0..K], and γc > 0 is a scaling weight.

Prepared using sagej.cls



14 The International Journal of Robotics Research XX(X)

Figure 7. Solution computed for basic example in Sec. 8.1.

7.2.3 Gradual consumption of resources: In Sec. 6,
we assumed that resources are consumed when the task
starts. However, in some applications, this assumption
may not hold. For example, resources may be consumed
as they are created, which can not be accommodated
with advanced reservation of resources at the beginning
of tasks’ satisfaction. To address this, we modify the
cross-consumption constraint to enable gradual resource
consumption during tasks

Cq,h,k = ∑
T ∈Λ(q)

dT

∑
κ=0

xφT ,(k−κ)
rs(h)
dT

,

dT

∑
κ=0

xφT ,(k−κ) ≤ 1, ∀k ∈ [0,K − dT ],

where dT is the task’s duration, and κ is an iterator index
going from the beginning of the task to its end.

8 Analysis and Results
In this section, we examine several case studies that show-
case the functionality and performance of the framework.
First, a simple example illustrates the fundamental func-
tionality of the MILP encoding for CaTL planning with
resources. Following this, we explore four case studies high-
lighting performance differences between various resource
types (divisible and indivisible) and transportation storage
types (compartmental and uniform) under the same speci-
fication. Additionally, we provide examples that underscore
how positive values of the objective function do not guaran-
tee specification satisfaction and showcase some robustness
properties for CaTL. Finally, we analyze runtime perfor-
mance for an increasing number of agents and growing
specification size.

All computations for the case studies were conducted
on a computer featuring 20 cores at 3.7 GHz, with
64 GB of RAM. To solve the MILP, we utilized
Gurobi Gurobi Optimization (2020). For the MILP encoding
of CaTL specifications we used PyTeLo Cardona et al.

Figure 8. Abstracted labeled transition system from
environment used for case studies.

(2023b) and ANTLRv4 Parr (2007), LOMAP Vasile and
Ulusoy (2024) and networkx Hagberg et al. (2008) for
transition system models of environments.

8.1 Basic Example
Consider the small case study in Fig. 7. The environment
has four regions with transitions between them of duration
one. Two robots from each of the classes c1 = drilling and
c2 = arm start at the state q1. The scenario also includes
two resources, r1 = bricks and r2 = wooden beams, which
are indivisible and initially distributed as bH(0,Q) = {r1 ∶
{q2 ∶ 4}, r2 ∶ {q3 ∶ 4}}. The storage type is uniform, and the
storage capacity Ωg = 2, ∀g ∈ G. The mission specification is

φ =♢[3,4](T (1, πred, (arm,1), (brick,3))
∧ T (1, πred, (drill,1), (wooden beam,3))).

In the given scenario, four robots travel to pick up resources
from states q2 and q3 and then move towards q4 to satisfy the
specification. The trajectories of these robots are computed
and displayed in Fig. 7. The resources are consumed upon
the start of the tasks k = 4, and the task is fully satisfied
after a one-time unit at k = 5. Both agents and resources
have a robustness of one in this solution, as there is one
additional agent and resource for each agent and resource
class, respectively.

Prepared using sagej.cls

https://github.com/erl-lehigh/PyTeLo


Cardona and Vasile 15

Figure 9. Resource types: divisible (water, paint, cement,
sand) and indivisible (bricks, wooden beams, steel nails, solar
panels). Colored circles on the right indicate a robot class with
its corresponding set of capabilities.

8.2 Resource storage and types

In this section, we show the functionality and performance
of various resources and storage types described in Sec. 4.
In all cases, we consider a construction environment
Env = (Q,E ,W) illustrated in Fig. 1. The environment is
abstracted as the transition system shown in Fig. 8. The set
H contains divisible resources such as water, paint, cement,
and sand and indivisible resources such as bricks, wooden
beams, steel nails, and solar panels. Fig. 9 shows agent
classes with their corresponding set of capabilities, such as
drilling, hammering, bricklaying, sawing, monitoring, and
cement mixing. Lastly, transportation storage types (i.e.,
compartmental and uniform) are shown in Fig. 10. We design
the construction mission to be feasible and given as a CaTL
specification

φ = ♢I1T1 ∧ ◻I2T2 ∧ ♢I3T3 ∧ ♢I4T4 ∧ ◻I5T5 ∧ ◻I6T6,
(33)

where I1 = [0,5], I2 = [10,12], I3 = [10,14], I4 = [10,14],
I5 = [20,22], I6 = [20,22], tasks Ti with i ∈ [1..5] are
described in Table 4. The counting resource rs(h) column
and its amount are not explicitly defined since they vary
depending on whether the resource is divisible or indivisible,
so they are described later in each case study. We consider
∣J ∣ = 18 for the mission, with agent classes shown in Fig. 9
and the following quantities per class = 2, = 4, =
2, = 2, = 3, = 5, all with initial location q1. With
all this information, we define the initial agent distribution
sJ (0,Q).

8.2.1 Case study 1 – compartmental storage with
divisible resources We consider the abstracted Env shown
in Fig. 8, mission specification (33), and initial agent
distribution sJ (0,Q) described before. The initial resource
distribution is

bH(0,Q) = {r1 ∶ {q1 ∶ 10, q5 ∶ 10}, r2 ∶ {q2 ∶ 10, q6 ∶ 10},
r3 ∶ {q3 ∶ 10, q7 ∶ 10}, r4 ∶ {q4 ∶ 10, q8 ∶ 10}},

(34)
where r1, r2, r3, and r4 correspond to water, paint, cement,
and sand, respectively. The amount of resources required
are x = 1.4 and y = 0.7 as indicated in Table 4. The storage

Figure 10. The transportation type examined in case studies
can be compartmental (left) or uniform (right). In the former,
each resource has its own compartment, while in the latter, all
resources share the same storage capacity.

capacities of each resource per agent class are

Ωh,g = { ∶ {r1 ∶ 4.2, r2 ∶ 4.3, r3 ∶ 4.1, r4 ∶ 3.2},
∶ {r1 ∶ 2.1, r2 ∶ 2.2, r3 ∶ 2.3, r4 ∶ 2.4},
∶ {r1 ∶ 2.2, r2 ∶ 2.3, r3 ∶ 2.4, r4 ∶ 2.1},
∶ {r1 ∶ 2.1, r2 ∶ 2.2, r3 ∶ 2.3, r4 ∶ 2.2},
∶ {r1 ∶ 2.2, r2 ∶ 2.1, r3 ∶ 2.1, r4 ∶ 2.2},
∶ {r1 ∶ 2.3, r2 ∶ 2.2, r3 ∶ 2.1, r4 ∶ 2.3}}.

The weights in (26), (28), and (29) are αu = 0.2, αv =
0.2, and γ = 0.7, respectively. With these weights, the
objective prioritizes agent robustness, followed by resource
robustness. Although the normalized travel time for agents
and resources are also objectives, they have less priority. The
time horizon of the given specification is ∥φ∥ =K = 22(s).

The mission specification is feasible; see Sec. 8.3 for
an infeasible case. Upon computing the solution to the
planning problem, the availability robustness for agents
and resources are ρa = 3 and ρh = 5.89. The normalized
travel time for agents and resources of τu = 0.18, and τv =
0.25, indicating there was more flow of resources in the
environment than agents. Note that both agent and resource
robustness classes are positive. Thus, the satisfaction of
the mission is guaranteed by Thm. 2. Moreover, the
overall optimization value is ρa + γρh − γuτu − γvτv = 3 +
0.7 ⋅ 5.89 − 0.2 ⋅ 0.18 − 0.2 ⋅ 0.25 = 7.03.

8.2.2 Case study 2 – compartmental storage with indivis-
ible resources Since we consider indivisible resources, see
Fig. 9, resource decision variables are integer, rather than real
as in the previous case. The mission specification is defined
by equation (33), where r1 = bricks, r2 = wooden beams,
r3 = nails, and r4 = solar panels. For tasks in Table 4, we set
x = 1 and y = 2. The initial resource distribution bH(0,Q) is
the same (34). The resource capacities per agent class are

Prepared using sagej.cls



16 The International Journal of Robotics Research XX(X)

Table 4. List of tasks considered for case studies comparing resources and storage types.

Name Duration (d) Region (π ∈ AP) Counting proposition (cp(c)) Counting resource (rs(h))
T1 1 πCyan {(drill, 2), (hammer, 2)} {(r1, x), (r2, x)}
T2 1 πY ellow {(mixer, 2), (sawing, 1)} {(r3, y), (r2, x)}
T3 1 πPurple {(drill, 2), (sawing, 1)} {(r2, x), (r3, x)}
T4 1 πOrange {(monitor, 3), (hammer, 2)} {(r4, y), (r3, x)}
T5 1 πGray {(bricklaying, 1), (monitor, 2)} {(r1, y), (r3, y)}
T6 1 πPink {(mixer, 2), (sawing, 1)} {(r1, y), (r2, y)}

Ωh,g = { ∶ {r1 ∶ 4, r2 ∶ 4, r3 ∶ 4, r4 ∶ 3},
∶ {r1 ∶ 2, r2 ∶ 2, r3 ∶ 2, r4 ∶ 2},
∶ {r1 ∶ 2, r2 ∶ 2, r3 ∶ 2, r4 ∶ 2},
∶ {r1 ∶ 2, r2 ∶ 2, r3 ∶ 2, r4 ∶ 2},
∶ {r1 ∶ 2, r2 ∶ 2, r3 ∶ 2, r4 ∶ 2},
∶ {r1 ∶ 2, r2 ∶ 2, r3 ∶ 2, r4 ∶ 2}}.

As both robustness classes consider integer predicates,
we have integer scores of availability for agents ρa = 3
and resources ρh = 5. Thm. 2 guarantees the mission’s
satisfaction, as both robustness classes are positive. Thus,
the overall robustness is positive. The normalized travel
time for agents and resources are τu = 0.18 and τv =
0.26, respectively, indicating a greater resource flow in the
environment. Interestingly, the values for both cases are
close, which suggests that the trajectories taken by agents to
satisfy the specification are similar or identical. The overall
objective value is ρa + γρh − γuτu − γvτv = 3 + 0.7 ⋅ 5 − 0.2 ⋅
0.18 − 0.2 ⋅ 0.26 = 6.41.

8.2.3 Case study 3 – uniform resource storage with
divisible resource type For this case study, we consider
sJ (0,Q), bH(0,Q), resources (r1, r2, r3, and r4),
environment Env, and mission specification φ as in case
study 1. However, the storage type for agents is uniform. The
storage capacity for each agent class is

Ωg = { ∶ 8.2, ∶ 6.1, ∶ 6.3, ∶ 5.4, ∶ 4.5, ∶ 5.6}.

The robustness values for agents’ and resource availability
are ρa = 3 and ρh = 5.89, respectively. The latter value is
not an integer, as resources are considered divisible. Since
both are positive, the mission is satisfied via Thm. 1 The
normalized agent and resource total travel times are τu =
0.17 and τv = 0.24, respectively. The overall objective value
is ρa + γρh − γuτu − γvτv = 3 + 0.7 ⋅ 5.89 − 0.2 ⋅ 0.17 − 0.2 ⋅
0.24 = 7.04.

8.2.4 Case study 4 – uniform resource storage with
indivisible resource type Let us consider sJ (0,Q),
bH(0,Q), resources (r1, r2, r3, and r4), environment Env,
and mission specification φ identical to case study 2. The
transportation storage type is uniform (right side of Fig. 10).
The storage class capacity per agent class is

Ωg = { ∶ 8, ∶ 6, ∶ 6, ∶ 5, ∶ 4, ∶ 5}.

The robustness values for the availability of agents and
resources are ρa = 3 and ρh = 5. The normalized travel time

of agents and resources are τu = 0.14 and τv = 0.25. Note
that the travel of agents score is slightly lower than in the
previous case since using a uniform storage type provides
a higher capacity to transport a specific resource, requiring
fewer agents to move in the environment. The overall
objective value is ρa + γρh − γuτu − γvτv = 1 + 0.7 ⋅ 8 + 0.3 ⋅
0.918 + 0.3 ⋅ 3.301 = 7.8657 Similar to previous cases, both
robustness class scores are positive, ensuring the satisfaction
of the mission specification.

Time performance comparison: Table 5 contains the
information on the time performance, objective value,
and continuous, integer, and binary variables of the four
case studies. All of the objective values are similar.
However, their time performance differs due to the varying
number of variables required to capture the problem in a
MILP. Although continuous variables can affect the time
performance, it is usually mainly influenced by the integer
and binary variables. Notably, solving the fourth case study
with more integer and binary variables takes the longest.
As four cases work with the same specification, number
of agents, and resources, it is plausible to conclude that
a problem with the compartmental storage type is faster
than the uniform storage type and that divisible resources
yield better runtimes than indivisible resources. However,
the quantity of integer and binary variables depends on the
specifications, environment size, number of agent classes,
number of resource types, and storage type. For further
examples of increasing specification complexity and the
number of agents, see Sec. 8.4.

8.3 Robustness and satisfaction comparison
for CaTL

Here, we delve into a discussion on how robustness scores
of both the agents and resources impact the fulfillment of
the mission specification as a whole. To this end, we use
the setup from case study 1, wherein we modify task T6

so that instead of requesting two mixers, we now require
six units. The solution for this case study differs slightly
from the one in case study 1. The main difference is
that in this case, the agent availability robustness score
is ρa = −1, indicating that we do not have enough agents
with the necessary capabilities to complete the mission.
However, the overall objective function takes a value of
ρa + γρh − γuτu − γvτv = 3.037, which does not guarantee
the satisfaction of the mission even though it is positive.
Instead, to guarantee satisfaction, we make use of Cor. 1,
which implies that if ρa(sJ , φ,0) > 0 ∧ ρh(bH, φ,0) > 0⇒
ρ((sJ , bH), φ,0) > 0. Hence, using Thm. 1, we can infer that
mission satisfaction is guaranteed only if both the availability
robustness of agents and resources are positive.

Prepared using sagej.cls



Cardona and Vasile 17

Table 5. Number of continuous, integer, and binary variables, runtime, and objective values for the four case studies.
Case study Time Objective Values Continuous Vars. Integer Vars. Binary Vars.

1 12.05(s) 7.03 2859 5281 115
2 26.39(s) 6.41 64 8083 119
3 28.86(s) 7.04 2859 5274 115
4 45.18(s) 7.86 68 8375 248

Although we may encounter situations where the
specifications suggest an absence of agents, our MILP
encoding still produces a solution that violates the
specification to a minimum extent. In the case of the
resources, this is impossible since, by definition, the resource
variables in Sec. 6.2 are defined as positive variables.
The rationale behind this approach is to simplify the
establishment of cross-consumption and resource dynamics
constraints. In situations with a shortage of resources, the
problem becomes infeasible by definition, which could be
addressed by introducing a slack variable. However, this
would necessitate more complex bookkeeping. All things
considered, satisfaction with the CaTL mission relies on the
availability of agents to fulfill specifications and feasible
trajectories for agents to pick and drop resources.

8.4 Runtime performance comparison
This section presents a runtime performance comparison
of four different types of problems, namely, compartmental
storage with divisible and indivisible resources, uniform
storage with divisible and indivisible resources, and the
CaTL baseline Leahy et al. (2021). The evaluation consists
of two experiments: one increases the number of agents,
and the other grows the specification size. For the first case,
we consider the Env shown in Fig. 1. We use the same
number of robot classes and divisible resource types shown
in Fig. 9, compartmental resource storage type, and storage
capacities defined for case study 1. The mission specification
considered is φ = ♢[0,4]T1 ∧ ◻[18,22](T3 ∧ T4), where T1, T3

and T4 are given in Table 4. Resource distribution is changed
such that we have 2 units of each resource in q2 and q4. Five
agents are added per iteration with random robot classes, and
all start at state q1. The results are presented in Table 6. Note
that increasing the number of agents reduces the time for the
four types of problems. Most of them compute a solution
in around 0.7 seconds, which is still slightly longer than the
CaTL baseline, which is expected since the latter does not
plan for resources.

In the second scenario, we use the same initial conditions.
However, rather than increasing the number of agents, we
spawn 18 agents that are randomly generated and proceed to
augment the specification in the following manner

φ =
N

⋀
n=1

XInT,

where N is increased by two in every step. The temporal
operators X ∈ {◻,♢} are chosen randomly with time
intervals In = [5(n − 1),5(n − 1) + rand(1,5)]. Tasks are
randomly taken from Table 4 such that T ∈ {T1, . . . , T6}.
Table 7 shows the computation time for a solution when
growing the specification size for the four cases. Note that
the case of uniform storage and indivisible resources type
takes the longest. This is mainly because finding the optimal

combination of resources that each robot should carry to
maximize the robustness scores becomes a combinatorial
problem when considering integer values of resources. In
general, computing a solution for compartmental is faster
than uniform storage types, and divisible resources are faster
than indivisible.

9 Conclusions and Future Work
This paper presents an extension of CaTL that considers
agent capabilities and resource constraints. The extension
is achieved by enhancing the MILP encoding to capture
different types of resources, including divisible and
indivisible, and accommodating different agent storage
types for resources, such as compartmental and uniform.
Moreover, an encoding is developed to extend STL to
accept multiple predicate classes and compute robustness
separately. The paper demonstrates the effectiveness
of computing the multi-robustness score for an STL
specification with multiple predicate classes and explores
how satisfaction is related to the robustness scores. The
proposed framework is applied to CaTL to capture agent
and resource robustness scores. When these scores are
positive, they guarantee satisfaction with the mission
specification. Furthermore, the paper comprehensively
evaluates the framework’s runtime performance when
considering uniform or compartmental storage types with
divisible or indivisible resources. In future work, we will
consider performing mission specifications on real robots
and explore uncertainty in the availability of resources and
agents in the environment.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding
The author(s) disclosed receipt of the following financial
support for the research, authorship, and/or publication of
this article: This work was partially supported by MIT
Lincoln Laboratory under Inter and Intra Team Coordination
from High Level Specifications program.

A Proof of Theorem 2
Before we start the main argument of the proof, we show a
general lemma on the monotonicity of evaluating mcSTL∗

formulas. For this, we define an evaluation tree based
on the AST. Formally, an evaluation tree (ET) is a tuple
T = (op,Ch = {Tch}ch), where op ∈ {min,max,nop}, nop
denotes no operation, andCh is a list of children’s evaluation
trees. A leaf node is one where Ch = ∅ and op = nop, while

Prepared using sagej.cls



18 The International Journal of Robotics Research XX(X)

Table 6. Runtime performance comparison for an incrementing number of agents.

Agents Compartmental Uniform CaTL Baseline Jones et al. (2019)
(Resources not considered)Divisible Indivisible Divisible Indivisible

10 1.32 (s) 2.73 (s) 0.96 (s) 1.12 (s) 0.22 (s)
15 2.18 (s) 2.01 (s) 1.90 (s) 3.09 (s) 0.35 (s)
20 0.96 (s) 2.26 (s) 1.18 (s) 0.68 (s) 0.33 (s)
25 0.76 (s) 1.87 (s) 0.71 (s) 0.76 (s) 0.33 (s)
30 0.79 (s) 0.84 (s) 0.73 (s) 0.70 (s) 0.32 (s)

Table 7. Runtime performance comparison for an incrementing specification φ.

φ
Compartmental Uniform CaTL Baseline Jones et al. (2019)

(Resources not considered)Divisible Indivisible Divisible Indivisible
2 0.90 (s) 0.79 (s) 1.02 (s) 0.70 (s) 0.26 (s)
4 1.87 (s) 1.75 (s) 3.79 (s) 1.50 (s) 0.35 (s)
6 3.13 (s) 7.06 (s) 2.47 (s) 8.35 (s) 0.63 (s)
8 4.12 (s) 9.23 (s) 17.50 (s) 12.38 (s) 0.68 (s)

10 12.32 (s) 9.39 (s) 17.96 (s) 61.11 (s) 1.17 (s)

an intermediate node has children ETs (Ch ≠ ∅) and op ∈
{min,max}. Let S(T ) denote the list of leafs of T .

Given an AST of a mcSTL∗ formula ψ, we construct
the ET T as follows: (a) a terminal conjunction node,
which has only predicates as operands, is translated to
a leaf node, (b) non-terminal conjunction and disjunction
nodes are translated to intermediate nodes with children ETs
corresponding to its operands and op = min and op = max,
respectively, (c) always and eventually, nodes are translated
to nodes with children for each time point in their associated
time window and op = min and op = max, respectively, and
(d) until operators are translated as a combination of the
previous two rules. Essentially, ETs capture the recursive
evaluation process of the robustness scores in (3) and Def. 6.

Let ν ∶ S(T )→ R be an valuation for the leafs of ET T .
We define the tree evaluation η(T , ν) by

η(T , ν) =
⎧⎪⎪⎨⎪⎪⎩

op(T1, . . . ,T∣Ch∣), T` ∈ Ch ≠ ∅,
ν(T ), otherwise.

(35)

Lemma 1. Let T be an ET and ν and ν′ two leaf valuations.
If ν′(ς) ≥ ν(ς) for all ς ∈ S(T ), then η(T , ν′) ≥ η(T , ν).

Proof. The proof follows by structural induction over ET T .
Base case: Let T = (nop,∅) be a leaf node. We have
η(T , ν′) = ν′(T ) ≥ ν(T ) = η(T , ν).
Induction step: Let T = (op,Ch) be a tree with chil-
dren, i.e., Ch ≠ ∅. In case op = min, we have that
η(T , ν) = minTch∈Ch{η(Tch, ν)}. By the induction hypoth-
esis, it follows that η(Tch, ν′) ≥ η(Tch, ν) for all Tch ∈
Ch. Finally, we have η(T , ν′) = minTch∈Ch{η(Tch, ν′)} ≥
minTch∈Ch{η(Tch, ν)} = η(T , ν). The case op = max fol-
lows similarly.

Proof of Theorem 2.

Proof. Let Tφ be the ET of mcSTL∗ formula φ, and s be a
signal such that ρ(s, φ, t) > 0.

We define ET valuation νφ ∶ S(Tφ)→ R such that
νφ(T ) = minς∈chφ(φT ) ρ(s, ς, tT ), where (tT , φT ) is the
time-formula pair associated with ET leaf node T . By
construction, each T ∈ S(φ) corresponds to a terminal
conjunction whose operands are predicates covering all
predicate classes Σ. Thus, the tree evaluation captures
the robustness computation for signal s with respect to

φ at time t. Formally η(Tφ, ν) = ρ(s, φ, t). Similarly, we
define ET valuation νφ,σ ∶ S(Tφ)→ R such that νφ(T ) =
minς∈chφ(φT ) ρσ(s, ς, tT ). The tree evaluation using νφ,σ
captures the robustness score with respect to predicate class
σ ∈ Σ. Formally, η(Tφ, νφ,σ) = ρσ(s, φ, t),∀σ ∈ Σ.

Since all terminal conjunctions have predicates
from all classes as operands, their robustness with
respect to any class is defined, i.e., not equal to ∅.
It follows that νφ,σ(T ) = minς∈chσ

φ
(φT ) ρ(s, ς, tT ) ≥

minς∈chφ(φT ) ρ(s, ς, tT ) = νφ(T ) since chσφ(T ) ⊂ chφ(T )
for all T ∈ S(Tφ) and σ ∈ Σ, where chσφ(T ) = {ς ∈
chφ(T ) ∣ L(ς) = σ}. Thus, by Lemma 1 we have
ρσ(s, φ, t) = η(Tφ, νφ,σ) ≥ η(Tφ, νφ) = ρ(s, φ, t) which
concludes the proof.

References

Badithela A, Graebener JB, Ubellacker W, Mazumdar EV, Ames
AD and Murray RM (2023) Synthesizing reactive test
environments for autonomous systems: testing reach-avoid
specifications with multi-commodity flows. In: 2023 IEEE
International Conference on Robotics and Automation (ICRA).
IEEE, pp. 12430–12436.

Baier C and Katoen JP (2008) Principles of model checking. MIT
press.

Belta C, Yordanov B and Gol EA (2017) Formal methods for
discrete-time dynamical systems, volume 89. Springer.

Berman S, Halász A, Hsieh MA and Kumar V (2009) Optimized
stochastic policies for task allocation in swarms of robots.
IEEE transactions on robotics 25(4): 927–937.

Bhatia A, Kavraki LE and Vardi MY (2010) Sampling-based
motion planning with temporal goals. In: 2010 International
Conference on Robotics and Automation. IEEE, pp. 2689–
2696.

Birk A and Carpin S (2006) Merging occupancy grid maps from
multiple robots. Proceedings of the IEEE 94(7): 1384–1397.

Bresina JL, Jónsson AK, Morris PH and Rajan K (2005)
Activity planning for the mars exploration rovers. In:
International Conference on International Conference on
Automated Planning and Scheduling. pp. 40–49.

Brzoska C (1998) Programming in metric temporal logic.
Theoretical computer science 202(1-2): 55–125.

Prepared using sagej.cls



Cardona and Vasile 19

Buyukkocak AT and Aksaray D (2022) Temporal relaxation
of signal temporal logic specifications for resilient control
synthesis. In: 2022 IEEE 61st Conference on Decision and
Control (CDC). IEEE, pp. 2890–2896.

Caballero A and Silano G (2023) A signal temporal logic motion
planner for bird diverter installation tasks with multi-robot
aerial systems. IEEE Access .

Cai M, Leahy K, Serlin Z and Vasile CI (2021) Probabilistic
coordination of heterogeneous teams from capability temporal
logic specifications. IEEE Robotics and Automation Letters
7(2): 1190–1197.

Cardona GA and Calderon JM (2019) Robot swarm navigation
and victim detection using rendezvous consensus in search and
rescue operations. Applied Sciences 9(8): 1702.

Cardona GA, Kamale D and Vasile CI (2023a) Mixed integer linear
programming approach for control synthesis with weighted
signal temporal logic. In: Proceedings of the 26th ACM
International Conference on Hybrid Systems: Computation and
Control. pp. 1–12.

Cardona GA, Leahy K, Mann M and Vasile CI (2023b) A flexible
and efficient temporal logic tool for python: Pytelo. arXiv
preprint arXiv:2310.08714 .

Cardona GA, Leahy K and Vasile CI (2023c) Temporal logic swarm
control with splitting and merging. In: 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, pp.
12423–12429.

Cardona GA, Ramirez-Rugeles J, Mojica-Nava E and Calderon
JM (2021) Visual victim detection and quadrotor-swarm
coordination control in search and rescue environment.
International Journal of Electrical and Computer Engineering
11(3): 2079.

Cardona GA, Saldaña D and Vasile CI (2022) Planning for modular
aerial robotic tools with temporal logic constraints. In: 2022
Conference on Decision and Control (CDC). IEEE, pp. 2878–
2883.

Cardona GA and Vasile CI (2022) Partial satisfaction of signal
temporal logic specifications for coordination of multi-robot
systems. In: Algorithmic Foundations of Robotics XV:
Proceedings of the Fifteenth Workshop on the Algorithmic
Foundations of Robotics. Springer, pp. 223–238.

Cardona GA and Vasile CI (2023) Preferences on partial satisfac-
tion using weighted signal temporal logic specifications. In:
2023 European Control Conference (ECC). IEEE, pp. 1–6.

Chen Y, Ding XC, Stefanescu A and Belta C (2011) Formal
approach to the deployment of distributed robotic teams. IEEE
Transactions on Robotics 28(1): 158–171.

Choset H (2000) Coverage of known spaces: The boustrophedon
cellular decomposition. Autonomous Robots 9: 247–253.

Diaz-Mercado Y, Jones A, Belta C and Egerstedt M (2015) Correct-
by-construction control synthesis for multi-robot mixing. In:
Conference on Decision and Control. IEEE, pp. 221–226.

Dixit DSK and Dhayagonde MS (2014) Design and implementation
of e-surveillance robot for video monitoring and living body
detection. International Journal of Scientific and Research
Publications 4(4): 2250–3153.

Dokhanchi A, Hoxha B and Fainekos G (2014) International
Conference on Runtime Verification, Toronto, ON, Canada.,
chapter On-Line Monitoring for Temporal Logic Robustness.
Springer. ISBN 978-3-319-11164-3, pp. 231–246.

Donzé A and Maler O (2010) Robust satisfaction of temporal
logic over real-valued signals. In: International Conference on
Formal Modeling and Analysis of Timed Systems. Springer, pp.
92–106.

Fainekos GE and Pappas GJ (2009) Robustness of temporal
logic specifications for continuous-time signals. Theoretical
Computer Science 410(42): 4262–4291.

Finucane C, Jing G and Kress-Gazit H (2010) Ltlmop:
Experimenting with language, temporal logic and robot
control. In: 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, pp. 1988–1993.

Fu JGM, Bandyopadhyay T and Ang MH (2009) Local voronoi
decomposition for multi-agent task allocation. In: 2009 IEEE
International Conference on Robotics and Automation. IEEE,
pp. 1935–1940.

Guo M and Dimarogonas D (2015) Multi-agent plan reconfigura-
tion under local ltl specifications. The International Journal of
Robotics Research 34(2): 218–235.

Guo M and Dimarogonas DV (2016) Task and motion coordination
for heterogeneous multiagent systems with loosely coupled
local tasks. IEEE Transactions on Automation Science and
Engineering 14(2): 797–808.

Guo M and Dimarogonas DV (2017) Task and motion coordination
for heterogeneous multiagent systems with loosely coupled
local tasks. IEEE Transactions on Automation Science and
Engineering 14(2): 797–808.

Guo M and Zavlanos MM (2017) Distributed data gathering with
buffer constraints and intermittent communication. In: 2017
IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 279–284.

Gurobi Optimization L (2020) Gurobi optimizer reference manual.
URL http://www.gurobi.com.

Hagberg AA, Schult DA and Swart PJ (2008) Exploring network
structure, dynamics, and function using networkx. In:
Varoquaux G, Vaught T and Millman J (eds.) Proceedings of
the 7th Python in Science Conference. Pasadena, CA USA, pp.
11 – 15.

Hopcroft JE, Motwani R and Ullman JD (2001) Introduction to
automata theory, languages, and computation. Acm Sigact
News 32(1): 60–65.

Hustiu S, Dimarogonas DV, Mahulea C and Kloetzer M (2023)
Multi-robot motion planning under mitl specifications based on
time petri nets. In: 2023 European Control Conference (ECC).
IEEE, pp. 1–8.

Jones A, Leahy K, Vasile C, Sadraddini S, Serlin Z, Tron R and
Belta C (2019) Scratchs: Scalable and robust algorithms for
task-based coordination from high-level specifications. In:
International Symposium of Robotics Research. pp. 224–241.

Kamale D, Karyofylli E and Vasile CI (2021) Automata-based
optimal planning with relaxed specifications. In: 2021
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, pp. 6525–6530.

Kantaros Y, Guo M and Zavlanos M (2019) Temporal logic task
planning and intermittent connectivity control of mobile robot
networks. IEEE Transactions on Automatic Control 64(10):
4105–4120.

Karaman S and Frazzoli E (2011) Linear temporal logic vehicle
routing with applications to multi-uav mission planning.
International Journal of Robust and Nonlinear Control 21(12):
1372–1395.

Prepared using sagej.cls

http://www.gurobi.com


20 The International Journal of Robotics Research XX(X)

Kloetzer M and Mahulea C (2014) A petri net based approach for
multi-robot path planning. Discrete Event Dynamic Systems
24: 417–445.

Kurtz V and Lin H (2022) Mixed-integer programming for signal
temporal logic with fewer binary variables. IEEE Control
Systems Letters 6: 2635–2640.

Lacerda B and Lima PU (2019) Petri net based multi-robot task
coordination from temporal logic specifications. Robotics and
Autonomous Systems 122: 103289.

Leahy K, Jones A, Schwager M and Belta C (2015) Distributed
information gathering policies under temporal logic con-
straints. In: 2015 IEEE Conference on Decision and Control
(CDC). IEEE, pp. 6803–6808.

Leahy K, Serlin Z, Vasile CI, Schoer A, Jones AM, Tron R and
Belta C (2021) Scalable and robust algorithms for task-based
coordination from high-level specifications (scratches). IEEE
Transactions on Robotics .

Liu W, Leahy K, Serlin Z and Belta C (2023) Robust multi-agent
coordination from catl+ specifications. In: 2023 American
Control Conference (ACC). IEEE, pp. 3529–3534.

Liu Z, Dai J, Wu B and Lin H (2017) Communication-aware motion
planning for multi-agent systems from signal temporal logic
specifications. In: 2017 American Control Conference (ACC).
IEEE, pp. 2516–2521.

Madridano A, Al-Kaff A, Martı́n D and De La Escalera A (2021)
Trajectory planning for multi-robot systems: Methods and
applications. Expert Systems with Applications 173: 114660.

Mahajan A (2010) Presolving mixed-integer linear programs.
Wiley Encyclopedia of Operations Research and Management
Science : 4141–4149.

Maler O and Nickovic D (2004) Monitoring temporal properties
of continuous signals. In: Formal Techniques, Modelling and
Analysis of Timed and Fault-Tolerant Systems. Springer, pp.
152–166.

Mehdipour N, Vasile CI and Belta C (2019) Arithmetic-geometric
mean robustness for control from signal temporal logic
specifications. In: 2019 American Control Conference (ACC).
IEEE, pp. 1690–1695.

Mehdipour N, Vasile CI and Belta C (2020) Specifying user
preferences using weighted signal temporal logic. IEEE
Control Systems Letters 5(6): 2006–2011.

Nikou A, Tumova J and Dimarogonas DV (2016) Cooperative
task planning of multi-agent systems under timed temporal
specifications. In: 2016 American Control Conference (ACC).
IEEE, pp. 7104–7109.

Notomista G, Mayya S, Hutchinson S and Egerstedt M (2019) An
optimal task allocation strategy for heterogeneous multi-robot
systems. In: 2019 18th European Control Conference (ECC).
IEEE, pp. 2071–2076.

Pant YV, Abbas H, Quaye RA and Mangharam R (2018) Fly-
by-logic: Control of multi-drone fleets with temporal logic
objectives. In: International Conference on Cyber-Physical
Systems. IEEE, pp. 186–197.

Parr T (2007) The definitive ANTLR reference: building domain-
specific languages. Pragmatic Bookshelf.

Raman V, Donzé A, Maasoumy M, Murray RM, Sangiovanni-
Vincentelli A and Seshia SA (2014) Model predictive control
with signal temporal logic specifications. In: 2014 Annual
Conference on Decision and Control (CDC). IEEE, pp. 81–87.

Sadraddini S and Belta C (2015) Robust temporal logic model
predictive control. In: Communication, Control, and
Computing (Allerton), 2015 Annual Allerton Conference on.
IEEE, pp. 772–779.

Sahin YE, Nilsson P and Ozay N (2017) Provably-correct
coordination of large collections of agents with counting
temporal logic constraints. In: 2017 International Conference
on Cyber-Physical Systems (ICCPS). IEEE, pp. 249–258.

Sahin YE, Nilsson P and Ozay N (2019) Multirobot coordination
with counting temporal logics. IEEE Transactions on Robotics
36(4): 1189–1206.

Schillinger P, Bürger M and Dimarogonas DV (2018) Simultaneous
task allocation and planning for temporal logic goals in
heterogeneous multi-robot systems. The international journal
of robotics research 37(7): 818–838.

Sewlia M, Verginis CK and Dimarogonas DV (2023) Maps2: Multi-
robot anytime motion planning under signal temporal logic
specifications. arXiv preprint arXiv:2309.05632 .

Sun D, Chen J, Mitra S and Fan C (2022) Multi-agent motion
planning from signal temporal logic specifications. IEEE
Robotics and Automation Letters 7(2): 3451–3458.

Sundram J, Van Nguyen D, Soh GS, Bouffanais R and Wood K
(2018) Development of a miniature robot for multi-robot occu-
pancy grid mapping. In: 2018 3rd International Conference
on Advanced Robotics and Mechatronics (ICARM). IEEE, pp.
414–419.

Tkachev I and Abate A (2013) Formula-free finite abstractions
for linear temporal verification of stochastic hybrid systems.
In: Proceedings of the international conference on Hybrid
systems: computation and control. pp. 283–292.

Tripicchio P, Satler M, Dabisias G, Ruffaldi E and Avizzano
CA (2015) Towards smart farming and sustainable agriculture
with drones. In: International Conference on Intelligent
Environments. IEEE, pp. 140–143.

Tumova J and Dimarogonas DV (2016) Multi-agent planning
under local ltl specifications and event-based synchronization.
Automatica 70: 239–248.

Ulusoy A, Smith SL, Ding XC, Belta C and Rus D (2011) Optimal
multi-robot path planning with temporal logic constraints. In:
2011 IEEE/RSJ international conference on intelligent robots
and systems. IEEE, pp. 3087–3092.

Ulusoy A, Smith SL, Ding XC, Belta C and Rus D (2013)
Optimality and robustness in multi-robot path planning with
temporal logic constraints. The International Journal of
Robotics Research 32(8): 889–911.

Vasile CI, Aksaray D and Belta C (2017) Time window temporal
logic. Theoretical Computer Science 691: 27–54.

Vasile CI and Ulusoy A (2024) Ltl optimal multi-agent plan-
ner (lomap). https://github.com/wasserfeder/

lomap.
Xu Z and Julius AA (2016) Census signal temporal logic inference

for multiagent group behavior analysis. IEEE Transactions on
Automation Science and Engineering 15(1): 264–277.

Yu P and Dimarogonas DV (2021) Distributed motion coordination
for multirobot systems under ltl specifications. IEEE
Transactions on Robotics 38(2): 1047–1062.

Yu X, Yin X and Lindemann L (2023) Efficient stl control synthesis
under asynchronous temporal robustness constraints. arXiv
preprint arXiv:2307.12855 .

Prepared using sagej.cls

https://github.com/wasserfeder/lomap
https://github.com/wasserfeder/lomap

	1 Introduction
	1.1 General Overview of the Approach

	2 Literature Review
	3 Preliminaries and Notation
	3.1 Signal Temporal Logic

	4 Problem Formulation
	4.1 Environment, Agent, and Resource Models
	4.2 Capability Temporal Logic with Resource Constraints
	4.3 Problem Statement

	5 Multi-robustness for STL Specifications with Disjoint Predicate Classes
	5.1 mcSTL and mcSTL* Discussion about Limitations and Connections

	6 Mixed Integer Linear Programming Encoding
	6.1 Agents' Dynamics Encoding
	6.2 Resource Dynamics Encoding
	6.3 CaTL Specification Encoding
	6.4 Resources Cross-consumption Encoding
	6.5 Objective Definition
	6.6 Agent and Resource Assignments

	7 Encoding Generalization
	7.1 Generalized storage configurations
	7.1.1 Case 1 (Mutually Exclusive):
	7.1.2 Case 2 (Overlapping):

	7.2 Generalized creation, destruction, and gradual consumption of resources
	7.2.1 Creation and destruction of resources:
	7.2.2 Creation of resources on demand:
	7.2.3 Gradual consumption of resources:


	8 Analysis and Results
	8.1 Basic Example
	8.2 Resource storage and types
	8.2.1 Case study 1 – compartmental storage with divisible resources
	8.2.2 Case study 2 – compartmental storage with indivisible resources
	8.2.3 Case study 3 – uniform resource storage with divisible resource type
	8.2.4 Case study 4 – uniform resource storage with indivisible resource type

	8.3 Robustness and satisfaction comparison for CaTL
	8.4 Runtime performance comparison

	9 Conclusions and Future Work
	A Proof of Theorem 2

