
Control in Belief Space with
Temporal Logic Specifications using
Vision-based Localization

Journal Title
XX(X):1–20
c©The Author(s) 0000

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Kevin Leahy1*, Eric Cristofalo2*, Cristian-Ioan Vasile3*, Austin Jones1,
Eduardo Montijano4, Mac Schwager2, and Calin Belta5

Abstract
We present a solution for operating a vehicle without global positioning infrastructure while satisfying constraints
on its temporal behavior, and on the uncertainty of its position estimate. The proposed solution is an end-to-
end framework for mapping an unknown environment using aerial vehicles, synthesizing a control policy for a
ground vehicle in that environment, and using a quadrotor to localize the ground vehicle within the map while it
executes its control policy. This vision-based localization is noisy, necessitating planning in the belief space of
the ground robot. The ground robot’s mission is given using a language called Gaussian Distribution Temporal
Logic (GDTL), an extension of Boolean logic that incorporates temporal evolution and noise mitigation directly
into the task specifications. We use a sampling-based algorithm to generate a transition system in the belief
space and use local feedback controllers to break the curse of history associated with belief space planning.
To localize the vehicle, we build a high-resolution map of the environment by flying a team of aerial vehicles
in formation with sensor information provided by their onboard cameras. The control policy for the ground
robot is synthesized under temporal and uncertainty constraints given the semantically labeled map. Then the
ground robot can execute the control policy given pose estimates from a dedicated aerial robot that tracks and
localizes the ground robot. The proposed method is validated using two quadrotors to build a map, followed by
a two-wheeled ground robot and a quadrotor with a camera for ten successful experimental trials.
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1 Introduction

In this paper, we propose a solution to the following
problem: localize and control a noisy ground robot under
temporal logic (TL) specifications in an a priori unknown
environment with no global positioning infrastructure.
Robots operating in the real world typically require accurate
pose estimates to compute effective control actions, but
in many cases, such as dense urban environments (Hsieh
et al. 2007), indoors, or on other planets, GPS may be
unavailable or unreliable. Furthermore, it is advantageous to
consider an aerial robot for on-the-fly tracking of the ground
robot because it can aid in terms of localization as well as
obstacle avoidance, leaving the ground robot dedicated to
other tasks.

Consider a robot that must perform the following task
in an outdoor disaster site: “Periodically collect soil
samples from the forest, then the beach. Deliver samples
to researchers. Go to a charging station after tasks are

complete. Always avoid known obstacles and restricted
zones. Ensure that the uncertainty (measured by variance)
of the robot’s pose is always below 1 m2.” Such a
task may be specified using Gaussian distribution TL
(GDTL) (Vasile et al. 2016), a specification language
that incorporates the robot’s desired position as well as
uncertainty. Unfortunately, the initial position of the robot
is completely unknown and common methods to synthesize
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Figure 1. The proposed framework includes three major
components: 1) mapping in unknown environments, 2)
control synthesis, and 3) online tracking and localization of
a ground robot.

a control policy for the robot, even while operating under
observation noise, will not be sufficient.

We propose an end-to-end framework (see Fig. 1) that
includes a two-wheeled ground robot and a team of aerial
robots, i.e., N quadrotors, each equipped with a downward
facing camera, an IMU, and an altimeter. The team of
quadrotors are first responsible for building the map of
the unknown environment using their onboard camera
images. Then a closed-loop control policy is computed,
given the map, for the ground robot to satisfy its mission
specification. Finally, the ground robot operates under the
computed control policy with the measurements provided
by a single quadrotor tracking it from above. Specifically,
these three phases can be described as follows:

1. Generate a mosaic map image of the unknown
environment using purely vision and homography-
based formation control (Montijano et al. 2016) with
multiple quadrotors.

2. Label the generated map and define the mission
specification (to be completed by human operator)
and then automatically synthesize a satisfying control
policy for ground robot using GDTL-Feedback
Information RoadMaps, or GDTL-FIRM (Vasile
et al. 2016).

3. Simultaneously track and localize the ground robot
with a single aerial vehicle using a homography-
based pose estimation and position-based visual
servoing control method.

This work considers the cooperation between ground and
air vehicles and leverages their heterogeneous capabilities
to jointly carry out a mission. While other research exists
for cooperation among mixed teams of ground and air
vehicles, existing research assumes the presence of GPS
on either the ground vehicles (Vaughan et al. 2000) or on
the aerial vehicles (Hsieh et al. 2007; Grocholsky et al.
2006). We, on the other hand, assume the robots are
working in an environment with no external positioning
framework whatsoever. Other work that has focused on
planning without GPS, such as Forster et al. (2013), uses
the visual capabilities of an aerial vehicle to enhance a
map built by a ground vehicle. In Mueggler et al. (2014),

an aerial and ground vehicle work together without GPS,
but do not satisfy a complex mission such as those that
can be specified using GDTL. In this work, we assume
the map is built by a team of aerial vehicles using their
high vantage point so that the ground vehicle can perform
a specific task based on the resulting map. Further, unlike
these works, in our work, the mission to be carried out is
specified using GDTL, allowing for the encoding of much
more complex missions, including specifying constraints
about the uncertainty of the ground vehicle’s localization.

In our solution, we utilize a vision-based mapping
process to first map the unknown environment prior to
executing the mission. The GDTL specification quantifying
the robot’s success in the mission is then defined using
this map. Vision-based mapping via aerial cameras allows
for accurate pose estimation in complicated environments
while only employing cheap, readily-available RGB
cameras. For example, homography-based visual servoing
methods provide accurate localization with only the use of
camera data (Benhimane and Malis 2006). In this work,
we make use of homography-based consensus control
methods (Montijano et al. 2016) for the aerial vehicles to
build a mosaic map, and monitor the ground robot with
a Position-Based Visual Servoing (PBVS) control method
designed to keep the robot in the field of view at all times
while guaranteeing sufficient overlap with the map.

We exploit sampling-based techniques to synthesize
switched closed-loop control policies that are guaranteed to
drive a robot with observation noise while achieving high-
level tasks given as temporal logic formulae. Observation
and actuation noise are inherent to ground robot motion,
hence we provide a temporal logic formulation that directly
accounts for this uncertainty. We use Gaussian Distribution
Temporal Logic, which is built from traditional Temporal
Logics but augmented to include state uncertainty.
Traditionally, temporal logic formulae interleave Boolean
logic and temporal operators with system properties to
specify rich global behaviors. In the domain of robotics,
an example of a task that can be encoded in temporal
logic is “Periodically clean the living room and then the
bathroom. Put the trash in the bin in the kitchen or outside.
Go to a charging station after cleaning is complete. Always
avoid the bedroom.” In the absence of observation noise,
tools from formal synthesis can be used to synthesize
control policies that ensure these rich specifications are
met (Maly et al. 2013; Lahijanian et al. 2016). Temporal
logic specifications are much richer than the constraints
typically found in planning problems, e.g., problems in
which a path is planned to reach a goal while avoiding
obstacles (Kaelbling et al. 1998; van den Berg et al. 2011;
Hauser 2011; Bachrach et al. 2012; Vitus and Tomlin
2011; Lesser and Oishi 2015). In this work, we present
an automatic, hierarchical control synthesis algorithm that
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extends tools from formal synthesis and stochastic control
to enforce temporal logic specifications. We evaluate our
algorithm with experiments using a wheeled robot with
noisy actuators localized by an aerial robot with a camera
while performing a persistent navigation task.

While synthesizing control policies to enforce temporal
logic properties under dynamics noise has been extensively
considered in the literature (Zamani et al. 2014),
observation noise has only recently been considered (Maly
et al. 2013; Jones et al. 2013; Leahy et al. 2015; Svorenova
et al. 2013; Ayala et al. 2014). One of the technical
challenges of incorporating observation noise into formal
synthesis is that satisfaction of temporal logic properties
is in general defined with respect to the state trajectory
of the system rather than the evolution of the belief (as
measured by a posterior probability distribution) about this
state. In this paper, we introduce the paradigm of Gaussian
distribution temporal logic (GDTL) which allows us to
specify properties involving the uncertainty in the state of
the system, e.g. “Ensure that the uncertainty (measured by
variance) of the robot’s x position is always below 0.1m2”.
GDTL formulae can be translated to Rabin automata using
off-the-shelf tools (Jones et al. 2013).

The problem of synthesizing controllers to enforce
a GDTL specification is in general a discrete time,
continuous space partially observable Markov decision
process (POMDP). Our approach approximates the optimal
solution with a computationally feasible hierarchical
sampling-based control synthesis algorithm. Most existing
sampling-based algorithms sample points directly in belief
space (Patil et al. 2015; Burns and Brock 2007; Bry
and Roy 2011; Prentice and Roy 2009), which requires
synthesizing distribution-to-distribution controllers. Such
synthesis problems are computationally difficult and
may require significant modeling on the part of a
control designer. To circumvent these challenges, we
base the core of our algorithm on feedback information
roadmaps (FIRMs). The FIRM motion planner extends
probabilistic roadmaps (PRMs) (Thrun et al. 2005), to
handle observation noise. In FIRM, points are sampled
directly in the state space (rather than in belief space) and
feedback control policies, e.g. linear quadratic Gaussian
(LQG) controllers, stabilize the system about nodes along
paths in the roadmap. The behavior of the closed-loop
system is then used to predict how the state estimate
evolves. The associated trajectories of the estimate induce a
roadmap in the belief space.

If the goal of the problem were only to reach a given
region of the belief space, one could construct a switched
controller by finding a path in the roadmap from the initial
distribution to a node contained within the goal set and
then applying the corresponding sequence of controllers.
During the application of the controller, however, we

do not have any guarantees about whether or not the
evolution of the system will violate the given specification.
Therefore, we can only estimate with what probability
the given controller drives the distribution to the next
collection of nodes without violating the specification.
This allows us to construct a Markov decision process in
which the states correspond to nodes, actions correspond to
controller pairs, and transition probabilities correspond to
the probability of the closed-loop system reaching the next
node without violating the specification. Applying dynamic
programming to this system yields a policy that maps the
current region of belief states to the pair of controllers
to be applied. Combining the policy with the synthesized
LQG controllers yields a state-switched feedback controller
that satisfies the system specifications with some minimum
probability.

Given a Rabin automaton constructed from a GDTL
formula and a FIRM, we construct a graph product
between the two, called the GDTL-FIRM, to check if the
state space has been sampled sufficiently to synthesize a
switched controller satisfying the specification with positive
probability. We use techniques similar to those in sampling-
based formal synthesis work (Agha-mohammadi et al.
2014; Karaman and Frazzoli 2009, 2012; Vasile and Belta
2013, 2014) to construct the GDTL-FIRM incrementally
until we find a policy with sufficiently high satisfaction
probability.

1.1 Contributions
There are several contributions presented in this paper.
First, we propose an end-to-end framework for motion
planning with temporal and uncertainty goals supported by
camera-equipped quadrotors. We also introduce Gaussian
Distribution Temporal Logic, a fragment of distribution
temporal logic that is restricted to properties involving the
first and second moments of state distributions, that is used
to formulate a control synthesis problem. Third, we present
a sampling-based algorithm that leverages automata-based
techniques, and Markov decision process (MDP) planning
to generate satisfying control policies for stochastic
ground vehicles. The functioning and performance of our
framework are demonstrated experimentally.

Preliminary versions of parts of this work appear
in Vasile et al. (2016) and Cristofalo et al. (2016). The
novel elements of this work include the presentation of
the entire end-to-end framework in a unified way with all
details and proofs. We provide details on the conversion
of GDTL to LTL for the construction of automata, proof
of completeness, and an expanded discussion of the
dynamic programming solution, as well as a comparison
of localization with fixed camera networks versus a mobile
camera mounted on a quadrotor.
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1.2 Organization
The remainder of the paper is organized as follows. In
Sec. 2, we formally introduce GDTL and state the problem
under consideration. Our end-to-end solution method is
presented in three parts. First, the mapping phase in Sec. 3.
We propose a method for control synthesis in Sec. 4.
The solution method concludes with the localization and
tracking of the ground robot in Sec. 5. We present a
case study and experimental results in Sec. 6, and our
conclusions are given in Sec 7.

2 Problem Formulation
In this section, we define the problem of controlling a
robot to satisfy a given GDTL formula with maximum
probability.

Problem 1. Given a ground robot and a team of
N quadrotors with on-board cameras operating in an
unmapped environment, localize the ground robot, and
design and execute a control policy to satisfy a GDTL
formula φ with maximum probability.

Solving Problem 1 involves three main components for
our robotic system, as shown in Fig. 1: first, a team
of quadrotors constructs a mosaic map of the ground
robot’s operating environment, which is then labeled by
a remote operator (Sec. 3). Next, a control policy is
synthesized to satisfy the mission specification φ with
maximum probability (Sec 4). To execute the control policy,
a quadrotor localizes the ground robot using a downward
facing camera (Sec. 5).

2.1 Motion and Observation Model
We consider an agent traveling in an environment according
to dynamics

xk+1 = f (xk, uk, wk) , (1)

where xk is the state of the agent at time k, uk is the input at
time k, and wk is the process noise at time k. The function
f (·) is a locally Lipschitz continuous function representing
the robot dynamics. The state and control space of the agent
are given by X ⊂ Rn and U ⊂ Rp, respectively. For the
moment, we place no assumptions on the distribution of the
process noise wk.

Noisy observations of the agent are given by the function

yk = h (xk, vk) , (2)

where yk is the observation at time k, vk is the observation
noise at time k, and h (·) is a locally Lipschitz continuous
observation function. The observation space is Y ⊂ Rm.
Again, we place no assumptions on the pdf of the
observation noise vk.

The state of the robot is estimated recursively using a
Bayesian filter

bk+1 = τ
(
bk, uk, yk+1

)
, (3)

where bk = p(xk | y1:k, u0:k−1) ∈ B is a probability mea-
sure over the state space X at time k, representing the
belief of the true state of the robot and B is the space of all
such probability measures. The function τ (·) is the update
function for the filter. The prior belief at time 0 is given by
b0. The sequence of beliefs over time b0b1b2 . . . is denoted
by b, and the suffix sequence bibi+1bi+2 . . . is given by bi,
i ≥ 0.

2.2 Gaussian Distribution Temporal Logic
In this section, we define Gaussian Distribution Temporal
Logic (GDTL), a predicate temporal logic defined over
the space of Gaussian distributions with fixed dimension.
GDTL is a fragment of distribution temporal logic
(DTL) (Jones et al. 2013), but with the restriction that
distributions be Gaussian. While we are able to synthesize
control policies for GDTL, synthesizing control policies
for full DTL is still a difficult open problem. DTL differs
from other forms of probabilistic logic, e.g., quantitative
LTL, Probabilistic Computational Tree Logic (CTL), and
Probabilistic Signal Temporal Logic (STL), in that it is
defined over sequences of distributions rather than over
distributions of state sequences. This enables the definitions
of predicates involving higher order moments and non-
linear measures of uncertainty such as Shannon entropy
or mutual information. In the case of Gaussian DTL, this
corresponds to being able to specify how the covariance of
our state estimate should behave over time. Further, GDTL
can be used to express quantitative probability measures via
inequalities involving the inverse Q function.

Let G denote the Gaussian belief space of dimension n,
i.e. the space of Gaussian probability measures over Rn.
For brevity, we identify the Gaussian measures with their
finite parametrization, mean and covariance matrix. Thus,
G = Rn × Sn. For a belief state (x, P ) ∈ G we denote by
Nδ(x, P ) = {b ∈ G | ‖b− (x, P )‖G ≤ δ} the uncertainty
ball of radius δ in the belief space centered at (x, P ), where
‖·‖G over G is a suitable norm in G, e.g., ‖(x, P )‖G =
‖x‖2 + α ‖P‖F with weight α > 0.

Definition 1. GDTL Syntax. The syntax of Gaussian
Distribution Temporal Logic is defined as

φ := > | g ≤ 0 | ¬φ | φ1 ∧ φ2 | φ1Uφ2,

where > is the Boolean constant “True”, g ≤ 0 is a
predicate over G, where g : G → R, ¬ is negation (“Not”),
∧ is conjunction (“And”), and U is “Until”.
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For convenience, we define the additional operators:
φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2), ♦ φ ≡ >Uφ, and � φ ≡
¬ ♦ ¬φ, where ≡ denotes semantic equivalence.

Definition 2. GDTL Semantics. Let b = b0b1 . . . ∈ Gω
be an infinite sequence of belief states. The semantics of
GDTL is defined recursively as

bi |= >
bi |= g ≤ 0 ⇔ g(bi) ≤ 0

bi |= ¬φ ⇔ ¬(bi |= φ)

bi |= φ1 ∧ φ2 ⇔ (bi |= φ1) ∧ (bi |= φ2)

bi |= φ1 ∨ φ2 ⇔ (bi |= φ1) ∨ (bi |= φ2)

bi |= φ1Uφ2 ⇔ ∃j ≥ i s.t. (bj |= φ2)

∧ (bk |= φ1,∀k ∈ {i, . . . j − 1})
bi |= ♦ φ ⇔ ∃j ≥ i s.t. bj |= φ

bi |= � φ ⇔ ∀j ≥ i s.t. bj |= φ

The word b satisfies φ, denoted b |= φ, if and only if
b0 |= φ.

By allowing the definition of the atomic predicates used
in GDTL to be quite general, we can potentially enforce
interesting and relevant properties on the evolution of a
system through belief space. Some of these properties
include

• Bounds on det(P ), the determinant of covariance
matrix P . This is used when we want to bound the
overall uncertainty about the system’s state.

• Bounds on Tr(P ), the trace of covariance matrix P .
This is used when we want to bound the uncertainty
about the system’s state in any direction.

• Bounds on state mean x̂. This is used when we want
to specify where in state space the system should be.

Example 1. Let R be a robot evolving along a straight
line with state denoted by x ∈ R. The belief space for this
particular robot is thus (x̂, P ) ∈ R× [0,∞), where x̂ and
P are its state estimate and covariance obtained from its
sensors. The robot is tasked with going back and forth
between two goal regions (denoted as πg,1 and πg,2 in the
top of Fig. 2). It also must ensure that it never overshoots
the goal regions or lands in obstacle regions πo,1 and πo,2.
The robot must also maintain a covariance P of less than
0.5 m2 at all times and less than 0.3 m2 when in one of the
goal regions. These requirements can be described by the

GDTL formula

φ1d = φavoid ∧ φreach ∧ φu,1 ∧ φu,2 , where
φavoid = � ¬((box(x̂,−4, 0.35) ≤ 1)

∨(box(x̂, 4, 0.35) ≤ 1))
φreach = � ♦ (box(x̂,−2, 0.35) ≤ 1)

∧ � ♦ (box(x̂, 2, 0.35) ≤ 1)
φu,1 = � (P < 0.5)
φu,2 = � ((box(x̂,−2, 0.35) ≤ 1)

∧(box(x̂, 2, 0.35) ≤ 1))⇒ (P < 0.3) ,

(4)

where box (x̂, xc, a) =
∥∥aT (x̂− xc)

∥∥
∞ is a function

bounding x̂ inside an interval of size 2 |a| centered at
xc. Subformula φavoid encodes keeping the system away
from the obstacle regions. Subformula φreach encodes
periodically visiting the goal regions. Subformula φu,1
encodes maintaining the uncertainty below 0.5 m2 globally
and subformula φu,2 encodes maintaining the uncertainty
below 0.3 m2 in the goal regions.

The belief space associated with this problem is shown
in the bottom of Fig. 2. The vertical lines in the figure
correspond to the borders between the satisfaction and
violation of predicates in (4), e.g. the level sets that are
induced by the predicates when inequalities are replaced
with equality. In the figure, + denotes that the predicate
is satisfied in that region and - indicates that it is not. An
example trajectory that satisfies (4) is shown with black
dots∗. Note that every point in this belief trajectory has
covariance P less than 0.5, which satisfies φu,1. Further,
the forbidden regions in φavoid (marked with red stripes)
are always avoided while each of the goal regions in
φreach (marked with green stars) are each visited. Further,
whenever the belief is in a goal region, it has covariance P
less than 0.3, which means φu,2 is satisfied.

2.3 GDTL synthesis problem definition
Solving Problem 1 requires the ability to synthesize a
control policy that will satisfy a given GDTL specification.
Here we formalize the problem of synthesizing such a
policy:

Problem 2. GDTL Maximum Probability Problem. Let
φ be a given GDTL formula and let the system evolve
according to dynamics (1), with observation dynamics (2),
and using Bayesian filter (3). Find a policy µ∗ such that

µ∗ = arg max
µ∈M(G,U)

Pr[b |= φ]

subject to (1), (2), (3),
(5)

∗Note that we consider a discrete time system in this example, and
therefore the trajectory consists of a sequence of points in the state space.
The black lines connecting those points only serve to clarify the sequence
in which those states are visited.
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Figure 2. (Top) The state space of a system evolving along
one dimension and (Bottom) the predicates from (4) as
functions of the belief of the system from Ex. 1.

where M (G,U) denotes the admissible policies mapping
beliefs in G to control actions in U .

Admissible policies must be deterministic and Borel
measurable functions from G to U , otherwise the problem
described by (5) is intractable. Thus, in our solution
presented in Sec. 4 we restrict the space of policies similar
to (Agha-mohammadi et al. 2014).

Example 2. We now present an example with a unicycle
robot moving in a bounded planar environment (Fig. 3)
to demonstrate a realistic GDTL specification. The
specification is given over belief states associated with the
measurement y of the robot as follows: “Visit regions A
and B infinitely many times. If region A is visited, then
only corridor D1 may be used to cross to the right side
of the environment. Similarly, if region B is visited, then
only corridor D2 may be used to cross to the left side
of the environment. The obstacle Obs in the center must
always be avoided. The uncertainty must always be less
than 0.9m2. When passing through the corridors D1 and
D2 the uncertainty must be at most 0.6m2.”

The corresponding GDTL formula is:

φ1 = φavoid ∧ φreach ∧ φu,1 ∧ φu,2 ∧ φbounds (6)
φavoid = � ¬φObs
φreach = �

(
♦ (φA ∧ ¬φD2

UφB) ∧ ♦ (φB ∧ ¬φD1
UφA)

)
φu,1 = � (tr(P ) ≤ 0.9)

φu,2 = �
(
(φD1 ∨ φD2)⇒ (tr(P ) ≤ 0.6)

)
φbounds = � (box(x̂, xc, a) ≤ 1),

where (x̂, P ) is a belief state associated with y, a =[
2
l

2
w 0

]
so that x̂ must remain within a rectan-

gular l × w region with center xc =
[
l
2

w
2 0

]
, l =

4.13m and w = 3.54m. The 5 regions in the envi-
ronment are defined by GDTL predicate formulae

Figure 3. Environment with two regions A and B, two
corridors D1 and D2 and an obstacle Obs.

φReg = (box(x̂, xReg, rReg) ≤ 1), where xReg and rReg
are the center and the dimensions of region Reg ∈
{A,B,D1, D2, Obs}, respectively.

3 Map building

Solving Problem 1 requires knowledge of the operating
environment for the ground robot. The environment must
therefore be mapped so the ground robot can satisfy
its mission. This section serves to explain the process
of building a map of the environment with a team of
quadrotors equipped with cameras. It is worth noting that
this component of our solution framework could be omitted
if given an appropriate high resolution map, such as a
satellite image. Nonetheless, mapping may be necessary
in cases for which satellite imagery doesn’t match recent
changes to the environment, such as following a natural
disaster. Likewise, normal environmental variations, such
as seasonal vegetation and snow cover changes, moving
vehicles in urban areas, and moving equipment in industrial
parks may vary substantially from a satellite image.

3.1 Inter-Image Homography
Map building and ground robot pose estimation rely on the
inter-image homography, Hij ∈ R3×3, which defines the
linear transformation between co-planar three-dimensional
(3D) points described in two different coordinate frames,
i.e., Pi = HijPj , where Pi ∈ R3 and Pj ∈ R3. The
perspective projection of these 3D points yields the
measured image features, pi ∈ R2 and pj ∈ R2, that are
given by the cameras i and j, respectively. These two
image features are related by the following homography,
pi = H̃ijpj , where H̃ij = KHijK

−1 is estimated using
standard least squares estimation (Ma et al. 2004) with at
least four matched image feature points, and K is the known
calibration matrix of the identical cameras. In this work,
we assume that all quadrotors are flying at a sufficiently
high altitude to justify the co-planar requirements of points
on the ground. The rectified homography describes the
transformation between two parallel, calibrated camera
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poses,

Hr
ij =

 cos(ψij) − sin(ψij) −xij
zj

sin(ψij) cos(ψij) − yij
zj

0 0 1− zij
zj

 , (7)

where [xij , yij , zij , ψij ]
T ∈ R4 is the estimated parallel

pose of camera j in the frame of camera i. We remove
the roll and pitch effect of a translating quadrotor from the
acquired image, i.e., Hr

ij = RθiRφiK
−1H̃ijKRT

φj
RT
θj

,
given the roll, φ, and pitch, θ, of each quadrotor. We extract
the relative position from the last column of Hr

ij , given the
altitude of the cameras provided by the altimeter, and the
relative orientation from the upper 2×2 block of Hr

ij .

3.2 Homography-based Formation Control
Homography-based formation control (Montijano et al.
2016) drives the team of quadrotors that generates the high
fidelity mosaic map image, which is a composite image
of the quadrotors’ onboard images while in formation.
The consensus-based kinematic control laws that drive
the formation of quadrotors to their desired relative pose,
[x∗i,j , y

∗
i,j , ψ

∗
i,j ]

T , are functions of the computed rectified
homography from equation (7), i.e.,

wzi = Kw

∑
j∈Ni

(
arctan

[
[Hr

ij ]21

[Hr
ij ]11

]
− ψ∗i,j

)
, (8)

[
vxi
vyi

]
= Kv

∑
j∈Ni

([ [
Hr
ij

]
13[

Hr
ij

]
23

]
−
[
x∗i,j
y∗i,j

])
, (9)

vzi = Kv

∑
j∈Ni

(
1− [Hr

ij ]33

)
, (10)

where [vxi , vyi , vzi ]
T is the translational velocity control

and wzi is the rotational velocity control about the z-axis of
the quadrotor, i.e., its yaw. Note that the element in row a
and column b of Hr

ij is denoted by [Hr
ij ]ab. The relative yaw

does not affect zij , therefore, the relative altitude can be
controlled towards zero using [Hr

ij ]33. The team produces
the mosiac map of the environment when the quadrotors
reach the chosen formation that yields sufficient image
overlap for accurate pose estimation and large enough field
of view to cover the region of interest in the environment.
It is worth noting that this component of our solution
framework could be omitted if a high resolution map is
already available, such as from a satellite image.

With the map constructed , we can synthesize a control
policy that satisfies a GDTL mission specification over
the regions in the map (Sec. 4). In this work, we
assume that these regions are either remotely labeled by

a human operator or that semantic segmentation of the
map allows the agents themselves to recognize relevant
regions of interest in the map. Incorporating semantic
segmentation into our framework is an interesting direction
for future work, but is outside the scope of this paper.
Semantic segmentation and labeling have their own body
of literature (Simonyan and Zisserman 2014; Russakovsky
et al. 2015).

4 Control Policy Synthesis
In this section, we present the details for synthesis of a
control policy for satisfying a GDTL specification. We
use a sampling-based algorithm to turn the continuous
environment into a discrete graph. The nodes in the graph
are beliefs, and the edges are transitions between beliefs.
The transitions correspond to the robot acting under a
feedback controller that drives the robot from one node to
the other. We compute the feedback controllers associated
with transitions by liniarizing our system around the
destination node. Thus the robot moving in the graph can
be represented as a probabilistic transition system, allowing
us to apply existing tools from formal synthesis to obtain
a control policy. Following standard methods, we combine
the probabilistic transition system with the specification to
form a product MDP, which is ultimately used to find a
policy satisfying the specification with highest probability.
This policy is implemented on the robot as a sequence
of switching feedback controllers applied along different
edges of the graph, driving the robot to maximize the
probability of satisfying its specification in the continuous
environment.

4.1 Linearization
We begin by linearizing our system in order to compute an
approximately optimal LQG controller that can be used by
our sampling-based algorithm (Sec. 4.2). Thus, the system
should have noisy linear time-invariant (LTI) dynamics
around randomly sampled states given by

xk+1 = Axk +Buk + wk, (11)

where xk ∈ X is the state of the system, X ⊆ Rn is the
state space, A ∈ Rn×n is the dynamics matrix, B ∈ Rn×p
is the control matrix, uk ∈ U is a control signal, U ⊆ Rp is
the control space, and wk is a zero-mean Gaussian process
with covarianceQ ∈ Rn×n. Example 2 below demonstrates
how this model can be applied to our unicycle robot.

The state is observed indirectly according to the linear
observation model

yk = Cxk + vk, (12)

where yk ∈ Y is a measurement, Y ⊆ Rm is the
observation space, C ∈ Rm×n is the observation matrix
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and vk is a zero-mean Gaussian process with covariance
R ∈ Rm×m. We note that the noise in the pixel space
may not be Gaussian for more accurate lens models or
other measurement models for that matter. Nevertheless, the
additive Gaussian noise assumption is generally sufficient
for most robotics applications, including nonlinear pinhole
cameras used for EKF-SLAM (Davison et al. 2007) or
target tracking with mobile cameras (Li and Jilkov 2001;
Campbell and Whitacre 2007; Cognetti et al. 2018).

We require that the LTI system (11), (12) be controllable
and observable, i.e., (A,B) is a controllable pair and (A,C)
is an observable pair. Moreover, we require that C be full
rank. These requirements apply to many systems, including
nonlinear systems that can be linearized to satisfy the
assumptions. This is demonstrated in example 2 below.

Given the LTI system described above, the belief state at
each time step is characterized by the a posteriori state and
error covariance estimates, x̂k and Pk, i.e., bk = (x̂k, Pk) ∈
B, where B is the space of probability measures over the
state space X at time k. The belief state is maintained via a
Kalman filter (Kalman 1960), which we denote compactly
as

bk+1 = τ(bk, uk, yk+1), b0 = (x̂0, P0) , (13)

where b0 is the known initial belief about the system’s state
centered at x̂0 with covariance P0. The sequence of beliefs
over time b0b1b2 . . . is denoted b, and the suffix sequence
bibi+1bi+2 . . . is given by bi, i ≥ 0.

Note that linearization introduces approximation errors
that have an impact both on the controllers and filters. Both
problems have been extensively studied in the literature,
and are outside the scope of this paper. A detailed
discussion can be found in (Agha-mohammadi et al. 2014)
(in the context of FIRM) and references therein.

Example 2. Continued. We continue our running example
of a unicycle robot moving in the environment shown
in Fig. 3. This robot model is non-linear, but we can
approximate the robot’s dynamics using LTI systems with
Gaussian noise around samples in the workspace. This
heuristic is very common, since the non-linear and non-
Gaussian cases yield recursive filters that do not in general
admit finite parametrization. We first discretize the system
dynamics using Euler’s approximation. The motion model
becomes:

xk+1 = f(xk, uk, wk) = xk +

cos(θk) 0
sin(θk) 0

0 1

 · uk + wk (14)

where xk =
[
pxk p

y
k θk

]T
, pxk , pyk and θk are the position and

orientation of the robot in a global reference frame, uk =[
v′k ω

′
k

]T
= ∆t

[
vk ωk

]T
, vk and ωk are the linear and

rotation velocities of the robot, ∆t is the discretization step,
and wk is a zero-mean Gaussian process with covariance

matrix Q ∈ R3×3. Next, we linearize the system around a
nominal operating point (xd, ud) without noise,

xk+1 = f(xd, ud, 0) +A (xk − xd) +B (uk − ud) + wk,
(15)

where A = ∂f
∂xk

(xd, ud, 0) and B = ∂f
∂uk

(xd, ud, 0) are the

process and control Jacobians, xd =
[
px d py d θd

]T
, and

ud =
[
v′dk ω′dk

]T
. In our framework, we associate with

each belief node Bg centered at (x̂g, P ) an LTI system
obtained by linearization (15) about (x̂g, ug), where ug =
[0.1, 0]T corresponds to 0.1 m/s linear velocity and 0
angular velocity.

Continuing our example, we show how the linear
observation model can be achieved, localizing the robot
with a multiple camera network. This model reflects
the real world constraints of sensor networks, e.g. finite
coverage, finite resolution, and improved accuracy with the
addition of more sensors. Likewise, a linear observation
model can be achieved using cameras (or a network of
cameras as in Fig. 5(a)). The estimation of the planar
position and orientation of the robot in the global frame
is formulated as a least squares problem (structure from
motion) (Ma et al. 2004). The measurement, yk ∈ Y , is
given by the discrete observation model: yk = Cxk + vk.
The measurement error covariance matrix is defined as
R = diag(rx, ry, rθ), where the value of each scalar is
inversely proportional to the number of cameras used in the
estimation, i.e. the number of camera views that identify the
robot. These values are generated from a camera coverage
map (Fig. 5(a)) of the experimental space.

4.2 Sampling-based algorithm
We propose a sampling-based algorithm to solve Pb. 2
that overcomes the curse of dimensionality and history
generally associated with POMDPs. In short, a sampling-
based algorithm iteratively grows a graph T in the
state space, where nodes are individual states, and edges
correspond to motion primitives that drive the system from
state to state (LaValle 2006). The extension procedure is
biased towards exploration of uncovered regions of the state
space. Similar to (Agha-mohammadi et al. 2014), we adapt
sampling-based methods to produce finite abstractions
(e.g., graphs) of the belief space.

Alg. 1 incrementally constructs a transition system T =
(BT , B0,∆T , CT ), where the state space BT is composed
of belief nodes, i.e., bounded hyper-balls in G, ∆T is the
set of transitions, and CT is a set of controllers associated
with edges. The center of a belief node is a belief state
b = (x, P∞), where the mean x is obtained through random
sampling of the system’s linearized state space, and P∞ is
the stationary covariance. The initial belief node is denoted
by B0.
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Sampling-based algorithms are built using a set of
primitive functions that are assumed to be available:

• sample(X ) generates random states from a distribu-
tion over the state space X ,

• nearest(xr, T ) = arg minxu{‖xr − xu‖2 | ∃Pu ∧
Nδ(x

u, Pu) ∈ BT } returns the mean xu of a belief
node’s center in T such that xu is closest to the state
xr using the metric defined on X ,

• near(Bn,BT , γ) returns the closest γ belief nodes
in BT to Bn with respect to the distance between
them induced by ‖·‖G , and

• steer(xi, xt) returns a state obtained by attempting
to drive the system from xi towards xt.

Note that the near function uses the distance ‖·‖G as
defined in Section 2.2, which can incorporate the means
and covariance of the belief nodes. Using these primitive
functions, an extension procedure extend(X , T ) of the
transition system T can be defined as:

1. generate a new sample xr ← sample(X ),
2. find nearest state xu ← nearest(xr, T ), and
3. drive the system towards the random sample xn ←
steer(xu, xr).

For more details about sampling-based algorithms, primi-
tive functions and their implementations see (LaValle 2006;
Karaman and Frazzoli 2011; Vasile and Belta 2013).

Transitions are enforced using local controllers which are
stored in CT . i.e., we assign to each edge e ∈ ∆T a local
controller ece ∈ CT . The local controllers take the form of
LQG controllers as described in Section 4.1, and are used
to enforce computed transitions to states generated using
the nominal robot dynamics within the steer function.
Under the assumptions of our model (Agha-mohammadi
et al. 2014), the local controllers are guaranteed to stabilize
the system to belief nodes along a path in finite time.
Thus we abstract the roadmap to a deterministic system.
In Alg. 1, local controllers are generated using the method
localController(). The design of the node controllers is
presented Sec. 6.2.

Example 2. Continued. Our running example continues,
demonstrating the design of the node controllers. We used
the following simple switching controller to drive the robot
towards belief nodes:

uk+1 =


[
kD
∥∥αT (xg − x̂k)

∥∥
2

kθ(θ
los
k − θ̂k)

]T
if
∣∣∣θlosk − θ̂k∣∣∣ < π

12[
0 kθ(θ

los
k − θ̂k)

]T
, otherwise

,

where kD > 0 and kθ > 0 are proportional scalar gains,
xg is the goal position, θlosk is the line-of-sight angle and
α = [1 1 0]T . We assume, as in (Agha-mohammadi et al.
2014), that the controller is able to stabilize the system
state and uncertainty around the goal belief state (xg, P∞),
where P∞ is the stationary covariance matrix.

The predicates considered in GDTL are defined over the
belief space G and describe sets in this space. However,
because the uncertainty is separate from the temporal
ordering of the satisfaction of the predicates, the sets
determined by the predicates are independent of the
position of a belief state bi in a belief word b. As a
consequence, we can convert a GDTL formula into an LTL
formula.

Denote Gf = {b ∈ G | f(b) ≤ 0}, where f ∈ F(G,R),
and the set of predicates in GDTL formula φ as Fφ.

Definition 3. LTL Equivalent. Let φ be a GDTL formula
and Fφ be the set of all predicates in φ. Let AP be a finite
set such that |AP | = |Fφ| and a bijective map ˜ : Fφ →
AP . Consider the LTL formula ϕ, where each predicate
in Fφ is substituted by its associated atomic proposition in
AP using the map .̃ The semantics of ϕ are given with
respect to infinite words in Gω . Satisfaction of an atomic
proposition b |= p̃ is interpreted as b0 ∈ Gf , where p =
(f ≤ 0) ∈ Fφ. The Boolean and temporal operators retain
their usual meaning.

There exist efficient algorithms that translate LTL
formulae into Rabin automata (Klein and Baier 2006). The
algorithm checks for the presence of a satisfying path using
a deterministic Rabin automaton (DRA)R that is computed
from the GDTL specification.

Definition 4. Rabin Automaton. A (deterministic) Rabin
automaton is a tupleR = (SR, sR0 ,Σ, δ,ΩR), where SR is
a finite set of states, sR0 ∈ SR is the initial state, Σ ⊆ 2Fφ

is the input alphabet, δ : SR × Σ→ SR is the transition
function, and ΩR is a set of tuples (Fi,Bi) of disjoint
subsets of SR which correspond to good (Fi) and bad (Bi)
states.

A transition s′ = δ(s, σ) is also denoted by s σ→R s′. A
trajectory of the Rabin automaton s = s0s1 . . . is generated
by an infinite sequence of symbols σ = σ0σ1 . . . if s0 = sR0
is the initial state of R and sk

σk→R sk+1 for all k ≥ 0.
Given a state trajectory s we define ϑ∞(s) ⊆ SR as the set
of states which appear infinitely many times in s. An infinite
input sequence over Σ is said to be accepted by a Rabin
automaton R if there exists a tuple (Fi,Bi) ∈ ΩR of good
and bad states such that the state trajectory s ofR generated
by σ intersects the set Fi infinitely many times and the
set Bi only finitely many times. Formally, this means that
ϑ∞(s) ∩ Fi 6= ∅ and ϑ∞(s) ∩ Bi = ∅.

4.3 Computing transition and intersection
probability

At this point in our solution, we have a framework for
generating a DRA and a deterministic transition system in
the belief space. Nonetheless, their interaction results in
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Algorithm 1: ConstructTS(x0, φ, ε)

Input: initial state x0, GDTL specification φ, and
lower bound ε

Output: belief transition system T , product MDP P ,
and satisfying policy µ∗

1 convert GDTL formula φ to LTL formula ϕ over the
set of atomic propositions AP = Fφ

2 compute DRAR = (SR, sR0 , 2
AP , δ,ΩR) from ϕ

3 ec0, P
∞
0 ← localController(x0)

4 B0 ← Nδ(x
0, P∞0 )

5 e0 = (B0, B0)

6 πSR0 , πΩR
0 ← computeProb(e0, s0, ec0,R)

7 initialize belief TS T = (BT = {B0}, B0,∆T =
{e0}, CT = {(e0, ec0)})

8 construct product MDP
P = T ×R = (SP = BT × SR, (B0, s0), Act =
BT , δP = {πSR0 },ΩP = {πΩR

0 })
9 for index = 1 to N do

10 xn ← extend(X , T )
11 ecn, P

∞
n ← localController(xn)

12 Bn ← Nδ(x
n, P∞n )

13 Nn ← near(Bn,BT , γ)

14
∆n ← {(Bi, Bn)|xn = steer(xi, xn), Bi ∈ Nn}

∪ {(Bn, Bi)|xi = steer(xn, xi), Bi ∈ Nn}
15 BT ← BT ∪ {Bn}, ∆T ← ∆T ∪∆n

16 SP ← SP ∪ ({Bn} × SR)
17 foreach e = (Bu, Bv) ∈ ∆n do
18 CT ← CT ∪ {(e, ecv)}
19 foreach su ∈ SR s.t. (Bu, su) ∈ SP do
20 πSRe , πΩR

e ← computeProb(e, su, ecv,R)

21 δP ← δP ∪ {πSRe }
22 ΩP ← ΩP ∪ {πΩR

e }

23 ∆n
P = {(p, p′) ∈ ∆P | (p, p′)�T ∈ ∆n}

24 foreach (Fi,Bi) ∈ ΩR do // update ECs

25
Γi = {(p, p′) ∈ ∆n

P |πΩR(e,Fi) = 0

∧ πΩR(e,Bi) > 0, e = (p, p′)�T }
26 ci.update(∆

n
P \ Γi)

27 if existsSatPolicy(P) then
28 solve DP (18) and compute policy µ∗ with

probability of satisfaction p
29 if p ≥ ε then return (T ,P, µ∗)

30 return (T ,P, ∅)

a probabilistic MDP, as the noisy motion and observation
models induce a distribution of possible trajectories in the
DRA as the system travels between one belief node and
another. In this section we describe how to compute these
probabilities.

Given a transition e = (Bu, Bv) and a local controller
ece, we wish to compute the associated transition in the
DRA. However the transition between belief nodes Bu
and Bv depends on the motion and observation noise.
Thus, there exists a distribution of possible trajectories
between those two belief nodes. This in turn means
there is a distribution over trajectories in the DRA,
including with respect to the acceptance condition. It is
unclear how to characterize and estimate these distributions
directly. Therefore we approximate these distributions
using multiple trajectory samples of the closed-loop system
enforcing edge e. Instead of estimating distributions of
DRA trajectories, we compute (marginal) distributions,
over terminal DRA states and over intersection with good
and bad states and neither. Alg. 2 computes the transition
distribution from a start DRA state su to some random DRA
state, and a set of intersection distributions associated with
each pair (Fi,Bi) of the acceptance set ofR. In Alg. 2, the
function sampleBeliefSet(S) returns a random sample
from a uniform distribution over the belief set S.

Algorithm 2: computeProb(e =
(Bu, Bv), su, ece,R)

Input: transition between belief nodes e = (Bu, Bv),
starting DRA state su, controller enforcing e
ece, and deterministic Rabin automatonR

Output: transition distribution πSR , and intersection
distribution πΩR

Parameter: NP – number of particles

1 t← 0|SR|,1
2 rai ← 03,1, ∀(Fi,Bi) ∈ ΩR
3 for p = 1 : NP do
4 bu ← sampleBeliefSet(Bu)

5 b0:T ← ece(bu)
6 for k = 0 to T − 1 do
7 σk ← {f | f(bk) ≤ 0,∀f ∈ Fφ}
8 s = s0:T ← (su

σ0:T−1→ sT )
9 t[sT ]← t[sT ] + 1

10 for (Fi,Bi) ∈ |ΩR| do
11 if Fi ∩ s 6= ∅ then rai[1]← rai[1] + 1
12 if Bi ∩ s 6= ∅ then rai[2]← rai[2] + 1
13 if (Fi ∪ Bi) ∩ s = ∅ then rai[3]← rai[3] + 1

14 return
(
πSR = t

NP , π
ΩR =

{
rai
NP | 1 ≤ i ≤ |ΩR|

})
The distributions we estimate in the DRA R are written

formally as follows. The distribution πSR captures the
probability of the terminal DRA state sv obtained by
executing controller ece to drive the system from belief
node Bu to belief node Bv starting with DRA state
su. That is, πSR = Pr[sv | e, su, ece], where sv ∈ SR is
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the terminal DRA state, su
σ0:T−1→ sv is the (random)

DRA trajectory, b0:T = ece(bu), bu ∈ Bu is the (random)
belief trajectory, and σk ← {f | f(bk) ≤ 0,∀f ∈ Fφ} is the
(random) output word (the sequence of predicate sets that
evaluate true at each step).

We also introduce distributions to keep track of
satisfaction and violation along transitions, which we call
intersections distributions. Each intersection distribution
represents the probability that a DRA trajectory induced by
edge e intersects Fi, Bi or neither, where (Fi,Bi) ∈ ΩR,
and the controller ece was used to drive the system along
the edge e starting from the DRA state su:

πΩR =


Pr[s ∩ Fi | e, su, ece]

Pr[s ∩ Bi | e, su, ece]

Pr[s ∩ (Fi ∪ Bi) | e, su, ece]

∣∣∣∣∣∣∣ ∀(Fi,Bi) ∈ ΩR


(16)

For convenience, we use the following notation
πΩR(e,X) = Pr[s ∩X | e, su, ece], where X ∈
{Fi,Bi,Fi ∪ Bi}.

4.4 GDTL-FIRM Product MDP
In this section, we define a construction procedure of
the product MDP between the (belief) TS T and the
specification DRAR.

Definition 5. GDTL-FIRM MDP. Given a DTS T =
(BT , B0,∆T , CT ), a Rabin automatonR = (SR, sR0 ,Σ =
2AP , δ,ΩR), and the transition and intersection proba-
bilities πSR , πΩR , their product MDP, denoted by P =
T ×R, is a tuple P = (SP , sP0 , Act, δP ,ΩP) where sP0 =
(B0, s

R
0 ) is the initial state; SP ⊆ BT × SR is a finite

set of states which are reachable from the initial state
by run of positive probability (see below); Act = BT
is the set of actions available at each state; δP : SP ×
Act× SP → [0, 1] is the transition probability defined
by δP((Bi, si), Bj , (Bj , sj)) = πSR(sj ; eij , si, CT (eij)),
eij = (Bi, Bj); and ΩP is the set of tuples of good and bad
transitions in the product automaton.

Denote the set of edges of positive probability by ∆P ={(
(Bi, si), (Bj , sj)

)
| δP((Bi, si), Bj , (Bj , sj)) > 0

}
.

A transition in P is also denoted by pi →P pj if
(pi, pj) ∈ ∆P . A trajectory (or run) of positive probability
of P is an infinite sequence p = p0p1 . . ., where p0 = sP0
and pk →P pk+1 for all k ≥ 0.

The acceptance condition for a trajectory of P is encoded
in ΩP , and is induced by the acceptance condition of R.
Formally, ΩP is a set of pairs (FPi ,BPi ), whereFPi = {e ∈
∆P |πΩR(e,Fi) > 0}, BPi = {e ∈ ∆P |πΩR(e,Bi) > 0},
and (Fi,Bi) ∈ ΩR.

A trajectory of P = T ×R is said to be accepting if
and only if there is a tuple (FPi ,BPi ) ∈ ΩP such that the

trajectory intersects the sets FPi and BPi infinitely and
finitely many times, respectively. It follows by construction
that a trajectory p = (B0, s0)(B1, s1) . . . of P is accepting
if and only if the trajectory s0

0:T0−1s
1
0:T1−1 . . . is accepting

inR, where si0:Ti
is the random trajectory ofR obtained by

traversing the transition e = (Bi, Bi+1) using the controller
CT (e) and si0 = si for all i ≥ 0. Note that siTi = si+1

0 .
As a result, a trajectory of T obtained from an accepting
trajectory of P satisfies the given specification encoded
by R with positive probability. We denote the projection
of a trajectory p = (B0, s0)(B1, s1) . . . onto T by p�T =
B0B1 . . .. A similar notation is used for projections of finite
trajectories.

Remark 1. Note that the product MDP in Def. 5 is defined
to be amenable to incremental operations with respect to
the growth of the DTS, i.e., updating and checking for a
solution of positive probability. This property is achieved
by requiring the states of P to be reachable by transitions
in ∆P . The incremental update can be performed using a
recursive procedure similar to the one described in (Vasile
and Belta 2013).

Remark 2. The acceptance condition forP is defined by its
transitions and not in the usual way in terms of its states, due
to the stochastic nature of transitions between belief nodes
in T . We only record the initial and end DRA states of
the DRA trajectories induced by the sample paths obtained
using the local controllers.

4.5 Finding satisfying policies
The existence of a satisfying policy with positive
probability can be checked efficiently on the product
MDP P by maintaining end components EC† for
induced subgraphs of P determined by the pairs in the
acceptance condition ΩP . For each pair FPi ,BPi , let
ci denote the ECs associated with the graphs GPi =
(SP ,∆P \ Γi), where Γi = {(p, p′) ∈ ∆P |πΩR(e,Fi) =
0 ∧ πΩR(e,Bi) > 0, e = (p, p′)�T }. Given ci, checking for
a satisfying trajectory in procedure existsSatPolicy(P)
becomes trivial. We test if there exists an EC that
contains a transition (p, p′) such that πΩR(e,Fi) > 0,
where e = (p, p′)�T . Note that we do not need to
maintain ΩP explicitly, we only need to maintain the ci.
Efficient incremental algorithms to maintain these ECs
were proposed in (Haeupler et al. 2012).

†An EC of an MDP is a sub-MDP such that there exists a policy such that
each node in the EC can be reached from each other node in the EC with
positive probability.
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4.6 Dynamic program for Maximum
Probability Policy

Given a GDTL-FIRM MDP, we can compute the optimal
switching policy to maximize the probability that the given
formula φ is satisfied. This is done by solving the following
optimization problem

arg max
m∈F(SP ,Act)

∧
i∈ΩR

∞∧
j=1

Prm(
∞∨
k=1

sj+k ∩ Fi ∧ sj+k ∈ SP \Bi)

(17)

In other words, we find a policy that maximizes the
probability of visiting the states in Fi infinitely often
and avoiding Bi. To find this policy, we first decompose
P into a set of end components and find the accepting
components. Since any sample path that satisfies φ must
end in an accepting component, maximizing the probability
of satisfying φ is equivalent to maximizing the probability
of reaching such a component. The optimal policy is thus
given by the relationship

J∞(s) =

{
1, s ∈ ci

max
a∈Act(s)

∑
s′ δ(s, a, s

′)J∞(s′) else

m(s) = arg max
a∈Act(s)

∑
s′ δ(s, a, s

′)J∞(s′)

(18)

This can be solved by a variety of methods, including
approximate value iteration and linear programming (Bert-
sekas 2012).

Depending on the probability of satisfying φ, the user
may not wish to accept the solution. Alg 1 allows the
user to specify a minimum satisfaction threshold, ε. If the
probability of satisfaction after solving (18) is less than ε,
or if no satisfying policy exists, the algorithm returns no
solution.

4.7 Complexity
The overall complexity of maintaining the ECs used for
checking for satisfying runs in P is O(|ΩR| |SP |

3
2 ). The

complexity bound is obtained using the algorithm described
in (Haeupler et al. 2012) and is better by a polynomial factor
|SP |

1
2 than computing the ECs at each step using a linear

algorithm. Thus, checking for the existence of a satisfying
run of positive probability can be done in O(|ΩR|) time.
The dynamic programming algorithm is polynomial in
|SP | (Papadimitriou and Tsitsiklis 1987).

4.8 Analysis
In this section we show that the proposed algorithm is
probabilistic complete under uncertainty (PCUU) in the

sense from (Agha-mohammadi et al. 2014). In (Agha-
mohammadi et al. 2014), a strong version of PCUU is
defined which is intractable to achieve, because it requires
searching over the entire space of admissible policies.
Instead, similar to (Agha-mohammadi et al. 2014), we
investigate a weaker version of PCUU that restricts the class
of policies considered. Thus, the completeness guarantee
is with respect to the existence of satisfying policies
parameterized by the random state space graph underlying
the TS T .

Definition 6. (PCUU). Let pmin ∈ [0, 1] be a probability
bound, and φ a GDTL formula. Assume there exists a
control policy µ∗(·; T ∗, b0) such that Pr[b |= φ;µ∗] >
pmin. A sampling-based algorithm is said to be probabilistic
complete under uncertainty (PCUU) if limN→∞ Pr[b |=
φ;µ(·; T , B0)] > pmin, where µ(·; T , b0) is the maximum
probability policy for P = T ×R starting from belief state
b0, and N is the number of belief nodes in T .

Note that in the above definition we made the policy
parametrization explicit.

Assumption 1. Assume that for all predicates f ∈ Fφ of a
GDTL formula φ, the associated belief space regions Gf are
open sets.

The following assumption and proposition are adapted
from (Agha-mohammadi et al. 2014), and are given without
proof.

Assumption 2. Assume that:

1. there is some time step N such that a local controller
stops ece with a positive probability, i.e., ∃N <∞
such that PN (Bj | b, ece) > 0 for all b;

2. local controllers ece(·;xj) are Lipschitz continuous
in their parameters xj , the mean of the belief state
that the controller converges to;

3. the belief transition pdf in (3) is Lipschitz continuous
in the control u;

4. absorption regions (belief nodes) have bounded
change in measure with respect to their con-
trollers’ parameters, i.e., given controller ec(·;x) and
ec′(·;x′) that define belief nodes B and B′, there
exists r > 0 and c <∞ such that for ‖x− x′‖ < r
we have P1(B 	B′ | b, ec) < c ‖x− x′‖,

where e = (Bi, Bj) is an edge, PN (B | b, ec) is the
transition probability from belief b into the set B under
controller ec in at most N ≥ 1 steps, 	 is the symmetric
difference: B 	B′ = (B \B′) ∪ (B′ \B).

The assumption captures the fact that local controllers
should be able to drive the system to their goal regions
in belief space. Moreover, local controllers and robot
dynamics must satisfy regularity conditions that ensure
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incremental improvement of policies, i.e., continuity as
captures by the following proposition.

Proposition 1. (Continuity of absorption probabilities).
Given Assumption 2 the absorption probability P(Bj |
b, ece) is Lipschitz continuous in xj for all e = (Bi, Bj)
and b, where (xj , P

∞) is the center of Bj , and P(B | b, ec)
is the transition probability of b into B under controller ec
in any number of steps.

Proposition 1, adapted from Proposition 1 from (Agha-
mohammadi et al. 2014), establishes the continuity of
absorption probabilities with respect to the randomly
generated states used to compute T . This is an important
claim used to prove the probabilistic completeness under
uncertainty of Algorithm 1, i.e., Theorem 1.

Theorem 1. Algorithm 1 is PCUU.

Proof. The proof of the theorem follows a similar argument
to the one used in (Agha-mohammadi et al. 2014, Theorem
1).

Assume there exists a satisfying policy µ∗(·; T ∗, b0).
Due to Assumption 1, we can define hyper-balls in the
belief space G enclosing each belief node in T ∗ such that
hyper-balls are entirely contained within the same predicate
regions Gf as the associated belief nodes from T ∗. The
hyper-balls are full-dimensional, and therefore have non-
zero measure.

The algorithm only samples state estimates, while the
stationary covariance matrices are computed based on
the associated controllers. We are guaranteed that we
can generate belief nodes within the hyper-balls due to
Assumption 1 and by invoking Proposition 1. Note that
the assumptions of the proposition are met by the Gaussian
noise LTI setup considered in this paper.

Thus, as the number of samples grows unbounded, it
follows that eventually the generated transition system
T will contain belief nodes within each hyper-ball. This
implies that there exists a control policy µ on P = T ×R
such that Pr[b |= φ;µ] > pmin. Again, the last inequality
follows from Proposition 1.

5 Robot Tracking and Localization
This section explains our localization framework—the final
piece of our solution tool chain—consisting of an aerial
vehicle tracking the ground vehicle and estimating its
location in reference to the map that was built in Sec. 3.2.

The ground robot executes its mission in the environment
by traversing the transition system generated in the control
synthesis phase while employing an Extended Kalman
Filter (EKF) to estimate its position with measurements
provided by the dedicated aerial vehicle. A localization
marker on the ground robot includes two distinctly colored

patches that aid in estimating its planar position and
orientation in the environment frame. During localization,
the quadrotor first localizes the centroid of each patch
in the quadrotor’s image frame as two image features,
(pq1,p

q
2). The quadrotor simultaneously calculates the

rectified homography between the quadrotor’s image frame
(q) and the mosaic map image frame (m), i.e., Hr

qm, to
estimate the relative pose between the quadrotor and the
map. The quadrotor projects the robot’s pose in the image
frame (pq1,p

q
2) to the map frame (pm1 ,p

m
2 ) using Hr

qm.
The quadrotor finally computes the ground robot’s final
pose in the environment frame (e), given by (x, y, θ), by
linearly interpolating (pm1 ,p

m
2 ) with the dimensions of

the map image—in pixels—and the known dimensions of
the environment—measured in meters. The centroid of the
projected features yields the position, (x, y), while the
orientation, θ, is calculated using the line that connects the
two projected features.

Meanwhile, a 2D kinematic position-based visual
servoing (PBVS) controller maneuvers the aerial robot
to track the ground robot while simultaneously keeping
sufficient overlap with the mosaic map image for an
accurate homography estimation. Recall that the field-
of-view of the individual cameras is not sufficient to
view the entire environment, hence the requirement for
the composite map image. Homography-based control
drives the quadrotor into a desired position above the
environment that is defined by the estimated position
of the ground robot, (x, y). The quadrotor’s position is
further constrained to a rectangle, R = [xmin, xmax]×
[ymin, ymax], where the boundaries of R affect the amount
of desired overlap with the mosaic image. For example,
setting the boundaries equal to the dimensions of the
environment will drive the quadrotor directly over the
ground robot, thus degrading the homography estimate
when hovering near the environment’s edges. Conversely,
setting the boundaries equal to zero would keep the
quadrotor coincident with the mosaic image frame and will
lose coverage when the ground robot is near the edge of the
environment. The ideal boundary values for a downward
facing camera allows the camera to move just far enough to
see the entire environment, i.e.,[

xmin
ymin

]
= −

[
xmax
ymax

]
=

[
we−ewq

2
he−ehq

2

]
, (19)

where (we, he) are the width and height of the environment
in meters, (ewq,

ehq) are the dimensions of the quadrotor’s
image frame, (wq, hq), after being projected into the
environment frame. This projection is computed as, ewq

ehq
A

 = AK−1

 wq
hq
1

 , (20)
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Figure 4. Coordinate frame definitions for the PBVS
controller from equation (21) include the: environment
frame, mosaic map image frame, quadrotor image frame,
mosaic map frame center, and quadrotor frame. The
quadrotor estimates the ground robot’s pose (x, y, θ) by
transforming the pose in the quadrotor image frame to the
environment frame. The quadrotor manuevers within R
based on the ground robots’s pose in the environment
frame. The quadrotor local frame and mosaic map frame
center are defined with the same orientation as the
environment frame.

given the camera’s altitude, A, and camera calibration
matrix, K.

Finally, we introduce an optional offset, xoffset, that
measures the center of mosaic map image’s virtual position
in space with respect to the quadrotor’s frame.

The final controller is similar to the homography-based
formation controller in Section 3.2. In fact, the yaw
controller of equation (8) and the altitude controller of
equation (10) remain the same with a desired relative pose
equal to zero. The planar control vector is calculated as the
following,[
vx
vy

]
= Kv

([ [
Hr
qm

]
13[

Hr
qm

]
23

]
−
[
linint(x, (0, we), (xmin, xmax))− xoffset
linint(y, (0, he), (ymin, ymax))− yoffset

])
,

(21)

where linint(·) is the linear interpolation function that
transforms the ground robot’s environmental position into
the quadrotor’s desired position within R.

6 Experiments
In this section, we present experimental results. First,
we provide an overview of our experimental setup and
hardware in Sec. 6.1. Next, we present the results of our
case study using a ground robot and a fixed camera network
in Sec. 6.2, followed by results from our entire end-to-end
framework (Sec. 6.3), including results on mapping, control
policy synthesis, and execution of the mission including
localization in Secs. 6.3.1, 6.3.2, & 6.3.3, respectively.

6.1 Experimental Setup
We perform experiments in the Boston University Robotics
Laboratory. We utilize an Optitrack motion capture system ‡

for obtaining ground truth measurements. The ground robot
is a two-wheeled DrRobot X80Pro § with no onboard
sensing. We fit the ground robot with an identifying
marker composed of two uniquely colored patches in
the YUV color space for planar position and orientation
localization (see Fig. 5(b)). Parrot Bebop quadrotors‖

are the aerial vehicles used for map building, and later,
tracking. The Bebop is an off-the-shelf quadrotor platform
with a suite of sensors that include an Inertial Measurement
Unit (IMU), a downward-facing pinhole camera for
optical flow stabilization, an ultrasonic sensor for altitude
measurements, and a 180◦ wide-angle 14 megapixel
forward-facing camera. The large forward-facing camera
produces a 640× 360 pixel stabilized video feed that can be
‘steered’ within the field-of-view of the wide-angle lens to
produce a virtual camera video feed. We position the virtual
camera at the maximum angle of θbebop measured about the
y-axis of the quadrotor (see Fig. 6(a)), where θbebop ≈ 50◦,
and rectify the image for this angle. The ideal rectangle
size for our camera at the desired experiment altitude of 1.8
meters is approximately 0.85× 1.45 meters. Unfortunately,
our camera is not downward-facing, therefore we expand R
to 0.85× 2.0 meters to ensure proper coverage. We use an
offset 0.75 meters in the positive x-direction of the local
quadrotor frame (see Fig. 4) to account for the forward-
facing camera.

The algorithms in this paper were implemented in
Python2.7 using LOMAP (Ulusoy et al. 2013) and
networkx (Hagberg et al. 2008) libraries. The ltl2star
tool (Klein and Baier 2006) was used to convert the
LTL specification into a Rabin automaton. The Robot
Operating System (ROS) (Quigley et al. 2009) handles
all communication on a local area network via Wi-Fi.
We control the quadrotors from a base station computer
running the ROS Bebop Autonomy package (Monajjemi
2015) which incorporates Parrot’s open-source SDK.
The computer also acquires and processes image frames
from the quadrotors’ real-time video stream via the
OpenCV libraries (Bradski 2000). Independent ROS nodes
handle the individual quadrotors for the formation flight,
demonstrating the distributed control. Independent ROS
nodes also handle the quadrotor and ground robot control
during the tracking phase. In this phase, separate quadrotor
nodes handle the image processing for robot localization,
pose estimation via homography, and the control. The
ground robot node executes the local control and EKF
estimation of the ground robot given its pose estimate and
nonlinear dynamics. All vision computations are performed

‡Natural Point Optitrack: https://www.optitrack.com
§DrRobot X80Pro: http://www.drrobot.com/products item.asp?itemNumber=x80pro
‖Parrot Bebop: http://www.parrot.com/products/bebop-drone/
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(a) Camera coverage map (b) Pose estimation

(c) Transition system (d) Case study results

Figure 5. Fig. (a) shows the coverage of the cameras.
Fig. (b) shows the pose of the robot computed from the
images taken by the 4 cameras. Fig. (c) shows the
transition system computed by Alg. 1. Fig. (d) shows the
trajectory of the robot over 10 surveillance cycles. At each
time step, the pose of the robot is marked by an arrow. The
true trajectory of the robot is shown in green. The trajectory
obtained from the camera network is shown in yellow, while
the trajectory estimated by the Kalman filter is shown in
black.

on an Ubuntu 14.04 machine with an Intel Core i7 CPU at
2.4 GHz and 8GB RAM.

6.2 Case Study
In this section, we present results from our running example
(Example 2) to illustrate our algorithm. It is a simplified
example that illustrates how the algorithm performs, and
the type of specifications for which it is useful. The
environment and specification are the same as those in
Example 2. Localization is performed with a network of
fixed IP cameras, whose coverage is shown in Fig. 5(a). The
network was implemented using four TRENDnet Internet
Protocol (IP) cameras with known pose with respect to the
global coordinate frame of the experimental space. Each
640× 400 RGB image is acquired and segmented, yielding
multiple pixel locations that correspond to a known pattern
on the robot.

A switched feedback policy was computed for the ground
robot described by (14) operating in the environment shown
in Fig. 3 with mission specification (6) using Alg. 1. The
overall computation time to generate the policy was 32.739
seconds and generated a transition system (Fig. 5(c)) and
product MDP of sizes (23, 90) and (144, 538), respectively.
The Rabin automaton obtained from the GDTL formula has
7 states and 23 transitions operating over a set of atomic

propositions of size 8. The most computationally intensive
operation in Alg. 1 is the computation of the transition
and intersection probabilities. To speed up the execution,
we generated trajectories for each transition of the TS and
reused them whenever Alg. 2 is called for a transition of the
product MDP. The mean execution time for the probability
computation was 0.389 seconds for each transition of T .

We executed the computed policy on the ground vehicle
over 9 experimental trials for a total of 24 surveillance
cycles. The specification was met in all of surveillance
cycles. A trajectory of the ground robot over 10 surveillance
cycles (continuous operation) is shown in Fig. 5(d).

6.3 Experimental Setup
Now, we validate all three phases of our proposed
framework by executing a complete mission experiment
with a heterogeneous team of autonomous robots. The
phases are completed in the order specified in Sections 3-5
due to the dependence on the results from previous phases.
We first detail our map building results with a mosaic map
that is generated using the homography-based formation
control and two quadrotors with cameras that do not have
access to GPS. GDTL-FIRM synthesizes the control policy
for a ground robot with nonlinear unicycle dynamics in the
environment for a GDTL specification over belief states
associated with the measurement of the robot’s position.
Finally, a quadrotor successfully tracks and localizes the
ground robot while it completes the previously defined
mission.

We use a map of Boston University’s campus, located
in Boston, MA, USA, that includes parts of Charles River,
Massachusetts Turnpike, Fenway Stadium, and BU Central
campus. We utilize the real landmarks in this map to
formulate our specification. This map is chosen because
it has sufficient detail and texture to allow for adequate
feature matching (e.g., white buildings at the bottom of
the map) as well other minimal feature regions (e.g., the
Charles River). The physical map is printed on a 12×16 ft2

vinyl banner. Again, the Optitrack motion capture system
provides ground truth measurements. The experimental
setup contains actuation noise for both robots, slip due to
the vinyl mat, and estimation noise. This noise allows us to
demonstrate the viability of our framework. For real-world
deployment, there may be a need for better actuators or
quadrotor control to account for noise due to factors such
as uneven terrain and wind.

6.3.1 Formation Control and Map Generation We
utilize a team of two quadrotors to reach a desired
formation where, y∗1,2 = −y∗2,1 = 1.2 m, and all other
desired relative poses are set to zero (see Fig. 6(a)). This
formation was carefully chosen because it ensures the pair
of aerial cameras have enough overlap for accurate relative
pose estimation while guaranteeing a complete view of
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the environment. All quadrotors are flown to a desired
height of 1.8 meters. The quadrotors reach the desired
formation (Fig. 6(c)) from the initial conditions (Fig. 6(b))
in approximately 15 seconds. From this point, the user has
the ability to control one vehicle in the formation to fine
tune the result of the online mosaic map, which is displayed
at approximately 2.5Hz. In this experiment, the operator
maneuvers quadrotor 1 until the left edge of the map
is completely visible and then releases it to autonomous
control again. Meanwhile, the formation control law in
Section 3.2 controls quadrotor 2. The onboard images at
the final desired formation (Figs. 6(d)- 6(e)) were used to
generate the final mosaic map image shown in Fig. 6(f).

6.3.2 Control Policy Synthesis The specification for
the ground robot is encoded with GDTL over the regions
shown in Fig. 7 and is given as the following: “Always
avoid all obstacles, i.e., Charles river and Massachusetts
Turnpike. Always eventually visit Kenmore Square, Marsh
Plaza, Audubon Circle, and Fenway Stadium. From
Kenmore Square or Marsh Plaza, Bridge2 (St Mary’s
St) can not be used to visit Audubon Circle or Fenway
Stadium. From Audubon Circle or Fenway Stadium,
Bridge1 (Beacon Ave or Brookline Ave) can not be used
to visit Kenmore Square or Marsh Plaza. Always keep
uncertainty about the robot’s pose below 0.9 m2, and on
bridges, the uncertainty must be below 0.6 m2, where
uncertainty is measured as the trace of the estimation pose
covariance matrix.” Fig. 8(a) shows the resulting transition
system and control policy, computed by the algorithm from
Alg. 1. The transition system has 35 nodes and 226 edges
while the product automaton has 316 nodes and 3274 edges.
The algorithm executed in approximately 62.24 seconds.

6.3.3 Pose Estimation and Mission Execution The
ground robot executes the mission using the previously
computed control policy and quadrotor for localization.
Initially, the quadrotor takes off from a position where the
camera’s field of view is facing towards the ground robot.
The homography-based localization and quadrotor control
(Section 5) begin once the ground robot’s marker has been
detected. The ground robot localization estimates update at
approximately 3.5Hz. We show an example of the robot
tracking and pose estimation for three time steps in Fig. 9.
It is clear that the control method tracks the ground robot
during its route with enough image resolution to detect the
robot’s patches and also maintains the required overlap with
the mosaic map image.

Fig. 9 also illustrates the final pose estimation in the
mosaic map frame. It is important to note that the ground
robot sits 0.2 meters above the map, therefore projecting
the image features of the ground robot’s marker directly
into the map frame would add significant error to the final
estimation. The image features are instead offset to the map

plane before projecting the features to the mosaic map to
satisfy the homography’s planar assumption. We determine
this offset by measuring the pose estimation error at the
extremes of the map and interpolating for the correction as
a function of the estimated pose.

We ran the mission five times due to the limitations of
the quadrotor battery, yielding ten complete laps of the
environment and four partial laps, all of which satisfied
the GDTL specification. Each time the quadrotor battery
was replaced, the ground robot position estimate is re-
initialized, resulting in the four covariance spikes over
the ten laps (Fig. 8(d)). We show an example run of
2.5 laps in Fig. 8(b) that displays the ground robot’s
ground truth pose, estimated pose, measured pose, and
uncertainty. We check for satisfaction by inspecting the
ground truth of all experimental runs to ensure the robot has
reached each region appropriately while avoiding obstacles
(Fig. 8(c)). Moreover, the covariance of the robot’s estimate
for all experimental runs is safely below the minimum 0.6
requirement, thus satisfying the specification (Fig. 8(d)).
Note that the the covariance quickly converges to a small
value, but oscillates due to the nonlinear approximated
Bayesian filter. These oscillations are visible in the detail
in Fig. 8(e).

7 Conclusion
In this paper, we presented an end-to-end framework
for mapping an unknown GPS-denied environment,
synthesizing a control policy for a noisy ground robot, and
executing that control policy using a quadrotor to localize
the ground robot.

Synthesis was performed using a sampling-based
algorithm that generates feedback policies for stochastic
systems with temporal and uncertainty constraints. The
desired behavior of the system is specified using Gaussian
Distribution Temporal Logic such that the generated policy
satisfies the task specification with maximum probability.
The proposed algorithm generates a transition system in
the belief space of the system. A key step towards the
scalability of the automata-based methods employed in the
solution was breaking the curse of history for POMDPs.
Local feedback controllers that drive the system within
belief sets were employed to achieve history independence
for paths in the transition system. Also contributing to the
scalability of our solution is a construction procedure for an
annotated product Markov Decision Process called GDTL-
FIRM, where each transition is associated with a “failure
probability”. GDTL-FIRM captures both satisfaction and
the stochastic behavior of the system. Switching feedback
policies were computed over the product MDP.

We experimentally tested the multi-part framework,
including building a map with two quadrotors, using the
map to synthesize a control policy for a ground robot,
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Figure 6. Final mosaic map result using the homography-based formation control method.

Figure 7. Map with labels for mission specification.

then executing the policy on the ground robot using
an aerial robot for localization. The experiments showed
that properties specifying the temporal and stochastic
behavior of systems can be expressed using GDTL and our
algorithm is able to compute control policies that satisfy the
specification with a given probability.

There is much potential for future work. First, as
mentioned above, the quadrotor could perform noise-aware
localization by adjusting its position and altitude to provide
better localization as needed. Such active localization
complicates the control problem, but could aid in the
synthesis of better policies. For example, if uncertainty
is too large for the ground robot to safely accomplish
its task, the quadrotor could maneuver to decrease the
ground robot’s uncertainty and lead to higher probability

of satisfaction. Such an approach would complicate the
synthesis problem by expanding the dimensionality of state
and action spaces under consideration, but could provide
substantially stronger real-world capabilities.

Another direction for future work is reactive sampling
and planning. This work considers an environment that is
not changing over time, and therefore the motion plan never
changes. In many real world applications this is not the case,
and the robot must react in real-time to moving elements
in the environment. Dealing with a dynamic environment
would require the ability to re-plan online. Therefore, our
framework would require close to real-time sampling and
synthesis capability. The incremental approach provided
by sampling is promising in this regard. Online synthesis
could also be useful in an information gathering setting, in
which the specification includes uncertainty about a sensing
goal for the ground robot. Such a specification might
be to localize a chemical spill, for example. Satisfying
that specification would require closing the loop with the
ground robot’s sensing capabilities. Finally, modifying the
vision framework to include more advanced techniques,
such as structure from motion, could improve performance
in areas that are less feature rich than our map, such
as urban environments from a high altitude. In terms
of other changes to the computer vision pipeline, we
could also consider refining the mapping or target tracking
components with a more modern Convolutional Neural
Network approach. For example, there are new Bayesian
filtering methods that consider the entire image as the
measurement (rather than just 2D point features) and learn
a useful latent measurement representation for a Kalman
filter via a deep neural network (Haarnoja et al. 2016).
Such approaches would require modifying our estimation
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(b) Results from one experimental
run (time 800-1050 seconds)
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(c) Ground truth for ten laps (d) for ten laps

(e) Covariance for the first 200 seconds

Figure 8. FIRM-GDTL results plotted over the ground truth
environment image. Fig. 8(a) shows the transition system in
white and the policy in orange. Fig. 8(b) shows the ground
truth in green, the measurement in yellow, the estimated
pose in red, and the covariance ellipses in blue. Fig. 8(c)
shows the ground truth in green for all runs. Fig. 8(d) shows
the covariance for all runs. The spikes in covariance
indicate the beginning of a new run after a quadrotor
battery had been replaced. We initialize the covariance to
an arbitrarily large value at time step 0 that drastically
decreases with the first pose measurement from the
quadrotor at time step 1. Fig. 8(e) shows oscillations due to
the nonlinear approximated Bayesian filter.

pipeline to accomodate and take full advantage of the types
of information provided by such a filter.
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Figure 9. Pose estimation results of live tracking and localization are shown in Figs. 5(a,c,e) with onboard images (left)
and the mosaic map image (right). The corresponding top views of the experiment is shown in Figs. 5(b,d,f), respectively.
The image matches and pose estimations are drawn for visualization purposes.
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