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Abstract— This paper presents an agent-agnostic framework
to control swarms of robots tasked with temporal and logical
missions expressed as Metric Temporal Logic (MTL) formu-
las. We consider agents that can receive global commands
from a high-level planner, but no inter-agent communication.
Moreover, agents are grouped into sub-swarms whose number
can vary over the mission time horizon due to splitting and
merging. However, a strict upper bound on the maximum
number of sub-swarms is imposed to ensure their safe operation
in the environment. We propose a two-phase approach. In the
first phase, we compute the trajectories of the sub-swarms,
splitting, and merging actions using a Mixed Integer Linear
Programming approach that ensures the satisfaction of the
MTL specification with minimal swarm division over the
mission time horizon. Moreover, it enforces the upper bound
on the number of sub-swarms. In the second phase, splitting
fractions for sub-swarms resulting from splitting actions are
computed. A distributed randomized protocol with no inter-
agent communication ensures agent assignments matching the
splitting fractions. Finally, we show the operation and perfor-
mance of the approach in simulations with multiple tasks that
require swarm splitting or merging.

I. INTRODUCTION

In recent years, there has been intense interest in studying
robot swarms [1]–[5]. Due to their great capacity to handle
multiple tasks and offer robustness and resiliency over agent
failures. The emerging collective behavior from the interac-
tion of multiple agents gives swarm robotic systems many
potential applications ranging from exploration, mapping,
and surveillance to search and rescue [6], [7]. Despite these
advantages, controlling many agents and commanding their
decisions is still challenging in both low-level and high-level
control. For complex missions, temporal logics (TL) are a
useful specification language for extending swarm behavior
to time-varying, task-oriented goals [8]–[10].

Several works have considered high-level objectives for
swarms given as temporal logic goals [11]–[15]. However,
these usually consider specifications for swarms as a whole
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Fig. 1: Example environment. Agents begin in the region H
and must visit the labeled blue regions while navigating the
narrower gray and orange passages.

and are not concerned with agent constraints either in the
control or communication [16]–[18] (e.g., if agents in a
swarm are unable to communicate, methods that rely on the
dissemination of information will not work). In contrast, in
this work, we propose a high-level control framework for
swarms of aerial robots aware of low-level control and agent
communication constraints. Global plans are broadcast to all
agents since it is impractical and cumbersome to specify the
precise plans for each agent. Plans satisfy complex temporal
logic tasks with timing constraints expressed in Metric
Temporal Logic (MTL) [19], [20]. Agents are grouped into
sub-swarms, and we allow them to split and merge as needed
to fulfill mission tasks, e.g., when agents must be at multiple
locations simultaneously.

To solve the high-level swarm planning problem, we pro-
pose a Mixed Integer Linear Programming (MILP) approach
that considers the satisfaction of the MTL specification by
finding a motion plan for swarms able to split and merge
them as required. For the motion plan in the MILP formula-
tion, we take inspiration from flow equality balance equations
as used in [21]–[24]. However, in this work, swarms may
split into multiple sub-swarms to satisfy simultaneous tasks
or merge if splitting is no longer necessary and equality
constraints cannot capture these flow dynamics. Instead, we
propose inequality constraints that control the flow of swarms
while allowing the creation and destruction of swarms,
modeling splitting and merging actions.

In this work, agents cannot communicate with each other.
Thus, only global commands can be used to distribute agents
to sub-swarms resulting from splitting and merging actions.
Therefore, we propose a distributed randomized method to
split large swarms. We build a Directed Acyclic Graph
(DAG) from the MILP solution that captures the division of
the swarm over time. We use the DAG to compute splitting
fractions of sub-swarms that balance their sizes over the
mission. Agents use the randomized protocol that samples
assignments based on the splitting fractions without inter-
agent communication.
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The paper’s contributions include: 1) We propose an
efficient MILP approach to solve the planning problem con-
sidering swarm splitting and merging behaviors for satisfying
tasks while constraining the maximum number of simulta-
neous existing swarms and minimizing unnecessary splitting
or traveling. Additionally, standard flow dynamics equations
are modified to flow inequalities considering that due to the
merging and splitting actions, node and edge equations could
not be balanced. 2) We develop a randomized distributed
method to split large swarms when communication between
agents is impossible. 3) We develop a method to assign
splitting fractions such that the sub-swarms are balanced,
given a motion plan from the MILP. 4) We show the
performance of the proposed MILP method and the balanced
splitting and merging algorithm.

II. PROBLEM FORMULATION

In this section, we formulate the planning problem for
swarms of aerial robots tasked with rich temporal logic
specifications to visit places of interest in an environment.
The initial swarm can be split into sub-swarms during the
mission horizon to satisfy tasks that require multiple swarms
at different locations in the specification. Also, multiple sub-
swarms can merge to form a single swarm if splitting is
no longer required. Thus, the number of sub-swarms active
in the environment may be time-varying. We assume there
is an upper bound in the number of swarms we can have
simultaneously in the mission. The swarm is not infinitely
divisible, and the Unmanned Aerial Vehicles (UAVs) can
only fly at a limited number of altitudes for safety reasons.
Moreover, splitting the swarm as few times as possible is
desirable and just when the mission specification requires it.
Here we introduce the models for the environment, agents,
swarms, splitting and merging behaviors, and tasks that
define the planning problem for the swarm of robots. First,
we define the environment capturing the motion of swarms
between locations of interest.

Definition 1 (Environment). The environment is abstracted
as a labeled transition system, Env = (Q,E ,W,Π,L),
where Q is the set of regions in the environment, E ⊆ Q×Q
is the set of edges defining adjacent regions that swarms can
travel between,W ∶ E → Z≥1 maps each transition in E to its
travel duration, a stationary swarm is modeled as an unit-
weight self-transition, Π is a set of atomic propositions1, and
L ∶ Q→ 2Π is a labeling function.

In Fig. 1, we show a scenario with multiple regions of
interest and the corridors that connect the regions, which
generates the abstracted environment Env in orange.

A. Agents’ dynamics and sensing

We consider a set of agents A = {x1, . . . ,xi, . . . ,xN}
where ∣A∣ = N is the total number of agents available in the
environment. Each agent’s state is given by the location in the
environment, either a state q ∈ Q or an edge e ∈ E that xi is
traversing, and an altitude hi ∈ {1, . . . ,Ns}, where Ns is the

1Atomic propositions are defined in Sec. II-C

number of discrete altitude levels at which agents are allowed
to fly. The state of a single agent is given by the tuple xi =
(q/e, hi). Altitude hi captures the discrete altitude level at
which an agent is flying. We assume that there are a bounded
number Ns of altitude levels h that agents can occupy. This
requirement captures division or airspace for safe navigation,
e.g., quadrotors need at least one-meter vertical separation
to avoid downwash effects. A sub-swarm is defined by the
agents xi that share altitude hi = h. Thus, we differentiate
between sub-swarms based on their altitudes. Moreover, the
maximum number of sub-swarms at any given time during
the mission is bounded by Ns.

Although we are particularly interested in the high-level
planning for swarms under temporal and logic-constrained
specifications, we consider some assumptions in the lower-
level control that drive modeling and solution design. Note
that implementation with real robots requires low-level con-
trollers to execute high-level plans. This can be implemented
using standard formation control [25], [26] and attitude
control [27], [28] methods.

Assumption 1. We assume agents cannot communicate
with each other, avoiding direct interaction between agents.
Instead, we consider agents that transition between regions
in Q using controllers that require only local information,
e.g., formation control using the relative pose of neighbors
by sensing them [29], [30].

Assumption 1 is crucial for defining and modeling the
splitting and merging swarm actions described in the fol-
lowing sub-section.

B. Swarms’ state and actions

In this work, we are interested in commanding the entire
swarm (or swarms) instead of individual agents. Multiple
sub-swarms may exist due to swarms’ splitting or merging as
demanded by the specification. For instance, to fulfill tasks
that need to be satisfied in overlapping time intervals, we
require multiple sub-swarms to be present in disjoint regions
simultaneously. We take inspiration from recent work on
controlling swarms as abstract objects in the environment
that allow us to send global commands to the swarm, not
to individual agents. As is shown in Fig. 1 we abstract the
swarm [31]–[35] as ellipses, where the mean and covariance
of the agents’ position represent the center and shape of the
swarm, respectively.

The center of the swarm µ and shape Σ are required
for the low-level control of the swarms’ position, heading,
and size using communication-free formation control tech-
niques [36]–[38]. However, since we abstract the environ-
ment as a transition system Env, µ, and Σ are unnecessary
for high-level planning. Instead, we use the location in the
environment described by a state q ∈ Q or an edge e ∈ E to
capture the sub-swarms’ states and motion.

Definition 2 (Swarm). A swarm is a tuple s = (As, hs, q/e)
with As ⊆ A being the set of agents that belong to the swarm
s and that share common altitude hs, and q/e represents that
the swarm is either at state q ∈ Q or traversing edge e ∈ E .
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The set of active sub-swarms at time k is denoted by
S(k) = {s0, . . . , si, . . .} which is time-varying. However, we
assume there is an a priori known upper-bound Ns ≥ ∣S(k)∣,
for all k ∈ Z≥0, which is the maximum number of swarms that
can exist simultaneously in the environment. The number of
sub-swarms changes with time, depending on the mission’s
requirements. Sub-swarms are created and deleted according
to splitting or merging actions defined as follows.

Definition 3 (Splitting action). Splitting is the action of
taking a swarm si → {si1 , . . . , sin} and transforming it into
n sub-swarms such that Asi = ⋃n`=1Asi` and As`∩As`′ = ∅,
∀` ≠ `′ ∈ {i1, . . . , in}. Additionally, all of the resulting
sub-swarms have different altitudes, hs` ≠ hs`′ , ∀` ≠ `′ ∈
{i1, . . . , in}.

Splitting action will occur when time-overlapping tasks
require multiple swarms at different states q ∈ Q in the
environment Env.

Definition 4 (Merging action). Merging is the action of
taking a set of n sub-swarms {si1 , . . . , sin} → si and
transforming them into a single swarm such that Asi =
⋃n`=1Asi` . Additionally, all of the agents converge to the
same altitude hj = hs1 , ∀j ∈ Asi , of the first sub-swarm by
convention.

Merging sub-swarms is desirable when multiple sub-
swarms are not required for mission satisfaction since it may
reduce the computational cost of tracking and controlling
them. To simplify the problem, we assume that merging and
splitting actions can only occur at states q ∈ Q and not while
traversing the edges e ∈ E .

C. Mission Specification Using Metric Temporal Logic

Metric Temporal Logic (MTL), as introduced in [19], is
a specification language expressing real-time properties. The
syntax of MTL is given by its Backus-Naur form as

φ ∶∶= ⊺ ∣ ¬φ ∣ π ∣ φ1 ∧ φ2 ∣ φ1 ∨ φ2 ∣ ◻Iφ ∣ ◊Iφ ∣ φ1 UI φ2,

where φ, φ1, and φ2 are MTL formulae, ⊺ is the logical
True value, π ∈ Π is an atomic proposition (e.g., a region in
a labeled environment). ¬, ∨, and ∧ are the Boolean negation,
disjunction, and conjunction operators, and ◻I , ◊I , and UI
are the timed always, eventually, and until operators with
I = [k1, k2] a discrete-time interval, 0 ≤ k1 ≤ k2. The logical
False value is � = ¬⊺. Time horizon of MTL formula is
defined as in [39]

∥φ∥ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if φ = π,
∥φ1∥, if φ = ¬φ1,

max{∥φ1∥, ∥φ2∥}, if φ = φ1 ∧ φ2,

k2 +max{∥φ1∥, ∥φ2∥}, if φ = φ1 U [k1,k2] φ2.

k2 + ∥φ1∥ if φ ∈ {◊[k1,k2]φ1,◻[k1,k2]φ1}
(1)

We define the semantics of MTL with respect to the
swarms’ trajectories (plan) α.

Definition 5 (Plan). A plan is the joint state trajectory
generated by the sequence of swarms navigating in the
environment α = α0α1α2 . . .α∥φ∥, where αk = S(k) and

each sub-swarm si = (Asi , hsi , qi) ∈ S(k) at time k either
(1) moves in the environment using edge e = (qi, q′), i.e.,
(Asi , hsi , q′) ∈ S(k+W(e)), (2) performs a split action si →
{si1 , . . . , sin}, i.e., (As` , hs` , q) ∈ S(k+1), ∀` ∈ {i1, . . . in},
or (3) performs a merging action {si1 , . . . , sin} → sj , i.e.,
(⋃in`=i1 As` , hs1 , q) ∈ S(k + 1) and i ∈ {i1, . . . , in}.

For proposition π ∈ Π,

αk = (si = (As, hs, qi), k) ⊧ π ⇐⇒ π ∈ L(qi) , (2)

meaning that an atomic proposition is satisfied if at least one
swarm is in a region qi labeled with that atomic proposition
π. The semantics of the remaining operators is defined as
usual [40], [41].

D. Problem
For simplicity, below, we define two problems that de-

scribe (1) how swarms split, merge, and move in the en-
vironment and (2) what fraction of agents each sub-swarm
has. Note that in a plan α, swarms are created as required by
the specification while merging is enforced via cost function
J = ∑∥φ∥

k=0 ∣S(k)∣.
Problem 1. Given a team of N agents, an abstracted
environment Env, swarm splitting upper-bound Ns, and an
MTL specification φ, find plan α for the creation of swarms
and their trajectories si(k) such that φ is satisfied and cost
J is minimized.

The sequence of actions in α involves not only the
sequence of how to traverse the environment to satisfy the
mission but also the sequence of splitting and merging
actions performed by the swarm. If the number of sub-
swarms at any time during the mission is close to the upper-
bound Ns, it is necessary to ensure an appropriate number
of agents for all of them. Note that we do not assign roles to
agents or pre-allocate them to any swarm since we assume
there will be no communication between agents as described
in Assumption 1. In contrast, agents must find a way to
decide which of the swarms to join. Formally, we define
this problem as follows.

Problem 2. Given a symbolic plan α which provides the
information about the number of swarms S(k) at all times,
find the appropriate splitting fractions for all of the agents
such that any swarm at any time during the mission has
a sufficient quantity of agents. Additionally, find a protocol
without communication between agents that enforces the
splitting fractions.

III. CONTROL SYNTHESIS SOLUTION

This section discusses the components required to solve
Problem 1 and Problem 2. We first solve the problem of
finding a plan α, the sequence of actions for visiting the
regions and splittings or merging actions of the swarm
that satisfies φ. Then, given such a sequence of splitting
or merging actions from the initial swarm throughout the
mission horizon ∥φ∥, we propose an algorithm for assigning
splitting fractions such that the sub-swarms are balanced
given a motion plan.
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Fig. 2: Block diagram of proposed control framework.

A. MILP Encoding for Swarm Planning

Here, we formulate a MILP encoding for capturing satis-
faction of the MTL specification, which not only indicates
the times when a region needs to be visited but also a
sequence of splittings and merging actions of the swarm in
the environment. First, we define integer variables zq,k and
ze,k ∈ Z to indicate the number of sub-swarms at state q ∈ Q
or edge e ∈ E at time k ∈ {0, . . . , ∥φ∥}, respectively. We set
the initial condition at k = 0 by setting zq0,0 = 1, zq,0 = 0 for
all q ≠ q0 which states that the entire swarm starts at q0. The
number of sub-swarms we have in the environment at any
time is not larger than Ns, which induces the constraints
zq,k, ze,k ∈ [0,Ns], for all q ∈ Q, e ∈ E and k ≤ ∥φ∥.
Taking into account the swarm variables, we capture the flow
dynamic constraints in the environment as follows

zq,k ≥ ze,k−W (e), ∀e = (q′, q) ∈ E , k ≤ ∥φ∥, (3)
ze,k−W (e) ≤ zq,k−W (e), ∀e = (q, q′) ∈ E , k ≤ ∥φ∥, (4)

Notice that (3) and (4) ensure that swarms will go to required
regions. However, to make sure the swarms can only travel
to neighboring nodes, the creation (splitting) of swarms will
occur only at states, and merging swarms are all present at
the same state, we impose the following constraints

zq,k ≤ ∑
e=(q′,q)∈E

ze,k−W (e),∀q ∈ Q, k ≤ ∥φ∥, (5)

∑
e=(q,q′)∈E

ze,k ≥ zq,k, ∀q ∈ Q, k ≤ ∥φ∥. (6)

The flow constraints capture how a swarm (swarms) travel
through the environment Env. However, they do not con-
strain the number of sub-swarms we have at any time.
For this purpose, we introduce the following split-bound
constraint

∑
e∈E

∑
k′∈H(e,k′)

ze,k′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Number of sub-swarms at time k

≤ Ns, (7)

where H(e, k) = {{k −W (e) + 1, ...,K} ∩Z≥0} which is
the history of departures for edge e at time k.

Then, we formulate Problem 1 as the following MILP

optimization problem

min
∥φ∥

∑
k=0

⎛
⎝∑q∈Q

zq,k +∑
e∈E

ze,k
⎞
⎠
,

subject to
Swarm flow dynamics (3) − (6),
Split bound (7),
Mission satisfaction: {zq,k} ⊧ φ.

(8)

Note that (8) discourages the unnecessary swarm splitting
and traveling in the environment over time horizon ∥φ∥.
Mission satisfaction {zq,k} ⊧ φ is encoded similarly to [21],
[42], and we omit it for brevity.

B. Swarm Splitting and Merging Actions Weights

From the swarm planning stage, we obtain sequences of
swarm splitting and merging actions of sub-swarms neces-
sary to satisfy the mission specification. The sequences are
captured as a Directed Acyclic Graph (DAG) G = (V,E,w),
where V is the set of nodes, and each node is defined by a
tuple u = (q, k) meaning that there is a swarm at location
q in the environment at time k. Edges E ⊆ V × V capture
splitting (i.e., multiple outgoing edges from a state u) and
merging (i.e., multiple incoming edges to a state u). Let
N +
u = {v ∣ (u, v) ∈ E} and N −

u = {v ∣ (v, u) ∈ E} be the sets
of outgoing and incoming edges of state u. A leaf node u has
no outgoing neighbors, N +

u = ∅. The weights w ∶ E → R>0

represent splitting fractions such that the unit-sum constraint
∑v∈N+

u
w((u, v)) = 1 holds for all non-leaf u ∈ V including

the starting node u0 = (q0,0). Thus, w(u) ∈ (0,1] for all
u ∈ V .

We compute splitting fractions proportional to the require-
ments on parallel paths in the DAG G to balance swarm sizes
over locations and time. Formally, we capture this using a
partial order [43]. We define the partial order ≼ over U such
that u ≼ v if a path exists from u to v, i.e., if u is an ancestor
of v or v is a descendent of u. The sets of ancestors and
descendants are Hu = {v ∣ v ≼ u} and Fu = {v ∣ u ≼ v},
respectively. Let p ∶ V → (0,1] function such that p(u) is
the fraction of the swarm agents at node u ∈ V .

Algorithm 1 computes proportions p backward from leaf
nodes in G, and then computes the splitting fraction weights
w. First, the method computes the number of ancestors
and descendants of nodes for all nodes u ∈ V , lines 3-8.
Moreover, we compute the total number of ancestors of all
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Fig. 3: Edges variable solution from case study 1.

leaf nodes Hmax at line 6. For all leaf nodes u with N +
u = ∅,

the proportion p(u) = ∣Hu∣
Hmax

, line 9. For all other nodes, we
proceed in inverse topological order (i.e., from leaves towards
u0) and compute p(u) = ∑v∈N+

u

p(v)
∣N−

u ∣ , line 10. Finally, the

weights are computed as w((v, u)) = p(u)
p(v) for all edges

(v, u) ∈ E, line 11. It follows from Algorithm 1 that the
returned weights w satisfy the unit-sum constraints.

Algorithm 1 Splitting and Merging Weights over DAG

1: input: G = (V,E) ▷ DAG from MILP solution.
2: output: G = (V,E,w) ▷ DAG with splitting fraction

weights.
3: for u ∈ V do
4: ∣Hu∣ = ancestors(G, u)
5: ∣Fu∣ = descendants(G, u)
6: if ∣Fu∣ = ∅ then Hmax =Hmax + ∣Hu∣
7: end if
8: end for
9: For all u ∈ leaves, pu = ∣Hi∣/Hmax

10: For all u ∈ V ∖ leaves, compute p(u) = ∑v∈N+
u

p(v)
∣N−

u ∣ in
inverse topological order.

11: For all (u, v) ∈ E compute weights w((v, u)) =
pu
pv
, ∀(v, u) ∈ E in a topological order.

Protocol: Finally, we define the communication-free proto-
col that agents implement to determine what sub-swarms
they belong to when receiving split and merge actions.
Communication is restricted between agents, but they receive
global commands from the MTL-Planner, see Fig. 2. For
splitting, all agents receive the command si → {si1 , . . . , sin}
containing the altitude hsi of the sub-swarm si to be split,
heights h` for all resulting sub-swarms s`, ` ∈ {i1, . . . , in}
and the splitting fraction weights w((u, v)), v ∈ N +

u , where
node u in DAG G corresponds to the splitting action. Note
that n = ∣N +

u ∣. If an agent is at altitude hsi , i.e., belongs to
si, then it samples the set of sub-swarms {si1 , . . . , sin} with
probabilities w((u, v)) and moves to the altitude hs̄, where
each neighbor node v corresponds to a sub-swarm s`, ` ∈
{i1, . . . , in}, and s̄ is the randomly sampled sub-swarm. For
merging, all agents receive the command {si1 , . . . , sin}→ si
containing the altitudes hs` of sub-swarms s` to be merged,
` ∈ {i1, . . . , in}. In this case, all agents with altitudes
hs` move to altitude hsi1 of resulting sub-swarm si. Note
that the protocol guarantees the provided swarm splitting
fractions only in expectation. However, it does not require

Fig. 4: Split and merge generated DAG for case study 1.

any communication between agents.

IV. CASE STUDIES

This section describes three case studies showing how
swarm planning and control work and their performance.
First, we consider a small mission specification to showcase
the functionality of the high-level planner and then the low-
level control. Second, we specify a more complex specifi-
cation that requires the swarm to split and merge multiple
times to show the correctness of the merging and splitting
algorithm described in Sec. III-B. Finally, we test scalability
and run-time performance by increasing the mission speci-
fication size gradually. All computation was performed on
a PC with 20 cores at 3.7GHz with 64 GB of RAM. We
used Gurobi [44] as MILP solver and CoppeliaSim [45] as
simulator.

Case Study 1: (functionality showcase): Here we consider
the Env in Fig. 1, the number of robots in the swarm
N = 80. The swarm is tasked to satisfy the following mission
specification φ = (◻[1,4]q1 ∧ ◻[2,4]q3) ∧ ◻[6,7](q3 ∧ q5 ∧
q6) ∧ ◻[8,9]q4, with initial location of the swarm q0, and
maximum simultaneously existing swarms Ns = 3. Under
these conditions, we get the solution plan shown in Fig. 3.
Initially, the entire swarm is in q0 at time k = 0. Next, it splits
in two, represented here as red and blue lines traversing to
states q1 and q2 at k = 1. Both swarms satisfy the first part
of the specification, and then the blue swarm splits again
at k = 4, where the green line represents the formation of a
new swarm to satisfy the specification requesting sub-swarms
in three different locations simultaneously. Lastly, the three
swarms merge in q4. The MILP solution computed a solution
with an objective cost value of 39, and it took 0.01 seconds
to compute, and 228 and 17 integer and binary variables,
respectively.

From the MILP solution, we can compute the DAG G =
(V,E,w) that describes the swarm splitting and merging
actions in Sec. III-B and shown in Fig. 4. Note that the
nodes follow the same color code as in Fig. 3. The agents in
the initial swarm (blue) split into sub-swarm u1 (blue) and
u2 (red). Then u1 splits into two more sub-swarms u3 (blue)
and u4 (green). Lastly, all of them merge in u5, the same
as in Fig. 3. We show the splitting fraction (probabilities)
of the agents going into the different swarms on the edges.
The weights are computed to balance the number of agents
in each sub-swarm by taking into account the subsequent
merging and splitting actions. An extended example is shown
in Case study 2.

Finally, we compute the abstract state commands, as
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Fig. 5: Solution performed in CoppeliaSim with actions by
the swarms when traversing corridors connecting two states.

Fig. 6: Split and merge generated DAG for case study 2.

shown in Fig. 5, where two swarms are traveling from q0

to q1 and q2 respectively, representing the first command
from the solution of the MILP. Note that one of the corridors
is curved, requiring the swarm to rotate and scale along it.
For the second swarm, it is asked to rotate once it reaches
the state to be able to traverse towards q3. Simulation is
performed in CoppeliaSim.

Case Study 2: In this case study, we consider an extended
example that showcases the functioning of the swarm split-
ting and merging algorithm. Consider the following mission
specification φ = ◻[1,2](q1 ∧ q2) ∧ ◻[2,3](q1 ∧ q3 ∧ q4 ∧ q6) ∧
◻[3,4](q5 ∧ q3)∧◻[4,5](q5 ∧ q0 ∧ q2), with maximum number
of swarms Ns = 4 and initial state q0. After computing the
MILP solution, we build the merging and splitting actions
DAG shown in Fig. 6. Following Algorithm 1. the number
of ancestors ∣Hi∣ for every node is computed. We sum
the number of the ancestor over all leaf nodes Hmax =
∑ui

∣Hi∣ = 5+3+3 = 11, and then the expected proportion of
the leaves is obtained pu = Hi/Hmax as 5/11, 3/11, 3/11,
respectively. Next, from the leaves, we sum the proportions
backward from the leaves to the root (shown as red values
in the nodes). Finally, we compute each edge’s splitting
fractions (probabilities) from the root by considering the
expected proportions in every node (green values on the
edges). In Fig. 7, we show the agent distribution among the
states. The horizontal axis represents the state and the vertical
axis the number of agents in the swarm. We ran the same
DAG 1000 times and considered two different initial number
of agents ∣As∣ = 50 (blue) and ∣As∣ = 150 (red). Note that the
smaller the swarm, the more difficult it becomes to split it in
balanced proportions. Moreover, in both cases, node u2 has
the most significant fraction of agents, which makes sense
since this node requires the swarm to split again into three
new sub-swarms, and one of them will be split into the other
two. In contrast, u1 does not require a higher fraction since
later it will only merge with other sub-swarms.

Fig. 7: Agents distribution statistics through the states when
run 1000 times for initial number of agents of 150 and 50.

Fig. 8: Time performance by increasing mission φ gradually.

Case Study 3: (scalability and time performance): Here
we gradually increase the size of the mission specification to
show the run time performance. The mission specification we
use is φ = ⋀n1 TI(X ⊗X ), where T ∈ {◻,◊}, ⊗ ∈ {∧,∨}, X ∈
Q are variables randomly chosen, n is an iterator that grows
from 1 to 200, and the time interval of the temporal operator
is defined randomly as I = [n + 4, . . . , n + rand(1,5)]. The
initial state is q0, and the split bound Ns = 10. The results are
shown in Fig. 8, where we can see that time grows linearly
for a small value of n and then exponentially as n becomes
larger. Note that our MILP implementation is agent agnostic,
and the only variables that affect the performance are the size
of the transition system and the mission specification.

V. CONCLUSIONS

We present a framework for controlling swarms subject
to Metric Temporal Logic (MTL) constraints. We propose
a MILP approach for computing the trajectories of sub-
swarms in the environment, the splitting and merging actions
if required, such that the MTL mission is satisfied with
minimal division of the swarm over the mission horizon. We
modify standard flow dynamics constraints using inequali-
ties to capture the swarm motion in the environment. The
solution of the MILP is used to build a DAG that captures
the splitting and merging actions and is used to compute
splitting fractions for resulting sub-swarms. A distributed
randomized protocol ensures that the agents choose sub-
swarms close to the computed splitting fraction with no inter-
agent communication.
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