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Abstract— In this work, we address the problem of control
synthesis for a homogeneous team of robots given a global
temporal logic specification and formal user preferences for
relaxation in case of infeasibility. The relaxation preferences
are represented as a Weighted Finite-state Edit System and are
used to compute a relaxed specification automaton that captures
all allowable relaxations of the mission specification and their
costs. For synthesis, we introduce a Mixed Integer Linear Pro-
gramming (MILP) formulation that combines the motion of the
team of robots with the relaxed specification automaton. Our
approach combines automata-based and MILP-based methods
and leverages the strengths of both approaches, while avoid-
ing their shortcomings. Specifically, the relaxed specification
automaton explicitly accounts for the progress towards satis-
faction, and the MILP-based optimization approach avoids the
state-space explosion associated with explicit product-automata
construction, thereby efficiently solving the problem. The case
studies highlight the efficiency of the proposed approach.

I. INTRODUCTION

One challenge in planning with complex temporal logic
specifications in real-world applications concerns dealing
with infeasible missions due to perhaps one small part of the
requirements. Recent advances in high-level planning using
formal specifications have explored the idea of minimally
relaxing the specification to ensure satisfaction. Moreover,
the problem is compounded when employing teams of robots
due to combinatorial explosion of the problem search space.

Traditionally, the control synthesis problem has been ad-
dressed using automata-theoretic approaches owing to their
rich expressivity. In [1], the authors introduced the problem
of minimal revision for Buchi automata obtained from Linear
Temporal Logic (LTL) specifications by quantifying the
closeness between the automata. These revisions, however,
are challenging to interpret. Moreover, the problem is shown
to be NP-complete [2], [3]. Another automata-based notion
of minimum revision was proposed in [4]. The problem
of minimum violation based on preference-based violation
was considered in [5]–[8]. In [9], [10], temporal relaxations
was defined for timed specifications using a parameterized
abstraction. The problem of partial satisfaction was tackled
in [11], [12] for Signal Temporal Logic and in [13] for
co-safe LTL specifications. Similar problems were tackled
in [14]–[16] via hard and soft constraints. In [17], we
introduced an automata-based approach that combines vari-
ous existing notions of relaxation into a unified framework
and allows for complex word-word relaxation. Although
the automata-based approaches are highly expressive, they
cannot be readily used for multi-robot teams.
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On the other hand, a rich body of work exists in plan-
ning for large robot teams given temporal logic specifica-
tions [18]–[23]. In [18], [19], the authors proposed an in-
formed sampling-based approach for the satisfaction of LTL
specifications. With the advent of off-the-shelf solvers [24],
Mixed-Integer Linear Programming (MILP) formulations
have been utilized for large-scale planning problems [20]–
[23] These approaches do not consider for relaxation of the
specifications if infeasibilities arise.

In this work, we consider the problem of planning for a
team of homogeneous robots tasked with a global temporal
logic specification and with formal user preferences. We con-
sider complex temporal logic goals with explicit timing con-
straints expressed as Time Window Temporal Logic (TWTL)
formulae [9]. The user preferences are a set of complex
rules for relaxations that are formally represented using a
Weighted-Finite State Edit System (WFSE) [17]. Using the
automata corresponding to the mission and preferences, we
construct a relaxed specification automaton that captures the
original task alongside all permissible relaxations and their
penalties. To avoid the product of motion models which leads
to exponential runtime with respect to the number of robots,
we formulate an MILP over the transitions of the motion and
relaxed specification models. The encoding efficiently finds
the globally optimal solution, bringing together the strengths
of automata-based and optimization-based methods.

Our approach differs from the existing MILP-based and
relaxation techniques in the following aspects. The MILP
formulations defined in [11], [12], [22] optimize for ro-
bustness of satisfaction, whereas we are interested in opti-
mally relaxing a specification by modifying it using given
user-defined rules. As opposed to spatial preferences as
considered in [25], we consider complex preferences of
revisions. In [26], the problem of distributed control synthesis
for individual TWTL specifications allowing finite temporal
relaxations is considered; whereas we consider planning for
a global TL task with word-to-word revisions. Finally, the
main difference as compared to our previous work [17] is
that instead of considering a general problem of optimal
relaxation over a 3-way product automaton for a single robot,
we use an MILP formulation that simultaneously accounts
for motion and specification relaxation for teams of robots.

The main contributions of this work are 1) We pose
the problem of optimal planning with relaxation for a ho-
mogeneous robot team subject to a global temporal logic
specification. 2) We define a relaxed specification automa-
ton that represents the given global specifications with all
allowable revisions. 3) We propose a framework that com-
bines automata and MILP-based approaches to address the



minimal relaxation planning problem. The relaxed specifica-
tion automaton explicitly accounts for the progress towards
satisfaction, while the MILP formulation helps to avoid
scalability issues, thereby bringing together the strengths
of both approaches while avoiding their limitations. 4) We
demonstrate the functionality of the proposed framework
with the help of case studies and provide a runtime analysis.
We compare the proposed MILP formulation with a baseline
for their efficiency and expressivity.
Notation. The set of real, integer, and binary numbers are
represented by R, Z, and B. The set of integer numbers
greater or equal to a is defined by Z≥a. The integer range
from a to b is denoted by [[a, b]]. For a set X , 2X and |X|
represent its power set and cardinality, respectively. For an
alphabet Σ, a language of all finite words over Σ is denoted
by Σ∗. We refer to a directed acyclic graph as a DAG.

II. PROBLEM SETUP

In this section, we introduce the problem of optimal plan-
ning for a global temporal logic goal with formal preferences
for relaxations. Using a finite system abstraction for the
environment and automata to capture the progress towards
goal and preferences, we define a cost function that combines
the costs incurred for motion and relaxations. Next, we pose
the formal problem definition.

A. Robot and Environment Models

We consider a team of N identical robots, denoted by R =
{r1, r2, . . . , rN}, deployed in an environment to perform
a global task. Each robot can move in the environment
deterministically. We assume that the robots move in the
environment synchronously. This is achieved either by as-
suming robots have access to a global clock, synchronize
via inter-robot communication, or receive and execute com-
mands from a global controller.

The robots’ motion in the environment is abstracted as a
transition system T defined as follows:

Definition 1 (Transition System). A weighted transition
system (TS) is a tuple T = (X,R, IT , δT , AP , h, wT ),
where X is a finite set of states and corresponds to regions
in the environment; IT : R → X defines the robots’ initial
states; δT ⊆ X ×X is a set of transitions that capture the
set of allowable movements in the environment; AP is a set
of labels (atomic propositions); h : X → 2AP is a labeling
function; wT : δT → R≥0 is a weight function that denotes
control effort incurred in traversing (x, x′) ∈ δT .

The states X of the environment represent locations con-
nected by directed transitions δT . We use self-loop transi-
tions (x, x) ∈ δT to model robots stationary at state x. All
transitions are assumed without loss of generality to have
duration 1 that corresponds to a fixed time discretization step
∆t. As a robot ri ∈ R moves through the environment,
it generates a sequence of states xri = xri,0xri,1 . . .,
referred to as a trajectory (or run) of a robot, such that
(xri,k, xri,k+1) ∈ δT for all k ∈ Z≥0, i ∈ [[1, N ]] and
xri,0 = IT (ri). An atomic proposition π ∈ AP is said to
be true when at least one robot is at a state x labeled with

π, i.e., x ∈ h−1(π). Overall, the observations at states are
given by the entire team of robots R. Thus, we introduce
the team state and output trajectories.

Definition 2. The team trajectory x̃ is a sequence of vectors
of all states occupied by robots at each time instance, i.e.,
x̃(k) = [xri(k)]ri∈R ∈ X |R| for a global time index k.
The corresponding output word is o = o0o1 . . . with ok =⋃

ri∈R h(xri,k). The (generated) language of T is the set of
all team output words, denoted by L(T ).

The control cost of a transition from state x to x′ is
captured by wT (x, x

′). When robots are stationary, they
incur zero control cost, i.e., wT (x, x) = 0 for all x ∈ X .
The control cost for a team trajectory x̃ is defined as
Ĵcontrol(x̃) =

∑
ri∈R

∑
k∈|x̃|−1 wT (xri,k, xri,k+1).

This work focuses on high-level decision-making for a
complex global task with relaxations, we assume that appro-
priate low-level controllers are provided that facilitate the
execution of the high-level plans.

B. Task Specification

Owing to its expressivity and conciseness, the global
task is given as a Time Window Temporal Logic (TWTL)
formula, introduced in [9]. A TWTL formula is defined over
a set of atomic propositions and its syntax expressed in
Bakus-Naur form is

ϕ ::= Hds |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 |ϕ1 · ϕ2 | [ϕ1]
[a,b]

where s is either the “true” constant true or an atomic
proposition in AP ; ∧ and ∨ are the conjunction and disjunc-
tion Boolean operators, respectively; · is the concatenation
operator; Hd with d ∈ Z≥0 is the hold operator; and [ ][a,b]

is the within operator, a, b ∈ Z≥0 and a ≤ b. For a thorough
description of the syntax and semantics of TWTL, we refer
the reader to [9], [10].

For simplicity, we disallow negations of atomic propo-
sitions, i.e., Hd¬s, which require additional bookkeeping
in our solution in Sec. III. We leave this for future work.
However, we still require the formulas without ambiguous
concatenation, see [10].

C. User preferences

The user preferences govern the modifications to the orig-
inal mission specification ϕ if infeasibilities arise. Formally,
let L denote a language over an alphabet 2AP . A user task
preference is a pair (R,wR), where R ⊆ L × (2AP )∗ is
a relation specifying how words in L can be transformed
to words from (2AP )∗; and wR : R → R≥0 represents the
cost associated with the word transformations. Alternatively,
preferences are given by a set of word-rewrite rules with
associated weights. We denote a weighted word-rewrite rule
as ρ = σ 7→wσ,σ′ σ′ where σpreσσsuf ∈ L,σpreσ

′σsuf ∈
(2AP )∗ for some prefix and suffix words σpre and σsuf ,
respectively. To allow satisfaction without relaxation, we
require that (σ,σ) ∈ R with wR(σ,σ) = 0 for all σ ∈ L.
The example below illustrates the definition.

Example II.1. Consider the specification ”Visit A and B for
2 and 3 time units within the first 5 minutes followed by C



for 1 time unit within the next 1 minute.” Expressed as a
TWTL formula, we have ϕ = [H2A∧H3B][0,5] · [H1C][0,1].
The relaxation preferences are given as follows - 1) C can
be substituted by a visit to region D with a penalty of 3. 2) A
can be substituted by simultaneously visiting B and D with
a penalty of 2. Formally, ρ1 = C 7→3 D, ρ2 = A 7→2 BD.

The multi-robot control synthesis problem is as follows.

Problem II.1 (Optimal Control Synthesis with Relaxation).
Given a team R, a discrete abstraction of the environment T ,
a global task specification expressed as a TWTL formula ϕ,
and user preferences for specification relaxation as (R,wR),
the problem of optimal control synthesis with minimal re-
laxations corresponds to finding a team trajectory x̃ that
satisfies a potentially relaxed version of the mission ϕ while
minimizing the control and relaxation costs. Formally,

min
x̃

Ĵ(x̃) = Ĵcontrol(x̃) + λ · wR(o,o
relax),

s.t. orelax = h(x̃), (o,orelax) ∈ R, o |= ϕ,

where λ is a blending parameter, orelax = h(x̃) is the output
word of the T , and o ∈ (2AP )∗ is a word satisfying ϕ.

III. APPROACH

In this section, we present a solution to Problem II.1. Our
approach combines the expressivity of automata with the
efficiency of optimization-based approaches. We proceed by
translating the specification and user preferences to automata
and then constructing a product automaton that encapsulates
the original specification and all its permissible revisions. We
present an algorithm to compute this relaxed specification
product which is defined using a set of input-output symbol
pairs in the WFSE. We then present the main contribution
of this work – an MILP formulation that combines the
motion model with the relaxed specification automaton as a
solution to Problem II.1. Critically, we avoid the construction
of product transition systems, a common in automata-based
methods [9], [27], [28].

A. Specification and User Preferences Automata
In order to solve the problem of control synthesis for

a given mission ϕ, a deterministic finite state automaton,
(defined below), is recursively constructed from ϕ using the
procedure discussed in [10].

Definition 3 (Deterministic Finite State Automaton). A
deterministic finite state automaton (DFA) is a tuple Aϕ =

(SAϕ
, s
Aϕ

0 ,Σ, δAϕ
, FAϕ

), where SAϕ
is a finite set of states;

s
Aϕ

0 ∈ SAϕ
is the initial state; Σ is the input alphabet;

δAϕ
: SAϕ

×Σ → SAϕ
is the transition function; FAϕ

⊆ SAϕ

is the set of accepting states.

A trajectory of the DFA s = s0s1 . . . sn+1 is generated by
a finite sequence of symbols σ = σ0σ1 . . . σn if s0 = s

Aϕ

0 is
the initial state of Aϕ and sk+1 = δAϕ

(sk, σk) for all k ≥ 0.
A finite input word σ over Σ is said to be accepted by a
finite state automaton Aϕ if the trajectory of Aϕ generated
by σ ends in a state belonging to the set of accepting states,
i.e., FAϕ

. The (accepted) language of a DFA Aϕ is the set
of accepted input words denoted by L(Aϕ).

In [17], we showed that formal user preferences can be
represented as a special class of automata called Weighted-
Finite State Edit System (WFSE), defined as follows.

Definition 4 (Weighted Finite State Edit System). A
weighted finite state edit system (WFSE) is a weighted DFA
E = (ZE , z

E
0 ,ΣE , δE , FE , wE), where ΣE = 2AP × 2AP , and

wE : δE → R≥0 is the transition weight function.

The alphabet ΣE captures the substitution operations.
A weighted transition z′ = δE(z, (σ, σ

′)) has in-
put, output symbols σ and σ′. Given a word σ⃗ =
(σ0, σ

′
0)(σ1, σ

′
1) . . . (σr, σ

′
r) ∈ L(E), r = |σ⃗| − 1, we refer

to σ = σ0σ1 . . . σr ∈ (2AP )∗ as input word and to σ′ =
σ′0σ

′
1 . . . σ

′
r ∈ (2AP )∗ as the output word. Moreover, we say

that E transforms σ into σ′.
Remark: In this work, we are particularly interested in
addressing the minimum revision problem with complex
preferences. Thus, as opposed to a more general alphabet
used for WFSEs in [17], we drop the inclusion of the empty
symbol ϵ in the current work. Investigating the problems
of minimum violation, insertion and temporal relaxation are
topics for future research.

The relaxation cost for transforming σ to σ′ is given by
Ĵrevision(σ⃗) =

∑
l∈[[0,|σ⃗|]] wE(σl, σ

′
l).

B. Relaxed Specification Product Automaton

We capture all relaxed versions of the TWTL specification
ϕ via a product non-deterministic finite state automaton
between the DFA Aϕ and the WFSE E .

Definition 5 (Relaxed Specification Automaton). Given
a specification DFA Aϕ = (SAϕ

, s
Aϕ

0 ,Σ, δAϕ
, FAϕ

), the
user task preferences represented as a WFSE E =
(ZE , z

E
0 ,ΣE , δE , FE , wE), the relaxed specification automa-

ton is a tuple A = (QA, q
0
A,ΣA, δA, FA, wA), where QA =

ZE × SAϕ
represents the state space; qA0 = (zE0 , s

Aϕ

0 ) is the
initial state; ΣA = ΣAϕ

denotes the alphabet; δA ⊆ QA ×
ΣA × QA is a transition relation; FA = FE × FAϕ

⊆ QA
represents the set of final (accepting) states; wA : δA → R≥0
is the weight function.

The procedure for constructing A is outlined in Alg. 1. All
components of the product are initialized, and the initial state
is added to the stack of nodes to be processed (lines 1-3). For
a given input symbol σ, a transition ((z, s), σ, (z′, s′)) ∈ δA
if and only if there exists σ′ such that z′ ∈ δE(z, (σ, σ

′))
and s′ = δAϕ

(s, σ′). Given the current states (z, s), we
iterate over each outgoing edge of z in E (line 5) with input-
output symbol pair (σ, σ′). The next state in the DFA Aϕ is
determined given the current state s and the output symbol
σ′ (line 6). The states and edges are added to the product
and to FA, if applicable. The weight function is defined
as wA((z, s), σ, (z

′, s′)) = wE(z, (σ, σ
′), z′). The process

repeats until no states (z, s) are left to process in the stack.
Thus, the relaxed specification automaton simultaneously
captures the original specification, and user preferences for
relaxations along with their penalties.

The relaxed specification automaton A is a non-
deterministic model due to the potentially multiple ways to



Algorithm 1: construct A()
Input: E,Aϕ

Result: A = (QA, qA0 ,ΣA, δA, FA, wA)

1 ΣA ← ΣAϕ
, q0A ← (zE

0 , s
Aϕ
0 ), QA ← {q0A}, δA ← ∅, FA ← ∅

2 stack ← QA
3 while stack ̸= ∅ do
4 (z, s)← stack.pop()
5 forall (z, (σ, σ′), z′) ∈ δE do
6 s′ ← δAϕ

(s, σ′)

7 if (z′, s′) /∈ QA then
8 QA ← QA ∪ {(z′, s′)}
9 stack.push((z′, s′))

10 if z′ ∈ FE and s′ ∈ FAϕ
then

FA ← FA ∪ {(z′, s′)}

11 δA ← δA ∪ {((z, s), σ, (z′, s′)))}
12 wA((z, s), σ, (z′, s′)))← wE(z, (σ, σ

′), z′)

translate an input symbol σ into an output σ′, see lines 5,
6 and 11 in Alg. 1. Semantically, this means that there are
potentially multiple ways to relax the mission specification,
as illustrated in the example below.

Example III.1. Consider user preferences: A 7→p1 B,
AB 7→p2 CD, and AC 7→p3 BD. The same input symbol
A may result in different output symbols leading to non-
determinism in the relaxed specification automaton.

Proposition 1. A is a directed acyclic graph (DAG).

This follows from the fact that the recursive translation of
ϕ into Aϕ as proposed in [10] results in a DAG. In general,
if Aϕ is a DAG, the resulting product A is also a DAG.
Proposition 1 offers a key insight into our MILP formulation
since the product space assumes a directionality that can be
leveraged for flow-based encoding.

C. Mixed Integer Linear Programming (MILPE )

Given T and A, we now pose Problem II.1 as an in-
stance of an MILP. Towards this, we make the following
assumptions: 1) The specification ϕ does not contain any
negations; 2) All transitions in T take unit duration for
traversal. These assumptions are not restrictive since, in the
case of assumption (1), the forbidden states can be eliminated
during environment abstraction. Regarding assumption (2),
auxiliary states and transitions can be used in case of longer
durations. The MILP encoding uses the observation that we
do not need to track robots in T . It suffices to compute the
number of robots at each state and transition over time.

Let n(x) denote the initial number of robots at the state
x ∈ X such that

∑
x∈X n(x) = N , and XT0 = (IT )−1(R)

the initial set of states occupied by robots. We define integer
variables zx,x′,q,q′ ∈ [[0, N ]] to denote the number of robots
traversing edge (x, x′) in δT and (q, q′) in δA. Similarly, the
integer variables zx,q correspond to the number of robots
present at state x ∈ X and state q ∈ QA.

1) Initialization Constraints: Let the set of atomic
propositions satisfied at deployment be AP 0 = h(XT0 ).
We introduce a virtual node ▷◁ that is connected to all
nodes in XT0 with only outgoing edges, i.e., we add
{(▷◁, x) | x ∈ XT0 } of weight 0. The set of states in A
that can be reached due to the satisfaction of the atomic
propositions in AP0 is given by Q0 =

⋃
σ∈2AP0 δAϕ

(q0, σ).

∑
q∈Q0

z▷◁,x,q0,q = n(x),∀x ∈ XT0 , (1)

2) Flow Constraints: Since the overall number of robots
should remain constant throughout the mission, the flow
constraints require that the total number of robots entering a
region must be equal to the total number of robots leaving
that region. Let Q̂A = Q\FA\{qA0 }. The set of predecessors
of q ∈ Q̂A is N−A (q) = {q′ | ∃σ ∈ 2AP , q ∈ δA(q

′, σ)}.
Similarly, the set of successors is N+

Aϕ
(q) = {q′ | ∃σ ∈

2AP , q′ ∈ δA(q, σ)}. Using these, the flow constraints are
encoded as follows.∑

(x′,x)∈δT

∑
q′∈N−

A (q)

zx′,x,q′,q =
∑

(x,x′)∈δT

∑
q′∈N+

A (q)

zx,x′,q,q′ . (2)

3) State-transition Constraints: The number of robots at
a state x in the environment and q in the specification is
given by the outflow from (2), except for sink nodes with
q ∈ FA. For all states x ∈ X and q ∈ Q,

zx,q =

{∑
(x,x′)∈δT

∑
q′∈N+

A (q) zx,x′,q,q′ , q /∈ FA∑
(x′,x)∈δT

∑
q′∈N−

A (q) zx′,x,q′,q, q ∈ FA
. (3)

4) Synchronization Constraints: Since, at any instance,
the entire team is in a single state of A, we synchronize the
state transition in A across all robots. Let ξq,q′ ∈ B denote
whether a transition (q, q′) ∈ δA was taken. For (q, q′) ∈ δA,∑

q′∈N+
A (q)

ξq,q′ ≤ 1, (4)

∑
(x,x′)∈δT

zx,x′,q,q′ ≤ N · ξq,q′ . (5)

Since A is a DAG, each edge in δA is traversed at most
once. This is enforced by constraints (4) and (5), with the
latter imposing the requirement on the robot flow.

5) Guard Satisfaction Constraints: The progress towards
satisfaction is encoded as follows. We process all tran-
sitions (q, σ, q′) ∈ δA between q and q′ together based
on Boolean function representation gq,q′ called a guard.
Formally, gq,q′(σ) is true if and only if (q, σ, q′) ∈ δA. We
assume that the guards are in disjunction normal form (DNF),
i.e., g =

∨m+

i=1 ηi, where each term ηi =
∧m∗

ℓ=1 πℓ, πℓ ∈ AP .
Let TermsA(q, q

′) = {ηi}m
+

i=1. Let ξq′,η ∈ [0, 1] indicate
whether the term η of the guards leading to state q′ in A is
satisfied. In other words, η is a set of APs associated with
the guard such that their simultaneous satisfaction enables the
transition to q′. Similarly, we define ξq′,π ∈ [0, 1] indicating
whether the AP π is satisfied for a guard leading to state q′

in A. Note that η and π may be common across multiple
incoming transitions to q′. With this, the guard satisfaction
constraints are as follows.

ξq,q′ ≤
∑

η∈TermsA(q,q′)

ξq′,η, (6)

ξq′,η ≤ ξq′,π, ∀π ∈ η, η ∈ TermsA(q, q
′), (7)

ξq′,π ≤
∑

x∈h−1(π)

zx,q′ , (8)

∀(q, q′) ∈ δA. Constraint (6) ensures that at least one of
the terms associated with the guard of (q, q′) is satisfied.



The satisfaction of all atomic propositions corresponding to a
term is ensured by (8). Finally, the motion in T is connected
with guard satisfaction in A via ξq′,π which can be 1 only
if there are robots at states labeled with AP π.

6) Final state: The constraint to ensure that the final state
in A is reached, i.e., a relaxation of ϕ is satisfied, is∑

x∈X

∑
q∈FA

zx,q > 0. (9)

7) Cost function: Finally, we define the objective as
follows Ĵ = Ĵcontrol + λĴrevision, λ > 0

Ĵcontrol =
∑

(x,x′)∈δT

∑
(q,q′)∈δA

wT (x, x
′)zx,x′,q,q′ (10)

Ĵrevision =
∑

(x,x′)∈δT

∑
(q,q′)∈δA

wA(q, q
′)zx,x′,q,q′ (11)

IV. CASE STUDIES

In this section, we show the functionality of our approach,
a comparison with a baseline, and a runtime analysis of
MILPE . These studies were performed on Dell Precision
3640 Intel i9 with 64 GB RAM using Python 3.9.7. The
environment used across all case studies is shown in Fig. 1.
The T is shown using blue nodes and directed edges with
control costs in red, or 1 otherwise. For this environment,
we have |X| = 20, |δ| = 63.
Functionality. Consider a team of 30 robots deployed for sci-
entific exploration and data collection. The zones of primary
interest in the environment are A, B, and C. Let S denote the
regions to collect samples from, M denotes the regions to be
monitored, and U denotes the data upload centers. The labels
follow the notation fzone,i where f denotes the functionality
among {sample,monitor, upload}, zone denotes the zone
name followed by a number. For instance, for zoneA we
have, {SA1, SA2,MA}. The goal is to gather samples, mon-
itor the specified regions within the given time durations, and
upload the data at upload centers. The specification expressed
plain English is: ”Collect samples from SA1 for 3 minutes
and S′1 for 1 minute, monitor region MB1 for 2 minutes
within the first t1 minutes. Next, monitor regions MA and
M ′1 for 1 minute each within the next t2 minutes or collect
samples and monitor regions SC ,MC for 2 and 3 minutes,
respectively, within the next t3 minutes. Finally, upload the
collected data at the upload centers UA, UB , UC within the
next t4 minutes.” Using TWTL, the specification is expressed
as follows:

ϕ =[H3SA1 ∧H1SA3 ∧H2MB1]
[0,t1]

· ( [H1SA2 ∧H1MA ∧H1MB2]
[0,t2]

∨ [H2SC ∧H3MC1 ∧H1MC2]
[0,t3] )

· [UA ∧ UB ∧ UC ]
[0,t4].

Here, the infeasibilities may stem from insufficient time to
reach regions or unreachable regions. In such cases, we have
the relaxation preferences: 1) Region SA1 can be substituted
by collecting samples from regions S′1 and S′2 with a penalty
of 5; 2) Substitute region MA by monitoring regions M ′1 and
MC2 and collecting samples from region S′1 for a penalty of
2; 3) Collecting samples from region SA3 can be substituted
by monitoring regions MB2 and M ′1 for a penalty of 3.

Fig. 1: Transition system for Case Study 1

Formally, 1) SA1 7→5 S′1S
′
2, 2) MA 7→2 M ′1MC2S

′
1 and

3) SA3 7→3 MB2M
′
1.

1) Feasible specification: With t1 = 7, t2 = 3, t3 =
4, t4 = 3 and all regions available, ϕ is feasible with
|QA| = 44, |δA| = 76. In this case, no revisions are required.
Fig. 2(a) shows the generated plan where each plan starting
at a different start location is shown using a different color.
The final locations of each plan have been encircled. The
cost is Ĵ = 92 with λ = 0.5.

2) Insufficient time: We assign t1 = 6, keeping all other
values the same as above, which makes H3SA1 infeasible.
Fig. 2(b) shows the plans obtained using relaxation prefer-
ence (1). Note that the plan passes through SA1 at a later
time to satisfy regions MA, SA2.

3) Zone unavailability: Assume zone A is not available.
Thus, relaxation preferences (1) and (3) are used and the
plan is shown in Fig. 2(c). Even though regions SA2,MA are
not reachable, the subformula in disjunction is still feasible,
and no relaxation is necessary for the subformula. Since our
formulation minimizes the combined cost of control effort
and relaxations, excess robots in the team are stationary.
Efficiency Vs Expressivity. To the authors’ best knowledge,
no other MILP formulation defined over timed specifications
accommodates revision relaxations. Thus, we consider a
baseline MILP encoding based on flow conservation and
direct specification encoding without the use of automata,
similar to [22], [29]. The total number of robots is N =
3. Table I presents the number of binary and total decision
variables and the computation time for Gurobi across six
specifications. Note that the baseline does not capture any
notion of relaxation. Thus, the number of constraints needed
to guide satisfaction is considerably less. To introduce re-
laxations in the baseline, additional constraints and decision
variables would need to be created, increasing the compu-
tation time. For specifications that require relaxations (e.g.,
last 2 specifications in Table I due to time or unavailability
of SA1), the problem is infeasible for baseline. Thus, it is
evident that MILPE offers more expressivity in terms of
handling formal user preferences for relaxations at the cost
of higher computation time.

4) Runtime Analysis: We present the runtime performance
of the proposed approach with respect to multiple factors,
varying a single parameter at a time. Our results are in
accordance with the observations made in [22].
T size. We consider ϕ = [H1SA2]

[0,3] · [H2MA]
[0,5]. The

WFSE considers trivial revisions that map an input word
to itself. We vary the environment size from 10 to 500
nodes, while keeping a set of APs fixed, |AP | = 5, from
which labels are randomly assigned to the nodes. Fig. (4)



Fig. 2: Trajectories obtained in case of a) feasible specification, b) insufficient time, c) unavailability of zoneA.

TABLE I: Comparison with baseline encoding

Encoding Specification Binary Total Time (s)
Baseline 10 484 0.0044
MILPE [H3SA1]

[0,5] 1107 1371 0.800
Baseline 11 660 0.0069
MILPE [H2UC ∧H3SA2 ]

[0,7] 5147 5865 6.3797
Baseline 7 649 0.0068
MILPE [H4M ′

1]
[0,6] ∨ [H6MB1]

[0,7] 6887 7278 4.517
Baseline 27 1212 0.021
MILPE [H3SA3]

[0,5] · [H2S′
1]

[4,9] 28158 30054 14.07
Baseline infeasible
MILPE [H3SA3]

[0,4] · [H2S′
1]

[4,9] 25957 28840 29.382
Baseline [H3SA1 ∧H1SC ]

[0,5] infeasible
MILPE ·[H2MB2 ]

[4,8] · [H1UB ]
[0,2] 28440 30936 30.770

(a) Runtime vs Aϕ size (b) Runtime vs No. preferences

(c) Runtime vs N (d) Runtime vs No. of APs

Fig. 3: Computation time for MILPE for various parameters

shows the time performance of MILPE for N = 2, 10, 20.
For smaller teams (N = 2), the problem may take longer
due to overlapping requirements. The execution time for
MILPs is affected by the bounds on decision variables.
Introducing more robots makes the computation faster (N =
10), however, presence of multiple excess robots increases
the upper bound on the decision variables zx,q and zx,x′,q,q′

resulting in a slightly higher computation time.

Aϕ size. We consider a specification of the form

ϕ = [Ht1x1 ∧Ht2x2]
[0,t3]⊕[Ht4x3]

[0,t5]

where ⊕ ∈ {∨, ·} and the APs xi are randomly chosen
from a set {SA1, SA2,MA, SA3, SC} and the durations and
time windows are randomly assigned with respect to a
horizon varying from 6 to 40 time units while following the
conditions necessary for feasibility of ϕ. Fig. (3a) indicates
that, owing to the complex structures of ϕ, the execution

Fig. 4: Time for solving MILPE where the environment size varies
from 10 to 500 for N = 2, 10, 20.

time for MILPE depends not only on the horizon of ϕ but
also on its internal structure.
Preferences. Given ϕ = [H1SA2]

[0,3] · [H2MA]
[0,5] and a

fixed T , we vary the number of preferences from 1 to 80
where |AP | = 5. We consider the preferences of the form
B 7→ σ where σ is a set of propositions randomly chosen
from AP with varying |σ| ∈ [[1, 4]]. Fig. (3b) shows that the
computation time varies almost linearly with the number of
preferences and tends to be constant for a large number of
preferences. Note that, similar to Aϕ, the computation for
preferences also depends on their internal structure.
Number of robots. Keeping the T , ϕ same as above, we
vary the number of robots N from 1 to 400. The results, as
visualized in Fig. (3c), indicate that initially, there is a rise
in the computation time due to an increase in the bounds of
the variables. However, the computation time remains largely
unaffected when N increases further.
AP size. Finally, we note the effect of varying the size
of atomic propositions on runtime. As expected, the com-
putation time increases exponentially with |AP | since the
transitions in A are defined over 2AP .

V. CONCLUSION

We present a novel approach to control synthesis for multi-
robot teams task with global temporal logic specifications
and with user preferences for relaxations. Preserving the
explicit indication of progress towards satisfaction using a
relaxed specification automaton, we propose a mixed-integer
linear programming approach to avoid the computationally
expensive product construction of robots’ motion models.
The runtime analysis indicates that our approach offers more
expressivity as compared to existing MILP formulations
for temporal logic planning while offering computational
advantages with respect to purely automata-based methods.
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