
Dynamic Risk Density for Autonomous Navigation in Cluttered
Environments without Object Detection

Alyssa Pierson1, Cristian-Ioan Vasile1,2, Anshula Gandhi1, Wilko Schwarting1,
Sertac Karaman2, and Daniela Rus1

Abstract— In this paper, we examine the problem of navi-
gating cluttered environments without explicit object detection
and tracking. We introduce the dynamic risk density to map
the congestion density and spatial flow of the environment to a
cost function for the agent to determine risk when navigating
that environment. We build upon our prior work, wherein the
agent maps the density and motion of objects to an occupancy
risk, then navigate the environment over a specified risk level
set. Here, the agent does not need to identify objects to
compute the occupancy risk, and instead computes this cost
function using the occupancy density and velocity fields around
them. Simulations show how this dynamic risk density encodes
movement information for the ego agent and closely models the
object-based congestion cost. We implement our dynamic risk
density on an autonomous wheelchair and show how it can
be used for navigating unstructured, crowded and cluttered
environments.

I. INTRODUCTION

Autonomous mobility comes in many forms and packages:
cars, trucks, golf carts, wheelchairs, and delivery buggies,
to name a few. As we integrate these vehicles into human-
centric environments, autonomous systems must detect and
adapt to the presence of moving agents and obstacles. The
correct response depends on the level of congestion and
the nature of the motion. This paper presents a solution
to navigation in clutter with dynamic obstacles agnostic to
the classification of the obstacle. We formalize a method
of estimating the density and motion of the clutter with
a congestion cost function. Using the density and velocity
field of the environment, we generate the dynamic risk
density function, which encodes the location and movement
of dynamic obstacles into a single cost function. Using the
dynamic risk density, we demonstrate navigating crowded
hallways with an autonomous wheelchair that is able to
avoid collisions with both static obstacles and pedestrians.
Figure 1 shows our autonomous wheelchair platform and an
illustration of our path planning algorithm.

This paper focuses on autonomous mobility platforms
for individuals, such as autonomous wheelchairs, whose
features are needed to navigate crowds, buildings, plazas,
airports, and other cluttered and unstructured environments.

1Computer Science & Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139,
USA [apierson, cvasile, anshula, wilkos,
rus]@mit.edu

2Laboratory of Information and Decision Systems (LIDS), MIT,
Cambridge, MA, USA sertac@mit.edu

This work supported in part by NSF Grant 1723943, the Office of
Naval Research (ONR) Grant N00014-18-1-2830, and by Toyota Research
Institute (TRI). This article solely reflects the opinions and conclusions of
its authors and not TRI or any other Toyota entity. Their support is gratefully
acknowledged.

(a) (b)

Fig. 1: (a) Autonomous wheelchair platform and (b) dynamic
risk density cost function with RRT?path generation.

In recent years, sensing and perception technology has made
significant advances in our ability to parse and understand
an environment. However, these perception systems remain
prohibitively expensive at the consumer scale. Furthermore,
many of these approaches require advanced algorithms with
significant computational overhead, or are limited in the
environmental complexity they can handle. Here, we are
interested in studying mobility solutions achievable with
minimal sensor data and light computational loads. Our goal
is to rapidly assess and translate risks for reliable, collision-
free motion in diverse, cluttered, and unstructured environ-
ments. Our previous work proposed using “risk level sets”
to navigate a cluttered environment. In [1], we introduced a
cost function that quantified the level of congestion based on
the positions and movement of other agents and obstacles in
the system. This function mapped the environment clutter to
a metric of risk for an ego agent planning a path through the
environment. We also introduced varying risk thresholds for
the agents, such that from the congestion cost function, the
agents choose their allowable risk tolerance, which results
in a range of conservative to aggressive behavior while
still avoiding collisions. Here, we extend the results of
our previous work by removing the ability to detect and
track obstacles. We present the “object-less” version of our
congestion cost function, which approximates the previous
congestion cost using only the occupancy density of the
environment and the velocity flow field around the agent. We
show this closely matches the true congestion cost function
in the calculation of the safe planning space.

We implement our dynamic risk density cost function on
an autonomous wheelchair navigating busy pedestrian corri-
dors. The wheelchair has a prior map of the environment, and
given some initial starting location, must navigate to a goal
location along a reference path. The map only includes static

features and environment boundaries, but does not include
information about dynamic obstacles, such as other pedestri-
ans, or non-permanent obstructions, such as tables and chairs.
Due to the random and cluttered nature of this environment,
as well as large crowds moving through the corridors, we
do not want to rely on object-detection for the wheelchair
to navigate. Instead, we will use only 2D laser scanners to
construct occupancy grids about the environment. From the
changes in the occupancy grid over time, we also construct an
estimate of the velocity flow field, and generate our dynamic
risk density. Using this cost function, the wheelchair uses an
RRT?algorithm to navigate along its desired path through
the environment while avoiding obstacles. We illustrate how
this dynamic risk density improves the performance of the
wheelchair’s navigation over approaches that use occupancy
grids computed only from measurements at the current time
step, which we refer to as snapshot costmaps. We present
two distinct methods for computing the velocity field: a
clustering-based approach, and density flow.

Related Work

This paper focuses on quickly assessing the density and
motion of obstacles in the environment for risk-aware motion
planning to prevent collisions. Collision avoidance in multi-
agent systems is often studied when agent positions are
known [2], [3] or with static obstacles [4], [5], [6], [7].
One common technique for collision avoidance is to use
reciprocal velocity obstacles [8], [9], however, this strategy
relies on all agents using the same policy. In dynamic and
uncertain environments, receding horizon control policies
may be used to predict the intent of other agents [10].
Other approaches use predictions about dynamic obstacles
for probabilistically-safe motion [11].

In cluttered environments, an autonomous agent’s control
policy must be aware of all other agents. The “opera prob-
lem” [12] is defined as many agents attempting to navigate
through a narrow aperture, such as a crowd of people leaving
through narrow exits. One proposed solution uses potential
field and gradient descent for coordinated flow [13]. Another
approach is to determine a Voronoi tessellation from obstacle
locations, then navigate along the Voronoi boundaries [14].
Alternative Voronoi tessellations can also provide safe plan-
ning regions for agents [7]. These approaches are effective
for moving through static obstacles, but does not readily
extend to dynamic obstacles.

Navigating in crowds is an open problem for socially-
competent navigation. Many approaches focus on learning
and identifying key features of pedestrian motion in order
to predict their intent [15], [16], [17], [18], [19], [20], [21].
Deep reinforcement learning can learn typical human trajec-
tories for the autonomous agent [22]. Other methods rely
on multi-policy decision making [23], utilize probabilistic
predictive models of cooperative collision avoidance [24], or
predict underlying pathways to follow [25]. By understand-
ing features gleaned from data, it is possible to decrease
the uncertainty in navigation with pedestrians [26], [27].
While these approaches provide varied and robust ways to
interact with pedestrians, they often require either advanced
pedestrian tracking, or large training data sets.

Our approach uses the density and velocity information
to formulate our cost function. We build upon work in
occupancy grid-based navigation [28], [29], [30], [31], which
combines all available sensor data into an occupancy prob-
ability for navigation. By tracking features, it is possible to
create spatio-temporal models of the flow patterns throughout
the environment [32], [33]. Here, we use the changes in the
densities to predict the velocity flow field of the environment,
and then compute a weighted costmap for navigation. In [34],
[35], the authors use information about the pedestrians in the
environment to weight their presence in a costmap differently
than other obstacles. Our approach does not directly detect
or track obstacles, treating any occupied space as a region
to avoid.

The remainder of the paper is organized as follows: Sec-
tion II defines the congestion cost and problem formulation.
Section III presents our dynamic risk density calculation
when object detection is not available. We present simula-
tions in Section IV comparing the performance of the object-
based congestion cost and its more general form of the
dynamic risk density. Section V details our experiments nav-
igating cluttered pedestrian walkways with an autonomous
wheelchair, and we state our conclusions in Section VI.

II. PROBLEM FORMULATION

In this section, we present our problem formulation and
summarize the congestion cost from prior work [1]. From
this congestion cost, we then present our approximation
when only the local density and velocity flow field infor-
mation is known. Consider an environment Q ⊂ RN , with
points in Q denoted q. Here, we consider all agents and
obstacles as dynamic obstacles. For n dynamic obstacles in
the environment, we write the position of each obstacle as
xi, for i ∈ {1, ..., n}. For brevity, we write the position of all
the agents as x, with dynamics ẋ. We define the ego agent
with subscript e and denote its position xe.

The occupancy cost due to all dynamic obstacles in the
environment is calculated

H(q, x, ẋ) =

n∑
i=1

exp
(
−(q − xi)TΩ(q − xi)

)
1 + exp

(
−αẋTi (q − xi)

) , (1)

where α is a scaling factor and Ω is the diagonal matrix
of the inverse square of the standard deviation. In R2, Ω =
diag{ 1

σ2
x
, 1
σ2
y
} for x, y axes. By construction, the congestion

cost is the summation of a Gaussian peak centered at an
obstacle’s location multiplied by a logistic function in the
direction of its motion. By skewing the position by the
velocity, the occupancy cost H is greater in the direct path
of the obstacle’s motion, and lower where obstacles are not
actively moving. This particular formulation allows us to
make robust claims about the collision avoidance of the ego
agent under minimal assumptions of the other agents.

In our previous work, we assume that agents are “self-
preserving,” which means all agents will avoid collisions
when possible with other agents. This assumption implies
that there are no adversarial agents in the environment, and
that if the ego agent is capable of avoiding collisions with
dynamic obstacles, those obstacles will also attempt to avoid
collisions. Unlike other work, we do not assume the collision

avoidance happens by any particular control policy, nor do
we assume the control policies be reciprocal among agents.

Under this assumption, we can find the thresholds in H
that define safe and unsafe values, which then allow us to
define the risk thresholds. By computing level sets of the
cost function, we restrict the ego agent’s planning space to
guarantee safe motion through the environment, and further,
change the behavior of the agent based on these choices. Let
Hc be the value of the cost function when a collision occurs.
We define HT < Hc to be the maximum risk threshold of
the system that guarantees an agent can avoid collisions. We
also define HP ≤ HT as the chosen planning threshold of the
ego agent. For more aggressive maneuvers, an agent would
choose a value of HP ≈ HT , while a conservative agent
would chose HP << HT .

For an ego agent planning a path through the environment
Q, we define the risk level set, Lp̄ as all points in the
environment that are below the chosen planning threshold
HP . The risk level set is written

Lp̄ = {q | H(q − xe, ẋi) ≤ HP }. (2)

From the level set in (2), it can be shown that an ego agent
that only chooses actions within that set will avoid collisions
with all other agents [1]. We demonstrate this by proving that
the cost function in (1) never exceeds the thresholds Hc, and
that for any value of H < Hc, a collision cannot occur.

When it is feasible to detect and track obstacles, the
congestion cost in (1) is effective for preventing collisions
between an ego agent and dynamic obstacles within the
environment. However, if the autonomous system is not
capable of reliably tracking obstacles, using (1) may fail to
capture all hazards. In the next section, we detail our dynamic
risk density function, which provides an approximation of the
congestion cost function without explicit obstacle detection.

III. DYNAMIC RISK DENSITY

When obstacle detection is unavailable, we can still com-
pute an approximation of the congestion cost from sensor
information. We introduce the approximation of this cost
using the density and the velocity field in the environ-
ment. Simulations in Section IV show the fidelity of this
approximation to the congestion cost presented in (1). For
the experiments on the autonomous wheelchair presented in
Section V, the local environment density is calculated from
laser scanner information, and we present several methods
for estimating the velocity field, detailed later in this section.

A. Dynamic Risk Density from Occupancy and Velocity
Fields

Consider the congestion cost function presented in (1).
To construct our approximation, we look at substitutions to
replace the object locations and velocities with environment
density and velocity fields.

Recall the numerator of (1) is constructed from Gaussian
peaks about the object locations. In the approximation, we
instead use the occupation density of the environment in its
place. Let ρ(q, t) define the density at point q in the envi-
ronment at time t. To compute the logistic function without
the objects, we use both the density and the velocity field.

We define V(q, t) as the velocity field of the environment at
time t. Overall, the dynamic risk density is computed

Hρ(q, t, ρ,V) =
ρ(q, t)

1 + exp (αOρ(q, t) · V(q, t))
, (3)

where Oρ(q, t) is the gradient of the density, and α is a
user-designed scaling factor. For brevity in future notation,
we use the superscript t to denote functions at a particular
time, letting ρt and Vt denote the density and velocity field,
respectively. In Section V, we use (3) in conjunction with an
RRT?-based controller to navigate a cluttered environment
autonomously. We estimate the environment density directly
from laser range scanners and occupancy grids. The velocity
field may be computed in several ways; here, we present
two distinct methods for determining the velocity field from
the density. One approach is to use k-means clustering on
the density, then map to a velocity field using a Voronoi
tessellation. We also present a density flow-based approach,
with methods similar to optical flow in image processing.

B. Estimating the Velocity Field from Clustering

To estimate the velocity field from the density infor-
mation, we applied a k-means clustering algorithm [36]
to the occupancy grid, then track the movement of the
centroids over time. Using the movement of the centroids,
we approximate their velocity. To map velocity for all points
in the environment, we calculate the Voronoi tessellation of
the environment from the centroids and apply the velocity of
the centroid to all points within its associated Voronoi cell.
A summary of our approach is given in Algorithm 1.

Let cti denote the position of a centroid at time t, with
Ct =

[
(ct1)T | ... | (ctk)T

]T
representing the positions of all

k centroids from the clustering algorithm. At each time t, the
k-means clustering algorithm is seeded using the centroids
Ct−∆t. We then use the Hungarian algorithm [37] to match
the clusters over time and assign the indices from Ct−∆t

to points in Ct. From the matched pairs, we compute the
velocity of a centroid as

vti =

(
cti − c

t−∆t
i

)
∆t

, (4)

where ∆t is the time elapsed between computations. To
compute the velocity field Vt, we apply the centroid velocity
vti to all points within the associated Voronoi cell V ti ,

Vt =

k∑
i=1

vti 1V t
i
, (5)

where V ti is the Voronoi cell about centroid cti, computed

V ti = {q | ‖q − cti‖ ≤ ‖q − ctj‖, ∀i, j ∈ k, , ∀q ⊂ Q}.

Using this approach, the clusters track areas of high oc-
cupancy, yielding a notion of features for the ego agent.
In the experiments presented in Section V, we demonstrate
this approach on our autonomous wheelchair, as well as a
variation that incorporates a Kalman filter on the centroid
velocity estimates to reduce the effect of noise.

Algorithm 1 Velocity Field Estimation from Clustering

1: Input: ρt, Ct−∆t

2: Compute clusters Ct from ρt

3: Match clusters Ct to Ct−∆t

4: Compute cluster velocities vti (4)
5: Estimate velocity field Vt from Voronoi tessellation (5)

C. Velocity Field Estimation from Density Flow
In contrast to the clustering approach with discrete esti-

mates, here we present a method for estimating velocity field
Vt directly from occupancy density changes ρt and ρt−∆t.
Our approach is inspired by dense optical flow estimation
with applications in computer vision. For a 2D+t dimensional
case a voxel at location (q = (x, y), t) with density ρ(x, y, t),
ρ(x, y, t) will have moved by ∆x, ∆y, and ∆t between
the two measurements, and the following density constancy
constraint can be formulated:

ρt(x, y) = ρ(x, y, t) = ρ(x+ ∆x, y + ∆x, t+ ∆t) (6)

Under the assumption of small movement the density can be
approximated by first order Taylor expansion to

ρ(x+ ∆x, y + ∆x, t+ ∆t) =

ρ(x, y, t) +
∂ρ

∂x
∆x+

∂ρ

∂y
∆y +

∂ρ

∂t
∆t+ H.O.T.,

such that by employing the density constancy condition (6)
and dividing by ∆t the partial differential equation

∂ρ

∂x

∆x

∆t
+
∂ρ

∂y

∆y

∆t
+
∂ρ

∂t
= 0, (7)

relates the density gradient ∇ρ = (∂ρ∂x ,
∂ρ
∂y) to the density

flow Vt = (∆x
∆t ,

∆y
∆t). We approximately solve (7) as de-

scribed in [38] to estimate the density flow Vt from two
sequential densities ρt, ρt−∆t based on local polynomial
expansion similar to estimating dense optical flow in images.

D. Control Policy
While the risk level set defines the planning space, the user

may implement their chosen control policy for navigating the
environment. In Section V, we implement an RRT?-based
controller on the wheelchair in which the congestion cost is
used to update the local path to avoid obstacles. Algorithm
2 provides an overview of our chosen RRT?-based control
policy used in our experiments.

Algorithm 2 Dynamic Risk Density Navigation

1: Update ρt from sensors
2: Estimate velocity field Vt
3: Compute dynamic risk density (3)
4: Compute risk-bounded path using RRT?along reference

path

IV. SIMULATIONS

To benchmark the dynamic risk density, we ran simu-
lations in Matlab and Python to compare the performance

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

(a) Object-Based Cost
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

(b) Dynamic Risk Density

Fig. 2: Contours of the (a) object-based cost function and
(b) dynamic risk density.

0 10 20 30 40 50
Time

0.7

0.75

0.8

0.85

0.9

0.95

1

Lp

(a)

1 10 20 30 40 50 60 70
obstacles

0.75

0.8

0.85

0.9

0.95

1

Lp

(b)

Fig. 3: (a) From a simulation of n = 10 obstacles moving
through the environment, we can compare the value of the
congestion cost (blue) in (1) to the dynamic risk density (red
dashed) in (3). The dynamic risk density yields a similar
planning area to (1). (b) For varying numbers of obstacles,
we ran 50 trials of randomized configurations and computed
the planning area Lp̄ for the congestion cost (blue) and
dynamic risk density (red).

against the congestion cost function in (1) and formalized in
[1]. The object-based cost function is computed directly from
the object positions and velocities, while the dynamic risk
density is computed using the density and velocity flow field.
For this comparison, we generate the density field from the
position and extent of the objects with added Gaussian noise.
The known velocity field is generated for the environment,
and objects select their velocity based on their position in the
field. From Figure 2, we see that the contours of both cost
functions are quite similar. To further compare the variations
between the two cost functions, Figure 3a tracks the values of
the level set Lp̄ over time. We simulate 10 obstacles moving
through an environment over 50 seconds, and compute the
cost at each time step. Over time, the changes in the true
congestion cost function are mirrored by the dynamic risk
density function.

To compare the average planning set areas, we simulated
50 trials of random object configurations with random veloc-
ities for varying numbers of obstacles. Figure 3b shows the
comparison of the planning area Lp̄ between the congestion
cost in (1) and the dynamic risk density in (3). Note our dy-
namic risk density level sets are smaller than the object-based
congestion cost, making it more conservative in practice.

For the velocity field computations using our clustering
approach presented in Algorithm 1, Figure 4 illustrates the

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Fig. 4: Contours of the dynamic risk density with the velocity
field determined by applying the k-means cluster velocity to
a Voronoi tessellation of the environment. Over time, we use
the evolution of the clusters to determine the velocity field.

contours of the dynamic risk density function Hρ using the
Voronoi-based velocity field computed in (5). The centroids
of the k-means clusters are shown on the figure with red
X’s. The velocity field applies the centroids’ movement to
the Voronoi tessellation of the environment.

V. EXPERIMENTS

To validate our dynamic risk density cost function, we
performed experiments using an autonomous wheelchair
developed at MIT. The hardware platform is inspired by
the Singapore-MIT Alliance for Research and Technology
(SMART) scooter [39] and golf-cart [40] platforms. The
wheelchair uses the same autonomy stack developed for the
MIT autonomous Prius platform [41] detailed below. For the
experiments, we use laser scanners to construct occupancy
grids in the environment that are used for motion planning.
Figure 6 shows stills from the video included with the
submission of our paper synced to snippets of the costmap.

A. Platform Overview

The experiments are performed on a wheelchair modified
for drive-by-wire, which runs an autonomy stack composed
of control, navigation, and sensor modules implemented
in ROS [42]. The sensor modules interface with the laser
scanners, encoders, and an IMU that equip the wheelchair.
The control modules provide linear and angular velocity
controllers, where the reference signals are given by the
navigation modules, as well as emergency stop and human-
input control signals. The navigation stack comprises local-
ization, path planner, path following, and costmap modules.
Localization is performed using the AMCL package [43],
[44], which integrates odometry poses computed from the
encoders and IMU data, and laser scan data registered into
an a priori constructed map. The location of the wheelchair
together with a reference path and costmaps are used by
an RRT?planner [45] to generate obstacle-free paths in the
environment. We use a pure-pursuit controller [46] for path
following, which provides the steering control signal. For
simplicity, we command constant linear velocity, unless an
obstacle is too close to the wheelchair and all velocities are
set to zero. Collision checking is performed using a discrete
costmap-based approach, where grids are populated with
laser scan measurements. The ROS costmap 2d package [35]

Fig. 5: Visualization of wheelchair’s path planning. The red
indicates trajectory history, while the green lines are the
current exploration of the RRT?algorithm. The local costmap
from sensor data is shown in blue and pink.

computes snapshot costmaps that integrate static map infor-
mation with obstacles generated from the laser scan data,
and inflated radially for safety.

Our proposed dynamic risk density implementation inter-
faces with the vanilla costmap and path planning modules. It
takes in the costmap stream, and generates discrete (grid) risk
cost functions that take into account the underlying velocity
fields of cluttered (occupied) space. The cost function is
passed to the path planner module that computes obstacle-
free paths at the current time, and potentially within a future
time horizon. The dynamic risk density computation ran at
60Hz on a Dell Precision 5520 laptop with Core i7-7th
gen processor and 32GB RAM, allowing the wheelchair to
react quickly to the environment and operate smoothly. A
visualization of the path planning is shown in Figure 5.

B. Performance Comparison

We conducted our experiments in the Stata Center at MIT.
We ran trials along the a busy pedestrian corridor during
weekday afternoons, and compared the performance of our
navigation algorithm in Algorithm 2 using several methods
of computing the velocity field. These variations were:

• Snapshot costmap setting V t = 0 (baseline using only
occupancy grid information),

• Density flow using (7) to solve for Vt, akin to optical
flow methods in image processing,

• k-means clustering of the occupancy grid, then estimat-
ing Vt using the Voronoi approach in Algorithm 1,

• Filtered k-means clustering with a Kalman filter on the
centroid velocity estimates vti before mapping to Vt.

First, we computed the velocity field using the k-means
clustering approach with the Voronoi-based velocity field, as
described in Algorithm 1. Next, we ran a modified version
of the clustering algorithm, this time with a Kalman filter
on the generated cluster velocities vti . We also ran several
trials with the velocity field generated from the density flow
approach outlined in Section III. As a baseline, we compare
our results to the snapshot costmap.

Overall, we found the snapshot costmap to be either
too conservative in its obstacle padding, or too aggressive
and collision-prone. For the two variations on clustering,
filtering the velocity helped reduce noise in the estimation

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6: (a-d) Video frames of the wheelchair navigating a busy section of Stata. (e-h) costmap showing the obstacles (grey)
and planned path (black line). Here, the velocity field is generated from the filtered k-means approach. As the wheelchair
(red star) approaches the doorway, several people enter the corridor, and the wheelchair adjusts its path around. It then stops
and waits for a pedestrian to pass on the right before continuing down the hall.

of static obstacles, but introduced a delay in responding
to new dynamic obstacles. Both versions of our clustering
algorithm were performed with n = 50 clusters over our
costmap. As shown in Figure 6 and seen in our video
supplement, the clustering approach is able to handle a
congested hallway where people are entering and exiting a
classroom, introducing new obstacles.

While the clustering approach provides a discrete ap-
proximation of points of interest in the environment, the
density flow-based velocity field generates a high-resolution,
fine-grained estimation of the velocity field. It yielded a
better approximation of the environment boundaries, but was
more susceptible to artifacts in the density map, and clipped
objects within the costmap due to more discontinuities in
velocity over the field. Figure 7 shows the four versions of
our costmap from a single reference point.

VI. CONCLUSIONS

In this paper, we propose the use of a dynamic risk density
function for navigating a cluttered environment without ex-
plicit object detection and tracking. The dynamic risk density
is computed by taking the congestion density and spatial
flow of an environment, and mapping it to a cost function
that approximates risk for a navigating ego agent. We build
upon prior work, which proposed the use of risk level sets
to safely navigate a cluttered environment without collision.
Simulations illustrate how the dynamic risk density provides
a high-fidelity approximation of the congestion cost function.
We also propose two methods of calculating the velocity
field: first, using a k-means clustering-based approach, which
provides discrete approximations of features; and second,
a density flow approach that provides a fine-grained ap-
proximation of the velocity field. Experiments on an au-
tonomous wheelchair platform demonstrate how the dynamic

(a) Snapshot (b) Density Flow

(c) k-means (d) Filtered k-means

Fig. 7: Visualization of the snapshot costmap (a) versus the
dynamic risk density costmap with our three variations of
velocity field generation using (b) density flow, (c) k-means
clustering, and (d) k-means clustering with filtered velocities.

risk density can be used in cluttered environments, and we
perform multiple trials comparing the different instantiations
of our velocity field estimation as compared to a “snapshot”
costmap.

REFERENCES

[1] A. Pierson, W. Schwarting, S. Karaman, and D. Rus, “Navigating con-
gested environments with risk level sets,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), May 2018.

[2] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning
algorithms from the perspective of autonomous UAV guidance,” Jour-
nal of Intelligent and Robotic Systems, vol. 57, no. 1-4, pp. 65–100,
2010.

[3] C. Schlegel, “Fast local obstacle avoidance under kinematic and
dynamic constraints for a mobile robot,” in Intelligent Robots and
Systems, 1998. Proceedings., 1998 IEEE/RSJ International Conference
on, vol. 1. IEEE, 1998, pp. 594–599.

[4] P. Ogren and N. E. Leonard, “A convergent dynamic window approach
to obstacle avoidance,” Robotics, IEEE Transactions on, vol. 21, no. 2,
pp. 188–195, 2005.

[5] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
motion planning and control in polygonal environments,” IEEE Trans-
actions on Robotics, vol. 21, no. 5, pp. 864–874, Oct 2005.

[6] O. Brock and O. Khatib, “High-speed navigation using the global
dynamic window approach,” in Robotics and Automation, 1999. Pro-
ceedings. 1999 IEEE International Conference on, vol. 1, 1999, pp.
341–346.

[7] A. Pierson and D. Rus, “Distributed target tracking in cluttered envi-
ronments with guaranteed collision avoidance,” in 2017 International
Symposium on Multi-Robot and Multi-Agent Systems (MRS), Dec
2017, pp. 83–89.

[8] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obsta-
cles for real-time multi-agent navigation,” in 2008 IEEE International
Conference on Robotics and Automation, May 2008, pp. 1928–1935.

[9] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-
body collision avoidance,” in Robotics Research, C. Pradalier, R. Sieg-
wart, and G. Hirzinger, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 3–19.

[10] N. E. D. Toit and J. W. Burdick, “Robot motion planning in dynamic,
uncertain environments,” IEEE Transactions on Robotics, vol. 28,
no. 1, pp. 101–115, Feb 2012.

[11] G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy, and
J. P. How, “Probabilistically safe motion planning to avoid
dynamic obstacles with uncertain motion patterns,” Autonomous
Robots, vol. 35, no. 1, pp. 51–76, Jul 2013. [Online]. Available:
https://doi.org/10.1007/s10514-013-9334-3

[12] V. Crespi, G. Cybenko, and D. Rus, Decentralized Control and Agent-
Based Systems in the Framework of the IRVS, 2001.

[13] V. Crespi, G. Cybenko, D. Rus, and M. Santini, “Decentralized control
for coordinated flow of multi-agent systems,” in Proceedings of the
2002 International Joint Conference on Neural Networks. IJCNN’02
(Cat. No.02CH37290), vol. 3, May 2002, pp. 2604–2609 vol.3.

[14] O. Arslan and D. E. Koditschek, “Sensor-based reactive navigation in
unknown convex sphere worlds,” in The 12th International Workshop
on the Algorithmic Foundations of Robotics, 2016.

[15] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun, “Learning
motion patterns of people for compliant robot motion,” The
International Journal of Robotics Research, vol. 24, no. 1, pp. 31–48,
2005. [Online]. Available: https://doi.org/10.1177/0278364904048962

[16] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, “Feature-
based prediction of trajectories for socially compliant navigation.” in
Robotics: science and systems, 2012.

[17] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[18] M. Pfeiffer, U. Schwesinger, H. Sommer, E. Galceran, and R. Sieg-
wart, “Predicting actions to act predictably: Cooperative partial motion
planning with maximum entropy models,” in 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Oct 2016,
pp. 2096–2101.

[19] A. Vemula, K. Muelling, and J. Oh, “Modeling cooperative navigation
in dense human crowds,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), May 2017, pp. 1685–1692.

[20] L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially compliant navi-
gation through raw depth inputs with generative adversarial imitation
learning,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), May 2018, pp. 1111–1117.

[21] M. Pfeiffer, G. Paolo, H. Sommer, J. Nieto, R. Siegwart, and
C. Cadena, “A data-driven model for interaction-aware pedestrian
motion prediction in object cluttered environments,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), May
2018, pp. 1–8.

[22] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Sept 2017, pp. 1343–1350.

[23] D. Mehta, G. Ferrer, and E. Olson, “Autonomous navigation in
dynamic social environments using multi-policy decision making,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Oct 2016, pp. 1190–1197.

[24] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation
in dense human crowds: Statistical models and experimental studies
of humanrobot cooperation,” The International Journal of Robotics
Research, vol. 34, no. 3, pp. 335–356, 2015. [Online]. Available:
https://doi.org/10.1177/0278364914557874

[25] J. Doellinger, M. Spies, and W. Burgard, “Predicting occupancy
distributions of walking humans with convolutional neural networks,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1522–1528,
July 2018.

[26] C. Mavrogiannis and R. A. Knepper, “Designing algorithms for
socially competent robotic navigation,” in Proceedings of the
Companion of the 2017 ACM/IEEE International Conference
on Human-Robot Interaction, ser. HRI ’17. New York,
NY, USA: ACM, 2017, pp. 357–358. [Online]. Available:
http://doi.acm.org/10.1145/3029798.3034810

[27] C. I. Mavrogiannis, V. Blukis, and R. A. Knepper, “Socially competent
navigation planning by deep learning of multi-agent path topologies,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Sept 2017, pp. 6817–6824.

[28] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, June 1989.

[29] N. C. Mitsou and C. S. Tzafestas, “Temporal occupancy grid for
mobile robot dynamic environment mapping,” in 2007 Mediterranean
Conference on Control Automation, June 2007, pp. 1–8.

[30] A. Souza and L. M. G. Gonalves, “Occupancy-elevation grid: an
alternative approach for robotic mapping and navigation,” Robotica,
vol. 34, no. 11, p. 25922609, 2016.

[31] S. Hoermann, M. Bach, and K. Dietmayer, “Dynamic occupancy grid
prediction for urban autonomous driving: A deep learning approach
with fully automatic labeling,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA), May 2018, pp. 2056–2063.

[32] T. Kucner, J. Saarinen, M. Magnusson, and A. J. Lilienthal, “Con-
ditional transition maps: Learning motion patterns in dynamic envi-
ronments,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Nov 2013, pp. 1196–1201.

[33] S. Molina, G. Cielniak, T. Krajnı́k, and T. Duckett, “Modelling
and predicting rhythmic flow patterns in dynamic environments,” in
Towards Autonomous Robotic Systems, M. Giuliani, T. Assaf, and
M. E. Giannaccini, Eds. Cham: Springer International Publishing,
2018, pp. 135–146.

[34] D. V. Lu, D. B. Allan, and W. D. Smart, “Tuning cost functions for
social navigation,” in Social Robotics, G. Herrmann, M. J. Pearson,
A. Lenz, P. Bremner, A. Spiers, and U. Leonards, Eds. Cham:
Springer International Publishing, 2013, pp. 442–451.

[35] D. V. Lu, D. Hershberger, and W. D. Smart, “Layered costmaps
for context-sensitive navigation,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sept 2014, pp. 709–
715.

[36] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society. Series
C (Applied Statistics), vol. 28, no. 1, pp. 100–108, 1979. [Online].
Available: http://www.jstor.org/stable/2346830

[37] H. W. Kuhn, “The hungarian method for the as-
signment problem,” Naval Research Logistics Quarterly,
vol. 2, no. 1-2, pp. 83–97, 1955. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109

[38] G. Farnebäck, “Two-frame motion estimation based on polynomial
expansion,” in Scandinavian conference on Image analysis. Springer,
2003, pp. 363–370.

[39] H. Andersen, Y. H. Eng, W. K. Leong, C. Zhang, H. X. Kong,
S. Pendleton, M. H. Ang, and D. Rus, “Autonomous personal mobility
scooter for multi-class mobility-on-demand service,” in 2016 IEEE
19th International Conference on Intelligent Transportation Systems
(ITSC), Nov 2016, pp. 1753–1760.

[40] S. Pendleton, T. Uthaicharoenpong, Z. J. Chong, G. M. J. Fu, B. Qin,
W. Liu, X. Shen, Z. Weng, C. Kamin, M. A. Ang, L. T. Kuwae, K. A.
Marczuk, H. Andersen, M. Feng, G. Butron, Z. Z. Chong, M. H. Ang,
E. Frazzoli, and D. Rus, “Autonomous golf cars for public trial of
mobility-on-demand service,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Sept 2015, pp. 1164–1171.

[41] F. Naser, D. Dorhout, S. Proulx, S. D. Pendleton, H. Andersen,
W. Schwarting, L. Paull, J. Alonso-Mora, M. H. Ang, S. Karaman,
R. Tedrake, J. Leonard, and D. Rus, “A parallel autonomy research
platform,” in 2017 IEEE Intelligent Vehicles Symposium (IV), June
2017, pp. 933–940.

[42] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[43] D. Fox, “Adapting the sample size in particle filters through kld-
sampling,” The international Journal of robotics research, vol. 22,
no. 12, pp. 985–1003, 2003.

[44] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

[45] S. Karaman and E. Frazzoli, “Sampling-based Algorithms for Optimal
Motion Planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, June 2011.

[46] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How,
“Real-time motion planning with applications to autonomous urban
driving,” IEEE Transactions on Control Systems Technology, vol. 17,
no. 5, pp. 1105–1118, September 2009.

