
Multi-vehicle motion planning for social optimal mobility-on-demand

Jesper Karlsson1, Cristian-Ioan Vasile2, Jana Tumova1, Sertac Karaman2 and Daniela Rus2

Abstract— In this paper we consider a fleet of self-driving
cars operating in a road network governed by rules of the road,
such as the Vienna Convention on Road Traffic, providing rides
to customers to serve their demands with desired deadlines. We
focus on the associated motion planning problem that trades-
off the demands’ delays and level of violation of the rules of
the road to achieve social optimum among the vehicles. Due
to operating in the same environment, the interaction between
the cars must be taken into account, and can induce further
delays. We propose an integrated route and motion planning
approach that achieves scalability with respect to the number
of cars by resolving potential collision situations locally within
so-called bubble spaces enclosing the conflict. The algorithms
leverage the road geometries, and perform joint planning only
for lead vehicles in the conflict and use queue scheduling for
the remaining cars. Furthermore, a framework for storing
previously resolved conflict situations is proposed, which can
be use for quick querying of joint motion plans. We show the
mobility-on-demand setup and effectiveness of the proposed
approach in simulated case studies involving up to 10 self-
driving vehicles.

I. INTRODUCTION

In this paper we consider the problem of deploying a

fleet of self-driving vehicles providing rides to customers

to meet their demands within certain deadlines, and at the

same time obeying the rules of the road, such as speed

limits, construction areas, and traffic lights. The two goals

may not be always compatible, since the rules of the road

may slow down the autonomous vehicles and preclude the

satisfaction of their respective customer demands by their

deadlines. Moreover, by operating in the same environment,

the vehicles interact with each other which might induce

further delays. Our goal is to compute motion plans for all

vehicles that are guaranteed to meet the customers’ demands

within their deadlines while obeying the rules of the road or,

if this is not possible, with optimal social cost that encodes a

fair distribution of individual delays in servicing the demands

among the vehicles.

In our prior work, we explored similar motion planning

problems for a single vehicle with conflicting rules of the

road [1], [2], [3]. The notion of level of violation of rules was

introduced in [1], [2] for the design of minimum-violation

planners, where the vehicle was tasked to arrive at a goal

location. Richer demands were considered in [4] for vehicle

*Toyota Research Institute (”TRI”) provided funds to assist the authors
with their research but this article solely reflects the opinions and conclu-
sions of its authors and not TRI or any other Toyota entity. This work was
also supported by the Swedish Research Council (VR).

1Jesper Karlsson, and Jana Tumova are with KTH Royal Institute of
Technology, Stockholm, Sweden {jeskarl, tumova}@kth.se

2Cristian-Ioan Vasile, Sertac Karaman, and Daniela Rus are with the Mas-
sachusetts Institute of Technology, Cambridge, MA, USA {cvasile,
sertac}@mit.edu, rus@csail.mit.edu

routing over topological models of road networks with the

goal of minimizing delays of demands that could not be

serviced within their desired deadlines. An integrated route

and motion planning algorithm was proposed in [3] for a

single vehicle with limited sensing tasked with servicing rich

demands and obeying the rules of the road in a minimum-

violating way. The approach overcomes spatial and temporal

scalability issues, allowing the methods to handle large road

networks with time-varying estimated travel times available

to the vehicle. In this work, we focus on fundamentally

different issues associated with the consideration of multiple

vehicles. Our scalable integrated route and motion planning

approach resolves interactions between vehicles based on

their assigned demands and the level the road rules violation

to achieve a social optimum.

The vehicles operate in a road network which is captured

as a hierarchical model describing the vehicles’ dynamics,

the road segments the vehicles traverse, and a high-level

finite abstraction of roads and intersections. For simplicity,

the customer demands are given as goal locations that need

to be reached by desired deadlines. While servicing the

demands, the vehicles must avoid colliding with each other

and satisfy the rules of the road which are encoded as syn-

tactically co-safe Linear Temporal Logic (scLTL) formulae.

The choice of scLTL is motivated by its resemblance to

natural language, rigorousness, and expressiveness allowing

to formalize a variety of reachability and sequencing tasks,

such as “Pick me up at work, then go to the school to pick

up the kids and then bring us home. Somewhere on our way,

stop by at a shopping mall or a bakery.” Here we consider

the motion planning in a road segment, in other words a part

of the overall plan. The scLTL formalism’s expressiveness is

necessary in our larger framework which includes routing

and motion planning [3].

The interaction between the vehicles determines a social

cost over the entire fleet in terms of delays and level of

violation. Based on our previous work, we formulate a

motion planning problem for multi-vehicle systems with

the objective of minimizing the social cost. We propose

a receding horizon solution, that leverages our previous

planning method [3] when no collision between vehicles are

encountered. However, when possible collisions are detected,

we resolve the situations locally within so-called bubble
spaces enclosing the conflict, and performing joint planning

to overcome them. We deal with scalability with respect to

the number of cars using a two-step method that leverages

the geometry of roads, where joint planning is performed

only for the lead vehicles in the conflict, and using queue

scheduling to resolve the conflict for the remaining cars.

2018 IEEE International Conference on Robotics and Automation (ICRA)
May 21-25, 2018, Brisbane, Australia

978-1-5386-3081-5/18/$31.00 ©2018 IEEE 7298

Further optimization is achieved by storing conflict scenarios

and returning the previously computed motion plans. The

contributions of the paper can be summarized as follows:

• We formalize the motion planning problem in Pb. 1

for multiple self-driving vehicles that are assigned de-

mands, must avoid collisions, and satisfy the rules of

the road.

• We design a receding horizon solution that allows the

self-driving vehicles to follow trajectories that provably

minimizes the social cost given in terms of specification

violation.

• The proposed solution deals with scalability with re-

spect to the number of vehicles by resolving conflicts

locally using joint planning for lead vehicles and queu-

ing.

• We demonstrate the applicability of the proposed ap-

proach in simulation case studies.

Planning under infeasible temporal logic specifications

has been addressed in [5], [6], [7], where metrics of level

of satisfaction of formulae are defined and used to solve

optimal planning problems with respect to the chosen metric.

Mobility-on-demand for fleets of autonomous vehicles has

been considered e.g., in [8], where a real-time rebalancing

policy was developed to maximize the throughput of the

system. Queue scheduling methods were used in [9] to

compute motion plans for safe navigation of intersections

without lights. A reactive sampling-based framework for

robots with limited sensing was proposed in [10], [11], but

that work does not consider minimum violation of conflicting

temporal constraints. On the other hand, an RRT∗-based ap-

proach tailored for finding minimum-violation motion plans

was proposed in [1], but it did not consider sensing, all

information was available off-line. In previous work, we pro-

posed an integrated route and motion planning framework [3]

that minimized specification violation, but only for a single

vehicle.

II. PRELIMINARIES AND NOTATION

Let R be the set of real and N the set of natural numbers.

We use R̄ = R∪{±∞}, N̄ = N∪{∞}, and R≥a = [a,∞).
Given a set S, we denote by 2S, and |S| the set of all subsets

of S, and the cardinality of S, respectively. A sequence of

elements from S is called a word, and we use wj to denote

the suffix sjsj+1sj+2 . . . starting at the j-th position of a finite

or infinite word w = s1s2s3

Let X ⊂ R
m, U ⊂ R

n be compact sets. Consider a

dynamical system given by ẋ(t) = f(x(t), u(t)), x(0) = x0,

where x0 is the initial state, and a labeling function L :
X → 2Π that maps each state x to a subset of atomic

propositions L(x) ⊆ Π that this state satisfies. A state

trajectory x : R≥0 → X of the system is associated with

the duration output word o = (σ1, d1)(σ2, d2) . . . defined

such that Li(x([tk, tk+1))) = σk and σk �= σk+1 for all

k ≥ 1, where tk+1 = tk + dk and t1 = 0. We denote by

σ = σ1σ2 . . . the output word produced by x.

A syntactically co-safe Linear Temporal Logic (scLTL)

formula over alphabet Σ is defined as

ϕ ::= π | ¬π | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | ϕUϕ,

where π ∈ Π, ¬ (negation), ∧ (conjunction), and ∨ (disjunc-

tion) are Boolean operators, and U (until), X (next), and F
(eventually) are temporal operators [12].

An scLTL formula is interpreted over infinite words

over 2Σ, such as the output words produced by a state

trajectories of a dynamical system. The satisfaction of an

scLTL formula ϕ by a word w = w1w2w3 . . . over 2Σ is

defined through the satisfaction relation |= as follows:

w |= π ⇐⇒ π ∈ w1w |= ¬π ⇐⇒ π �∈ w1,

w |= ϕ ∨ ψ ⇐⇒ w |= ϕ ∨ w |= ψ,

w |= ϕ ∧ ψ ⇐⇒ w |= ϕ ∧ w |= ψ,

w |= Xϕ ⇐⇒ w2 |= ϕ,

w |= Fϕ ⇐⇒ ∃i ≥ 1. wi |= ϕ,

w |= ϕUψ ⇐⇒ ∃i ≥ 1. wi |= ψ ∧ ∀1 ≤ j < i. wj |= ϕ

Although scLTL formulas are generally defined over infi-

nite words, their satisfaction is decided in finite time [12],

which enables to express them as finite-state automata.

III. PROBLEM FORMULATION

We consider a fleet of controlled (autonomous) vehicles

V operating in a road network. We assume that each vehicle

νi ∈ V has been assigned a task to travel from one location to

another, and a route that executes this demand optimally, i.e.

in the shortest possible time. When following their optimal

routes, the vehicles should obey given road rules and avoid

collisions. In this work, we focus on handling situations when

this is not possible, i.e. when several autonomous vehicles

prevent each other from following the route optimally. In

other words, we restrict our attention on multi-vehicle motion

planning problem with the aim to reach a compromise

leading to a social optimum.

Example 1 An illustration of a situation that we aim to
address is given in Fig. 1. A part of the given optimal route
for each of the three vehicles is to traverse the depicted road
segment in minimum time. However, the time-optimal motion
plans lead through construction zones and violate the road
rules. The motion plans that minimize traversal time and
satisfy the road rules are depicted in Fig. 1 for the green and
blue vehicles. These motion plans are computed assuming no
cooperation, and if each vehicle follows it, a collision will
be unavoidable. The three autonomous vehicles thus have to
decide on which one of them traverses the narrow passage
first, which second, and which third. We aim to maximize
the overall performance of the fleet, hence the decisions will
take into account the cost incurred by each vehicle in terms
of road rules violation and delays in arriving to the goal
location.

We model each vehicle as a dynamical system with limited

sensing at the level of a road segment. Each road rule

7299

Fig. 1: A road segment with two construction areas and three
autonomous vehicles traversing it. The sensing areas and ego-
trajectories for the green and blue vehicles are shown.

is captured as an scLTL formula associated with priority.

We introduce a social cost based on accumulated delays

w.r.t. targeted deadlines of all demands, and penalties for

violating the road rules by the individual vehicles. Finally,

we introduce our multi-vehicle motion planning problem

optimizing the social cost. We call non-cooperative motion

plans ego-trajectories and we focus on traffic situations

where the vehicles can not safely implement their ego-

trajectories.

A. Model and Specification

1) Vehicle model: A vehicle νi is defined as a tuple νi =
(fi, X, U, h, Sensei), where X ⊂ R

m, U ⊂ R
n, and R ⊂

R
2 are the common state, control, and work spaces of the

vehicles, Sensei : R2 → 2R
2

. The vehicles’ dynamics are

given by

ẋi = fi(xi, ui), xi(0) = x0,i (1)

yi = h(xi) (2)

where x0,i is the initial state at time t = 0, fi : X×U → X
and h : X → R

2 are the Lipschitz continuous dynamics and

observation (location) functions of vehicle νi, respectively.

The workspace R here corresponds to a road network, which

is a compact planar region corresponding to road lanes and

intersections. The limited sensing area of νi at location yi
is given by Sensei(yi) ⊂ R

2. The state trajectory under a

control policy ui(·) is said to be feasible if the location of

the vehicle in the planar environment stays inside R for all

times.

2) Vehicle task: Each controlled vehicle νi is assigned

a task to reach a goal region gi ⊆ R that is associated

with a deadline Δi ∈ N and a priority πi ∈ N. Assume

that each controlled vehicle has an access to a service that

provides information about the traffic conditions in the road

network, e.g., INRIX, Google Traffic, Waze. This means

that the vehicle is given a nominal path (route) in the road

network and an estimate time to complete the task tE,i from

its current position. Let tP,i denote the time passed since the

task arrival.

Di = Δi − (tP,i + tE,i)

is then the estimated delay of servicing the task.

TABLE I: Symbols table.

νi vehicle model
X , U , R state, control, and work spaces
fi, h, Sensei dynamics, observation (location) and sensing maps

of vehicle νi
x0,i initial state of vehicle νi
Π set of all signs and markings
Li road labeling map of vehicle νi
oi, σi duration output word and output word of a trajectory

xi induced by Li

gi demand, i.e. desired goal region of vehicle νi
πi priority of demand gi
Δi, Di deadline and delay associated with optimal route of

νi
Θi road rules for vehicle νi enforced until reaching gi
θaj , θgj assume and guarantee parts of road rule θi,j ∈ Θi

pj priority associated with road rule θi,j

3) Road markings and rules: We denote by Π the com-

mon set of signs and markings that annotate the road

network. Each vehicle νi in the road network has its own road

labeling map Li(t) that assigns labels from Π to the vehicle’s

sensing area Sensei(yi(t)). It is used to enforce the rules of

the road (e.g., speed limit, stop, and construction signs, lane

and intersection delimiters). Note that the regions induced

by Li are interpreted as the regions of the road network that

a sign or marking applies to. For example, Li designates as

construction the entire closed-off region of the road segment,

and not just the location of the start and end construction

signs. With a slight abuse of notation, we use gi ∈ Π to

label the goal region gi ⊆ R.

The rules of the road are build from the sets of Boolean

assumption formulas Θa and scLTL guarantee formulas Θg

over Π. For vehicle νi, the set Θi consists of road rules

taking the reactive form

θi,j = (θaj
Re⇒ θgj)U gi, (3)

where θaj ∈ Θa, θgj ∈ Θg ,
Re⇒ is a reactive implication, and gi

indicates that νi reached gi. We say that a traffic rule θi,j is

active if θaj is satisfied. The rules in Θi may become active

at any time during the traversal of a road segment.

Example 2 Recall Example 1. Examples of road rules for
each vehicle are: 1) stay in the right lane; 2) if the road is

under construction, then avoid construction areas; 3) if no

overtaking is allowed, then do not cross center line into left

lane; and 4) if speed is limited to 50mph, then drive at under

50mph. The road rules written as an scLTL formula given
in Eq.(3), where

j θaj θgj
1 � RightLane

2 UnderConstruction ¬ConstructionArea

3 NoOvertake ¬LeftLane

4 50mphLimit Under50mph

B. Solution cost

We focus on situations when the goal regions cannot be

reached by their associated deadlines without violating the

7300

road rules and without cooperation and negotiation between

the controlled vehicles. That is, we focus on motion planning

problems with social optimum.

1) Level of road rules violation: Similarly as in [1], we

define the level of violation with respect to the road rules.

Each road rule θi,j ∈ Θi is associated with a priority

pj ∈ N. Intuitively, the level of violation is measured as

the cumulative time spent satisfying the individual road

rule assumptions, but not the guarantees, weighted by the

corresponding priority.

Formally, given a duration output word, defined in Sec. II

as oi = (σ1, d1)(σ2, d2) . . ., corresponding to a trajectory xi
of vehicle νi, the level of violation is

Pi(xi) =
∑

θi,j∈Θi

⎛
⎝pj ·

∑
k∈{k|σk|=θa

j ∧¬θg
j }
dk

⎞
⎠ .

2) Collision avoidance: The collision avoidance of the

controlled vehicles needs to be strictly enforced throughout

the entire mission. For simplicity, we say that a vehicle νi
is collision-free if ‖yi(t) − yj(t)‖ > ε for all νj ∈ V \
{νi} and t ≥ 0, where ‖ · ‖ is the Euclidean norm and ε is

the collision threshold. The collision threshold captures the

geometric sizes of the vehicles.

3) Social cost: Finally, we define a cost function that

reflects the inter-vehicle importance of servicing the tasks

in time and satisfying the road rules

J(V) = c
(
D1, . . . , D|V|, π1, . . . , π|V|, P1(x1), . . . , P|V|(x|V|)

)
.

Example 3 Recall Examples 1 and 2. Suppose that the
green (G), blue (B) and yellow (Y) vehicles all have a
priori expected delay 0, equal priorities 1, and levels of
violation 0, 0, and 1, respectively. Moreover, their traversal
times corresponding through the critical corridor are 2, 2,
3, respectively. Let J1(V) =

∑
i∈V

(
πiDi + βPi(xi)

)
with

β = 2, and J2(V) = max i∈V {πiDi}, be the average and
bottleneck social cost functions. Their values corresponding
to the six decision choices based are given in the table below,
and are chosen to be simple, yet reasonable with respect to
the scenario.

order Di Pi(xi) J1(V) J2(V)
(G, Y, B) 0, 0, 3 1, 3, 1 13 3
(G, B, Y) 0, 4, 2 1, 3, 1 16 4
(Y, G, B) 3, 0, 5 1, 3, 1 18 5
(Y, B, G) 5, 0, 3 1, 3, 1 18 5
(B, G, Y) 2, 2, 0 1, 3, 1 14 2
(B, Y, G) 5, 2, 0 1, 3, 1 17 5

If the fleet minimizes J1, then the green vehicle should go
first, followed by the yellow and then blue vehicles. This
ordering corresponds to the first line in the table above. On
the other hand, if J2 is minimized, then the optimal traversal
order is blue, green, and yellow vehicles, and corresponds
to fifth line.

C. Problem formulation

Problem 1 Given a set of controlled vehicles, V operating in
the road network R, goal regions gi, deadlines Δi, priorities
πi, a set of road rules Θi with priorities pj , θi,j ∈ Θi, and
a level of violation function Pi(xi) for each vehicle νi ∈ V ,
find a control policy ui(t) : R≥0 → U such that the state
trajectory xi(t) is feasible for all νi ∈ V , and the social cost
J(V) is minimized while maintaining collision avoidance.

Remark 1 The autonomous vehicles must make local deci-
sions to solve conflicting traffic situations such that the social
optimum is achieved. The solution cost associated with the
fleet of vehicles involved in the conflict case depends on the
traveling times and levels of violation induced by the deci-
sion options. Thus, although we do not change the routing
decisions, changing the vehicles’ motion plans to resolve the
conflict means changing their remaining estimated times tE,i

to task completion.

IV. PROBLEM SOLUTION

Let us first restrict our attention to a simplified version of

Problem 1, where we only consider one vehicle V = {ν}.

This means that there is no risk of collision, and our aim

is to find a feasible ego-trajectory x(t) minimizing the cost

function J(V). We have addressed this problem earlier in [3]

with a minimum-violation scLTL RRT� planner and we will

utilize that solution in this work.

In the case of multiple vehicles, we could extend the

aforementioned approach and look for a joint feasible tra-

jectory in X |V|. This straightforward solution is, however,

exponential with respect to the number of vehicles, and not

tractable. In this paper, we propose an alternative, scalable

solution to Problem 1 summarized in Alg. 1, where we

construct a nominal feasible ego-trajectory x̄i(t) for each

vehicle νi ∈ V while assuming that the vehicle is alone in the

work space (lines 2-4), and iteratively execute the following

steps. We build an undirected communication graph (line 5)

that connects a vehicle νi to all vehicles νj ∈ Sensei(yi)
in its limited sensing area. This graph guides the choice of

a replanning strategy for each vehicle in V and determines

the order in which the vehicles are considered. In particular,

there are three replanning strategies: If all vehicles that are

part of a connected component in the communication graph
have pairwise collision free nominal feasible state trajectories

(line 7), then all these vehicles implement their nominal

trajectories x̄i(t) (line 8). If two or more vehicles are at risk

of collision, then the so-called lead vehicles are determined

(line 11) that intuitively correspond to the closest vehicles to

the potential collision. For the lead vehicles, we compute a

so-called bubble space (line 12), i.e. a part of the work space,

where replanning needs to take place. We compute a joint
plan (line 17) for νi and νj in X2 leveraging the algorithm

in [3] (see Sec. IV-B). This joint plan projects onto feasible

state trajectories for νi and νj , ensures collision freedom, and

at the same time minimizes J({νi, νj}). We consider storing

computed motion plans for later use (line 18) for instance in

a cloud repository, by summarizing the traffic situation (see

7301

Sec. IV-B.2), and querying the repository (line 13) before

attempting joint planning. For the remaining vehicles, we

propose to adapt their trajectory to avoid collisions with the

previously considered vehicles (line 23), where the order is

by a queue scheduling method optimizing J(·) (line 20). This

step is called enforced planning (see Sec. IV-C). Finally, all

vehicles execute one step of the motion plans (trajectories)

for time Δt, and the process is repeated until all goal regions

are reached.

For simplicity, we will assume throughout the paper that

only two vehicles may be involved in traffic scenarios that

require coordination. However, the presented algorithms can

handle cases that may involve multiple vehicles, e.g., at 3-

way or 4-way intersections. It is important to note that even

in this cases, joint planning is performed for a small number

of vehicles that depends on the local road geometry (e.g.,

at most 4 vehicles for 4-way intersection) and not on the

size of the entire fleet. For the remaining vehicles, enforced
planning is employed.

In the rest of this section, we provide the details of the

solution.

Algorithm 1: Planner

Input: Input to Problem 1, including V , R, gi, and Θi, for all
νi ∈ V

Output: A set of feasible collision-free state trajectories
Storage: Repository of pairs of Bubble spaces and RRT� trees

1: while xi �∈ gi for some νi ∈ V do
2: for all νi ∈ V do
3: x̄i(t) ← MinViolationRRT�(νi,R, gi,Θi) [3]
4: end for
5: Build the communication graph G(t)
6: for all connected components C of G(t) do
7: if ‖x̄i(t)− x̄j(t)‖ > ε, ∀t, ∀νi, νj ∈ C, νi �= νj then
8: xi(t) ← x̄i(t)
9: continue to next connected component

10: end if
11: ν�1 , ν�2 ← {νi, νj |W (t)(νi, νj) ≤

W (t)(νm, νn)∀(νm, νn) ∈ E(t)}
12: Compute the bubble space B(ν�1 , ν�2)
13: if B(ν�1 , ν�2) is found in Repository then
14: T�1,�2 ← RRT� tree from Repository
15: (x�1(t), x�2(t)) ← best motion plan in T�1,�2

16: else
17: (x�1(t), x�2(t)) ←

BubbleMinViolationRRT�((ν�1 , ν�2),R, gi,Θi) in
B(ν�1 , ν�2)

18: Save the attribute graph of B(ν�1 , ν�2) and the
corresponding RRT � tree in Repository

19: end if
20: Compute the queue Q(t) containing C \ {ν�1 , ν�2}
21: while Q(t) �= ∅ do
22: νi ← Q(t).pop()
23: xi(t) ←

EnforcedMinViolationRRT�(νi,V,R, gi,Θi) with
rejecting samples leading to collisions

24: end while
25: end for
26: for all νi ∈ V do
27: Execute xi(t) for Δt
28: end for
29: end while

A. Communication graph

The communication graph at time t is an undirected graph

G(t) = (V, E(t),W (t)), where the set of vertices V is the

set of vehicles, (νi, νj) ∈ E(t) if νj ∈ Sensei(yi(t)) or

νi ∈ Sensej(yj(t)), and W (t)(νi, νj) = ||yi(t) − yj(t)||,
for all (νi, νj) ∈ E(t). The communication graph reflects de-

pendencies between the vehicles in V . Any two vehicles that

are connected by an edge are at a potential risk of collision,

while any two vehicles that are in two different connected

components of G(t) can be safely treated independently at

time t.

Suppose that the communication graph is connected. Oth-

erwise, we apply the following to each connected component

separately. We use the communication graph to determine

the order in which the vehicles should be considered; first

of all it should be the pair of vehicles that are the closest

to a potential collision, called the lead vehicles L(t) =
{ν�1(t), ν�2(t)}, which we will denote simply as ν�1 , ν�2
if t is clear from the context. Formally, this is the pair of

vehicles in the opposite direction to each other satisfying

(ν�1 , ν�2) ∈ E(t), and W (t)(ν�1 , ν�2) ≤ W (t)(νi, νj), for

all (νi, νj) ∈ E(t), where νi and νj are in the opposite

directions at time t. In the running example shown in Fig. 1,

the lead vehicles are the green and the blue ones. The lead

vehicles are subject to joint planning discussed in Sec. IV-B.

The rest of the vehicles are iteratively added to the

processing queue Q(t), which is initially empty. The next

state to be added to Q(t) is

ν = argmin
ν �∈Q(t)∪L(t)

min
ν′∈Q(t)∪L(t),(ν,ν′)∈E(t)

W (t)(ν, ν′).

The vehicles in the processing queue Q(t), such as the yellow

one in Fig. 1 will be treated by enforced planning presented

in Sec. IV-C, in the order they were placed in the queue.

B. Joint planning

Consider the lead vehicles ν�1 and ν�2 and assume that

their nominal feasible state trajectories x̄�1(t) and x̄�2(t)
yield a collision. We define the bubble space as the subset

of the state space corresponding to the subset of the road

segment where replanning should take place. Intuitively, this

is the road segment part between the two vehicles. Here, for

the simplicity of presentation, and without loss of generality,

we assume that each road segment is modeled as a rectangle

with bottom left corner in [0, 0] and top right corner in

[xmax, ymax] and that it is associated with two directions:

left to right (going from 0 towards xmax along the x-axis),

and the opposite direction right to left (going from xmax

towards 0 along the x-axis).

B(ν�1 , ν�2) = {x ∈ X |min(h(x�1)1, h(x�2)1) ≤ h(x) ≤
max(h(x�1)1, h(x�2)1)}, (4)

where h(x) = (h(x)1, h(x)2) , is the observation function of

a vehicle, as is defined in the vehicle dynamics, Sec. III-A.1.

7302

1) Planning in the bubble space: To find a joint plan for

ν�1 and ν�2 in the bubble space, we modify the minimum-

violation scLTL RRT� planner from [3] to plan in X2

by allowing to sample from B(ν�1 , ν�2) only. Moreover,

every time a new sample is taken, it is accepted only if it

corresponds to a collision-free state in X2, i.e., for x =
(x�1 , x�2) ∈ X2 we have ‖h(x�1)− h(x�2)‖ > ε.

2) Model matching: For efficiency of computations, we

furthermore propose a procedure to immediately obtain so-

lutions without computations when we recognize a situation

that has been addressed before.
Every time we perform joint planning in the bubble space,

we store in a repository (possibly in the cloud) an attributed

graph of the bubble space, which we treat as an object in

the object recognition problem. The nodes of the attributed

graph correspond to the interesting features (e.g., obstacles,

construction zones, vehicles) and lanes, and their attributes.

Some examples of these attributes are: the type of feature

(e.g., a construction zone), or its location in the scene.

The edges represent adjacency of the interesting features.

Furthermore, each of them is connected to the corresponding

lane, and lanes are connected if they are adjacent, too.

Together with the attributed graph, we store the RRT� tree

computed in the B(ν�1 , ν�2).

Fig. 2: A figure showing an attributed graph used for model
matching in the traffic scenario from Example 1. Each black vertex
corresponds to a feature of interest in the bubble space, in this case:
construction zones and vehicles, and each gray vertex corresponds
ot a lane. Each vertex has attributes, for example, the attributes
of the green vehicle are: type: ν2, coordinates: {x, y}, and the
lanes have attributes: type: right lane or left lane, corners:
{xstart, ystart, xend, yend}.

Hence, the first step after the construction of B(ν�1 , ν�2)
is not the joint planning itself, but an attempt to match the

attributed graph model of the current bubble space to one

stored in the repository. The model matching procedure is

inspired by 3-D object recognition algorithms Kim et al.

[13] and adapted to our 2-D case. First, several filters are

implemented checking the number of edges, vertices, and

their degrees to reduce the set of candidate matching bubble

space models from the repository. Second, bipartite matching

and validation steps find among the remaining models the

matching bubble space of B(ν�1 , ν�2), if one exists. In such

a case, we can directly use the stored RRT� tree instead of

recomputing it from scratch as described above.

C. Enforced planning
After the lead vehicles’ trajectories are set, we plan for

the remaining vehicles in Q(t) one by one. For each vehicle

ν, we again build on the minimum-violation scLTL RRT�

algorithm from [3] with one major modification: we reject

samples that lead to a collision with one of the trajectories of

the already processed vehicles, i.e. either the lead vehicles,

or the vehicles that are in Q(t) before ν.

D. Complexity

Theorem 1 The size of the attributed graph is O(n +m),
where n is the number of scene’s features in the bubble
space and m is the number of adjancencies between them.
The filters are all in O(n+m). The complexity of bipartite
matching, and hence, the overall complexity of the model
matching procedure is O(m

√
n).

Theorem 2 Assume that all calls of the minimum scLTL
RRT∗ procedure are successful (lines 3, 17, 23 in Alg. 1), i.e.,
terminate and return motion plans in finite time. The com-
plexity of each on-line planning step of Alg. 1 is O(|V| · |Θ| ·
N2 logN+ |V|2+ |V|

2 ·CMM · |Θ| ·N2
J logNJ + |V| log |V|+

|V| · |Θ| · N2
E logNE), where CMM is the complexity of

the model matching methods, and N , NJ , and NE are the
maximum number of nodes in the RRT∗ for the nominal,
joint and enforced planning among all vehicles, respectively.
Moreover, all primitive functions employed by the RRT∗

algorithm are independent of the number of vehicles |V|.
Proof: The first term in the complexity bound |V| · |Θ| ·

N2 logN corresponds to generating the feasible nominal tra-

jectories. From [3], we know that each step of the procedure

takes O(|Θ| · N logN), and using Stirling’s approximation

formula we obtain the desired upper bound. Computing the

communication graph takes at most |V|2 when it is fully

connected. Similarly to the nominal trajectory generation

step, the joint planning step takes at most O(|Θ|·N2
J logNJ).

Joint planning is performed for at least two vehicles at a

time. Thus, there are at most
|V|
2 connected components,

and in the worst case each computing a bubble space.

Creating all queues for all connected components takes at

most O(|V|log|V|) using for instance heap queues. Enforced

planning takes O(|Θ| · N2
E logNE) similar to the previous

steps. Again, in the worst case enforced planning is called for

all vehicles, except the lead ones. Putting all terms together,

we obtained the claimed bound.

Lastly, note that the RRT� procedures are called for

problems of dimensions that are independent of the number

of vehicles. In the case of nominal and enforced planning,

the statement is trivial, because the procedures are applied

for one vehicle at a time. For the case of joint planning, note

that the number of lead vehicles depends only on the local

road geometry. For instance, a 4-way intersection would have

at most 4 lead vehicles. A conservative upper bound for the

number of lead vehicles is the number of lanes (all traffic

directions) within a L1-ball around a vehicle of radius equal

to the size of the vehicles’ sensing area. Thus, all primitives,

including sampling, nearest neighbor, distance computation,

and collision checking, are independent of the number of

vehicles in the environment.

7303

V. EXPERIMENTAL RESULTS

We have implemented the solution in Python2.7 using the

LVRmodRRT package [3]. All examples were ran on Intel

Core i7 computer with 2.6Ghz processor and 8GB RAM

under Ubuntu 14.04.

In this section, we demonstrate the suitability and the

scalability of the proposed approach in several illustrative

cases. The first one is depicted in Fig. 3, which is the running

example from Fig. 1. There is a construction zone in the left-

right lane as well as the right-left lane. Fig. 5 shows that the

construction zones are in the limited sensing area of each of

the vehicles. Furthermore, each vehicle detects all vehicles

ahead of it. This means that the fully centralized version of

the minimum-violation scLTL would run in X3.

The goal of the leftmost vehicle is to reach the goal

region g1 on the right, and analogously for the two rightmost

vehicles it is to reach the goal region g2 = g3 on the left.

The road rules that we consider are listed in Example 2.

We set priority p2 = 100, i.e. we give a high priority to

the avoidance of the construction zones, while the remaining

priorities are pj = 1, for j = 1, 3, 4 for the rules of staying

in the right lane, not crossing the center line if overtaking is

forbidden, and obeying the speed limit if enforced by a road

sign.

The progress of our solution in the work space is shown

in Fig. 3 – 5. Fig. 3 shows the situation when vehicles

ν2 and ν3 appear in the limited sensing area of vehicle

ν1, and vice versa and the individual planning using the

minimum-violation scLTL RRT� planner [3] for each vehicle

yields a risk of collision. The communication graph is the

complete graph K3, where the shortest edge is between

vehicles ν1 and ν2. These two become the lead vehicles.

We compute the bubble space for them and since we could

not find a corresponding bubble space in the repository, we

perform joint planning using the minimum-violation scLTL

RRT� planner [3] in the bubble space. The corresponding

attribute graph is stored in the repository. Vehicle ν3 is in

the processing queue. The resulting trajectories are illustrated

in Fig. 6. Their computation took approximately 30 sec.

The top two figures in Fig. 6 show the projection of the

joint planning RRT� tree onto the work spaces of the lead

vehicles, whereas the bottom one shows the RRT� tree of the

remaining vehicle. Fig. 4 shows the trajectories after 10Δt.
The vehicles follow a trajectory that avoids the construction

zones. Since the previously computed trajectories do not

yield new risks of collisions, no recomputation is needed.

This is recognized by our implementation in the order of

milliseconds. Finally, Fig. 5 shows the situation after 30Δt.

The extension of this example to 10 vehicles is illustrated

in Fig. 7. Similarly as in the 3-vehicle case, the goal is to

reach the marked out goal regions, where g1 = g6 = g10
and g2 = g3 = g4 = g5 = g7 = g8 = g9. In this case, the

obstacles are spread out further than in the running example.

This means that the vehicles are able to traverse the bubble

space simultaneously.

In this extended case, the communication graph is fully

connected, where the closest edge is between ν3 and ν4.

The remaining ν = {1, 2, 5, 6, 7, 8, 9, 10} are placed in the

processing queue. The resulting RRT � trees for this case is

illustrated in Fig. 10.

Fig. 3: Figure illustrating the path the three vehicles have traversed
so far, the goal regions (in red), the obstacles (grey) and the
limited sensing area. The scenario is after joint planning has been
performed between ν1 and ν2.

Fig. 4: Figure illustrating the path the three vehicles have traversed
so far, the goal regions (in red), the obstacles (grey) and the
limited sensing area. The scenario is approximately 15 Δt after
joint planning has been performed between ν1 and ν2.

Fig. 5: Figure illustrating the path the three vehicles have traversed
so far, the goal regions (in red), the obstacles (grey) and the
limited sensing area. The scenario is approximately 35 Δt after
joint planning has been performed between ν1 and ν2.

Fig. 6: Figure illustrating the path the three vehicles have traversed
so far, the goal regions (in red), the obstacles (grey), the resulting
RRT � tree and the planned trajectory (highlighted in red). The
scenario is after joint planning has been performed between ν1 and
ν2.

7304

Fig. 7: Figure illustrating the path the ten vehicles have traversed
so far, the goal regions (in red), the obstacles (grey) and the
limited sensing area. The scenario is after joint planning has been
performed between ν3 and ν4.

Fig. 8: Figure illustrating the path the ten vehicles have traversed
so far, the goal regions (in red), the obstacles (grey) and the
limited sensing area. The scenario is approximately 15 Δt after
joint planning has been performed between ν3 and ν4

Fig. 9: Figure illustrating the path the ten vehicles have traversed
so far, the goal regions (in red), the obstacles (grey) and the
limited sensing area. The scenario is approximately 35 Δt after
joint planning has been performed between ν3 and ν4

Fig. 10: Figure illustrating the path the ten vehicles have traversed
so far, the goal regions (in red), the obstacles (grey), the resulting
RRT � tree and the planned trajectory (highlighted in red). The
scenario is after joint planning has been performed between ν3 and
ν4.

VI. CONCLUSION

We have studied the problem of motion planning for fleets

of autonomous vehicles that are given a set of customer

demands and road rules specified in temporal logic. An

approach has been proposed, that builds on a previously

developed receding-horizon motion planner based on RRT �.

The algorithm is demonstrated using different illustrative

cases.

Future work includes accounting for the dynamics and size

of the vehicles in question.

REFERENCES

[1] L. Reyes Castro, P. Chaudhari, J. Tumova, S. Karaman, E. Frazzoli,
and D. Rus, “Incremental sampling-based algorithm for minimum-
violation motion planning,” in IEEE Conference on Decision and
Control, 2013, pp. 3217–3224.

[2] J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-
violating control strategy synthesis with safety rules,” in International
Conference on Hybrid Systems: Computation and Control, Philadel-
phia, PA, USA, 2013, pp. 1–10.

[3] C.-I. Vasile, J. Tumova, S. Karaman, C. Belta, and D. Rus, “Minimum-
violation scLTL motion planning for mobility-on-demand,” in IEEE
International Conference on Robotics and Automation, Singapore,
Singapore, May 2017, pp. 1481–1488.

[4] J. Tumova, S. Karaman, C. Belta, and D. Rus, “Least-violating
planning in road networks from temporal logic specifications,” in
ACM/IEEE International Conference on Cyber-Physical Systems,
2016, pp. 1–9.

[5] K. Kim, G. Fainekos, and S. Sankaranarayanan, “On the minimal
revision problem of specification automata,” The International Journal
of Robotics Research, 2015.

[6] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” International Journal of Robotics
Research, vol. 34, no. 2, pp. 218–235, Feb. 2015.

[7] M. Maly, M. Lahijanian, L. E. Kavraki, H. Kress-Gazit, and M. Y.
Vardi, “Iterative Temporal Motion Planning for Hybrid Systems in
Partially Unknown Environments,” in Int. Conference on Hybrid
Systems: Computation and Control, 2013.

[8] E. F. M. Pavone, S. L. Smith and D. Rus, “Robotic load balancing
for mobility-on-demand systems,” International Journal of Robotics
Research, vol. 31, no. 7, pp. 839–854, 2012.

[9] D. Miculescu and S. Karaman, “Polling-systems-based control of high-
performance provably-safe autonomous intersections,” in 53rd IEEE
Conference on Decision and Control, Dec 2014, pp. 1417–1423.

[10] C. Vasile and C. Belta, “Sampling-Based Temporal Logic Path Plan-
ning,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2013.

[11] ——, “Reactive Sampling-Based Temporal Logic Path Planning,” in
IEEE Int. Conference on Robotics and Automation, Hong Kong, 2014.

[12] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Methods in System Design, vol. 19, no. 3, pp. 291–314, 2001.

[13] W.-Y. Kim and A. C. Kak, “3-d object recognition using bipartite
matching embedded in discrete relaxation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 13, no. 3, pp. 224–251,
1991.

7305

		2018-09-05T04:52:21-0400
	Preflight Ticket Signature

