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Abstract— This work focuses on integrated routing and
motion planning for an autonomous vehicle in a road network.
We consider a problem in which customer demands need to be
met within desired deadlines, and the rules of the road need to
be satisfied. The vehicle might not, however, be able to satisfy
these two goals at the same time. We propose a systematic
way to compromise between delaying the satisfaction of the
given demand and violating the road rules. We utilize scLTL
formulas to specify desired behavior and develop a receding
horizon approach including a periodically interacting routing
algorithm and a RRT�-based motion planner. The proposed
solution yields a provably minimum-violation trajectory. An
illustrative case study is included.

I. INTRODUCTION

In this paper we develop algorithms that enable a self-driving

vehicle to provide a ride to a customer within a certain deadline

and while following the traffic rules of the road. These two

goals often are not compatible. Speed limits, construction zones,

or traffic lights may slow the autonomous vehicle down and

prevent it from servicing the demand in time. Some of the

traffic rules have to be enforced at all times. However, there

are special situations when traffic rules can be viewed with

flexibility. For example, one can use the incoming lane to pass a

stationary vehicle. Another example is for the case of road work,

regular traffic rules may change temporarily to accommodate the

changes required by the working crew – for example an illegal

U-turn may become legal. Our goal is to compute a plan for

the vehicle that is guaranteed to meet the customer deadline

within the rules of the road or, if this is not possible, within least

violating behavior.

In prior work, we explored similar problems of motion plan-

ning under conflicting road rules in [1], [2], where we proposed

to formalize the level of road rules violation as a function of their

importance and designed a minimum-violation motion planning

algorithm. Therein, the customer demand was simple, to travel

from A to B, and vehicle routing was not addressed. On the

other hand, in [3], we focused solely on vehicle routing in a

discretized model of the road network and minimized delays in

servicing the customer demands that could not all be serviced

within the desired deadlines. In this work, we develop a syn-

ergy between motion planning and routing that systematically
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resolves conflicts between satisfying a set of road rules and

servicing a customer demand on time.

We capture the vehicle in the road network using a hierar-

chical model capturing the dynamics of the vehicle, the road

segment it currently traverses, and a high-level discrete abstrac-

tion of the road network. The customer demand is a complex

task given as a formula in the syntactically co-safe fragment of

Linear Temporal Logic (scLTL), and associated with a deadline.

The choice of scLTL is motivated by its resemblance to natural

language, rigorousness, and expressiveness allowing to formal-

ize a variety of reachability and sequencing tasks, such as “Pick

me up at work, then go to the school to pick up the kids and then

bring us home. Somewhere on our way, stop by at a shopping

mall or a bakery.” Rules of the road are expressed in scLTL as

well, allowing to specify e.g., that the vehicle should always stay

in the right lane, that it should not perform a U-turn if a road sign

forbids it, and that speed limits should be obeyed. On top of

that, a customer may input so-called safety preferences, again in

scLTL: her own rules that she is not willing to disobey, e.g., that

a red light should always be respected, or that speeding should

not be happening in residential areas. Inspired by our previous

works, we propose a function measuring the level of violation

of the above three classes of specifications and focus on solving

the minimum-violation motion planning problem. The proposed

receding horizon solution consists of global long-term routing

and local short-term motion planning, which periodically inter-

act and influence each other’s outcome. The contributions of the

paper can be summarized as follows:

• We formalize the minimum-violation motion planning

problem in Pb. 1, allowing to characterize desired behavior

of a self-driving car assigned mutually conflicting cus-

tomer demand and set of road rules.

• We design a receding horizon solution that allows the self-

driving car to follow a trajectory that provably minimizes

the level of specification violation.

• We demonstrate the applicability of the proposed approach

in a simulation case study.

Related work includes planning under infeasible temporal

logic specifications [4], [5], [6], where different kind of met-

rics and strategies are used to measure the level of formula

satisfaction and to turn a problem of satisfying an infeasible

specification into a problem of optimizing the planning with

respect to the chosen metric. Planning for autonomous cars in

the context of a mobility-on-demand system was considered

e.g., in [7], where a real-time rebalancing policy was developed

to maximize the throughput of the system. Similar to [8], [9],

in this paper we incorporate limited sensing constraints to

develop a reactive sampling-based framework. However, [8],

[9] do not consider minimum violation of conflicting tempo-

ral constraints. An RRT∗-based approach tailored for finding

minimum-violation motion plans was proposed in [1], but it did
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not consider sensing, all information was available off-line.

The rest of the paper is structured as follows. In Sec. II we

summarize notation and preliminaries. In Sec. III we introduce

the hierarchical model of the vehicle in the road network, the

three types of specifications, the level of violation and we

state our problem. Sec. IV provides a solution and Sec. IV-

D discusses its correctness, completeness, and complexity. In

Sec. V we provide simulation results. Finally, Sec. VI concludes

our work and outlines our ongoing and future work.

II. PRELIMINARIES AND NOTATION

Let R be the set of real and N the set of natural numbers. We

use R̄ = R∪{±∞}, N̄ = N∪{∞}, and R≥a = [a,∞). Given

a set S, we denote by 2S, and |S| the set of all subsets of S,

and the cardinality of S, respectively. A sequence of elements

from S is called a word, and we use wj to denote the suffix
sjsj+1sj+2 . . . starting at the j-th position of a finite or infinite

word w = s1s2s3 . . ..

A weighted deterministic transition system (WTS) is a tuple

T = (S, sinit , R,W,Π, L), where S is a finite set of states;

sinit ∈ S is the initial state; R ⊆ S × S is a transition relation;

W : R → R>0 is a weight function; Π is a set of atomic

propositions; and L : S → 2Π is a labeling function.

Given that the current state of the system is s ∈ S at time t,
by taking a transition (s, s′) ∈ R, the system reaches the state

s′ at time t′ = t + W
(
(s, s′)

)
. A trace τ = s1s2s3 . . . is

an infinite sequence of states of T , such that s1 = sinit , and

(sj , sj+1) ∈ R, for all j ≥ 1. The word produced by τ is the

sequence w(τ) = L(s1)L(s2)L(s3) . . ..
A syntactically co-safe Linear Temporal Logic (scLTL) for-

mula over alphabet Σ is defined as

ϕ ::= π | ¬π | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | ϕUϕ,

where π ∈ Π, ¬ (negation), ∧ (conjunction), and ∨ (disjunc-

tion) are Boolean operators, and U (until), X (next), and F
(eventually) are temporal operators [10].

An scLTL formula is interpreted over infinite words over 2Σ,

such as the ones produced by a WTS. The satisfaction of an

scLTL formula ϕ by a word w = w1w2w3 . . . over 2Σ is

defined through the satisfaction relation |= as follows: w |=
π ⇐⇒ π ∈ w1, w |= ¬π ⇐⇒ π �∈ w1, w |= ϕ ∨ ψ ⇐⇒
w |= ϕ ∨ w |= ψ, w |= ϕ ∧ ψ ⇐⇒ w |= ϕ ∧ w |= ψ,

w |= Xϕ ⇐⇒ w2 |= ϕ, w |= Fϕ ⇐⇒ ∃i ≥ 1. wi |= ϕ,

w |= ϕUψ ⇐⇒ ∃i ≥ 1. wi |= ψ ∧ ∀1 ≤ j < i. wj |= ϕ.

Although scLTL formulas are defined over infinite words,

their satisfaction is decided in finite time [10]. Specifically, a

word w over 2Π satisfies ϕ over Π if it contains a good prefix
defined as a finite prefix w1w2w3 . . . wn, with the property

that w′ = w1w2w3 . . . wnw
′
n+1w

′
n+2 . . . |= ϕ, for all suf-

fixes w′
n+1w

′
n+2 . . . over 2Π. Given a word w over 2Π and

φ over Π, a good prefix w1w2w3 . . . wn of w is minimal, if

w1w2w3 . . . wn−1 is not a good prefix.

The definition of the satisfaction relation is extended to traces

of a WTS in the expected way: τ |= ϕ if and only if w(τ) |=
ϕ. A (minimal) good trace prefix is the one that produces a

(minimal) good prefix.

A deterministic finite automaton (DFA) is a tuple A =
(Q, qinit ,Σ, δ, F ), where Q is a set of states; qinit ∈ Q is

the initial state; Σ is a finite alphabet; δ ⊆ Q × Σ → Q is a

transition function; F ⊆ Q is a set of final states.

A run of a DFA A over a finite word w = σ1σ2 . . . σn is a

sequence of states ρ = q1 . . . qn+1, such that q1 = qinit and

qi+1 = δ(qi, σi), for all 1 ≤ i ≤ n, and it is accepting if

qn+1 ∈ F . The language of A is the set of all words that gener-

ate accepting runs. A DFA is blocking if δ is a partial function,

otherwise it is nonblocking. For any scLTL formula ϕ over Σ
there exists a nonblocking DFA A = (Q, qinit , 2

Σ, δ, F ), such

that the language of A is the set of all good prefixes of all words

that satisfy ϕ [10].

III. PROBLEM FORMULATION

In this section, we introduce a hierarchical model for route

and motion planning for a vehicle tasked with servicing a

transportation request expressed as a temporal logic formula,

while satisfying road rules and user-defined safety preferences.

We introduce the level of violation associated with the delay of

servicing of the transportation request and the satisfaction of the

road rules and we formalize the problem of minimum-violation

motion planning of the vehicle.

A. Hierarchical Model
1) Vehicle model: The vehicle used to service the trans-

portation requests operates in a bounded planar road network

R ⊂ R
2 consisting of intersections and roads that con-

nect them. It is modeled as a dynamical system with limited

sensing. Formally, the vehicle is defined as a tuple V =
(f,X,U, h, Sense), where X ⊂ R

m, U ⊂ R
n, and R are the

state, control, and work-spaces of the vehicle, Sense : R2 →
2R

2

. The dynamics of the model are given by

ẋ = f(x, u), x(0) = x0 (1)

y = h(x) (2)

where x0 is the initial state at time t = 0, f : X × U →
X and h : X → R

2 are the Lipschitz continuous dynamics

and observation (location) functions, respectively. The limited

sensing area of the vehicle at location y is given by Sense(y) ⊂
R
2. The state trajectory under a control policy u(·) is said to be

feasible if the location of the vehicle in the planar environment

stays inside R for all times.

Let Ω be the set of service region labels that identify places of

interest and are used to specify the transportation request, e.g.,

a school drop-off point, a shopping mall parking lot, etc. The

locations of the regions of interest in the workspace are given by

the labeling map LΩ : X → 2Ω.

2) Road segment model: The road network R is decom-

posed into a set of road segments R. Each road segment r ∈
R is associated with a compact planar region Rr ⊆ R in

the workspace corresponding to a road lane segment together

with its ingoing and outgoing intersections. Hence, two road

segments may share an intersection. Except for the ingoing

and outgoing one, a road segment does not contain any other

intersection. Note that there are two road segments inR for each

two-way road, one for each traffic direction.

The space Rr is annotated with signs and markings that are

used to enforce the rules of the road (e.g., speed limit, stop,

and construction signs, lane and intersection delimiters). Let Π
denote the set of all signs and markings that are common for
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TABLE I: Symbols table.

V vehicle model
X , U , R state, control, and work- spaces
f , h, Sense dynamics, observation (location) and sensing maps
x0 initial state
Ω, LΩ the set of service regions and associated labeling map
Xr , Rr state and work-spaces associated with r ∈ R
Π set of all signs and markings
Lr,Π, LPi road and network markings and signs labeling maps
Mr road segment model
S, R sets of intersections and road segments
L, W road network labeling and (dynamic) weights maps
ε symbol indicating no service regions on road segment
x = (p, v) state composed of location p and velocity v
oH , σH duration output word and output word induced by H
ψ transportation request
Δ, D deadline and delay
Θ set of road rules
θa, θg assume and guarantee parts of a road rule
ReqCompleted symbol indicating the end of the request
Φ safety preference
(Pψ , PΘ, β) penalty structure

all road segments. We assume that there exists a minimal set

of markings that define right and left lanes, and ingoing and

outgoing intersections, denoted by RightLane, LeftLane,

InIntersection and OutIntersection, respectively. The re-

gions defined by the markings for road segment r ∈ R are given

by the road labeling map Lr,Π : Xr → 2Π, where Xr ⊆ X is

the set of the vehicle’s states in the road segment r, i.e., Xr =
h−1(Rr). The road labeling maps must be consistent whenever

two road segments r1, r2 ∈ R share an intersection, i.e.,

L−1
r1,Π

({OutIntersection}) = L−1
r2,Π

({InIntersection}) or

L−1
r2,Π

({OutIntersection}) = L−1
r1,Π

({InIntersection}).
Note that the regions induced by Lr,Π are interpreted as the

regions of the road segment r that a sign or marking applies

to. For example, Lr,Π designates as construction the entire

closed-off region of the road segment, and not just the location

of the start and end construction signs. LΠ =
⋃

r∈R Lr,Π then

denotes the assignment of signs and markings over the whole

road network R.

We define the road segment model as a tuple Mr =
(Rr,Π,Lr,Π) that captures the traversal of road r ∈ R.

The vehicle has limited sensing and can only perceive the

subset of markings in the road segment r that is within its

sensing area, i.e., Sense(y(t))∩Rr, where y(t) is the location

of the vehicle at time t.
Let r1, r2 be two road segments such that the outgoing

intersection of r1 coincides with the ingoing intersection of r2.

The vehicle’s state trajectory is said to switch from r1 to r2
when the vehicle’s location enters the outgoing intersection of

r1. Note that the vehicle’s location does not change, the switch

only affects the sequence of traversed road segments.

3) Road network model: The road network can be viewed

as a sparse strongly connected directed graph (S,R) with S rep-

resenting the sets of intersections andR ⊆ S×S corresponding

to the road segments connecting them, where we slightly abuse

the notation for R to denote both the set of road segments and

the set of tuples representing the edges of the road network

graph. As discussed above, the road segments are labeled with

places of interest that may be used to define a transportation

request. The road network labeling function LΩ : R → Ω ∪
{ε} is obtained from LΩ as follows: LΩ(r) = LΩ(Xr) for

all r ∈ R, where ε indicates that the road segment is not

associated with any service regions. We make the assumption

that there is at most one service region per road segment. This

assumption is in fact not restrictive as each road segment can be

modeled as several ones by introducing additional intersection

road segments.

We assume that the vehicle has access to a service that

provides information about the traffic conditions in the road

network, e.g., INRIX, Google Traffic, Waze. With a slight abuse

of notation, estimated travel durations through the road network

are captured using a weight functionW : R×R≥0 → R>0 that

assigns to each road segment r ∈ R at time t ≥ 0 an estimated

(nominal) traversal durations of edge r. Thus, the road network

may be modeled as a WTS T = (S, sinit , R,W,Ω, L) with

dynamic weights, where the initial location of the vehicle is in

the intersection sinit ∈ S. Note that only the traffic information

at the current time tc is available, i.e., W (·, tc).
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Fig. 1: A road network with 8 intersections I0, . . . , I7 is shown
in (a) in the bottom together with the corresponding WTS in the top.
The dots depict the states of the WTS, the arrows represent the tran-
sitions labeled with the respective weights, i.e. the estimated travel
durations at the current moment. The vehicle is initially located at
rest in intersection I0 and ready to traverse road segment (I0, I1),
see (b). Intersections are partitioned into 4 quadrants SharpRight,
FarRight, FarLeft, and SharpLeft, as shown for the intersection I1 in
light, medium, and dark green, and red, respectively. The vehicle’s
sensing area is a circular arc sector centered at its position and
shown in blue. The pickup region is marked in light gray, meaning
that LΩ((I0, I1)) = pickup in the WTS in (a) in the top. The road’s
speed limit, construction zone, and U-turn restrictions are provided
through the function L(I0,I1),Π illustrated as orange, dark grey,
and red regions, respectively. However, due to the limited sensing
capabilities, the vehicle perceives only InIntersection, RightLane,
and LeftLane markings of (I0, I1) at the current moment.
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Example 1 Consider a vehicle in the road network shown in
Fig. 1a in the bottom composed of 8 intersections I0, . . . , I7.
The vehicle dynamics model (Eq. (1)) is given via a double
integrator vehicle, i.e., f(x, u) = (0, 0, u1, u2), where the
state x = (p1, p2, v1, v2) is composed of the vehicle’s position
p = (p1, p2) and velocity v = (v1, v2), and is controlled by
acceleration input u = (u1, u2) ∈ R

2. Thus, ṗ1 = v1, ṗ2 = v2,
v̇1 = u1, and v̇2 = u2. The observation map that defines the
output y (Eq. (2)) is trivially h(x) = p.

For the road segment model, we decompose the road network
into 20 road segments as prescribed in Sec. III-A.2. The set
of all markings is Π = {50mphLimit, UnderConstruction,
NoUTurn, Under50mph, ConstructionArea, InIntersection, Out-
Intersection, RightLane, LeftLane, SharpRight, FarRight, Far-
Left, SharpLeft}. One of the road segments is illustrated in
Fig. 1b together with the road labeling L(I0,I1),Π. This road
labeling is however, not explicitly modeled at this point as it
is learned on-the-fly through sensing, i.e. through the function
Sense(y). From its current position, the vehicle can observe
markings and regions of interest in a circular arc section as
shown in Fig. 1b.

The road network modeled is provided through a WTS (see
Fig. 1a in the top). The estimated travel times are shown as
weights labeling the transitions, and are assumed to be constant
over time in this example for simplicity of presentation. The
vehicle is initially at the origin (in intersection I0, which is
the initial state of the WTS) and at rest. A customer defines the
desired mission using the service regions Ω = {pickup, bakery,
mall, dropoff} that are mapped to regions in the road network
using the labeling map LΩ and further onto the road segments
in the WTS using the labeling map LΩ. Namely, LΩ((I0, I1)) =
pickup, LΩ((I3, I0)) = bakery , LΩ((I5, I7)) = mall , and
LΩ((I6, I7)) = dropoff , respectively. Note that the traffic
direction is important.

As we will present shortly, the model now allows to state
desired specifications, such as that a customer would like to visit
a pickup location and then either bakery or mall and that road
rules should be met, such as that the vehicle should stay in the
right lane or not perform a U-turn when forbidden by a sign.

B. Specification

Let Σ be an alphabet, i.e. a finite set of symbols, x be

a trajectory of the vehicle defined by Eq. (1)-(2), and H :
X → Σ a labeling function. The duration output word oH =
(σ1, d1)(σ2, d2) . . . corresponding to x with respect to H is

defined such that H(x([tk, tk+1))) = σk and σk �= σk+1 for

all k ≥ 1, where tk+1 = tk + dk and t1 = 0. We denote by

σH = σ1σ2 . . . the output word produced by x. Let φ be an

scLTL formula over Σ. We say that x satisfies φ with respect

to H , denoted by x |=H φ, if σH |= φ. For brevity, we use

the notation x(I) |=H φ with the meaning that the subword of

σH , denoted by σH(I), corresponding to the time interval I is

a good prefix of φ.

We say that x services φ with respect to H if there exists a

compliant subword (σi1 , di1)(σi2 , di2) . . . (σin , din) of the du-

ration output word oH and a compliant good prefix ςi1ςi2 . . . ςin
of φ, where ςik ⊆ σik for all k ∈ {1, . . . , n}. The corre-

sponding sequence of times ti1ti2 . . . tin is called the sequence
of service times. Unlike for the above satisfaction, the labeling

function H is not viewed as the assignment of undetachable

state properties (such as right lane, left lane etc.) for servicing
φ. Rather, it provides information about available observations

that may (but do not have to) be serviced when x passes a state

where they hold, e.g., there might be a drop-off area and the

vehicle may (but does not have to) stop there.
1) Transportation request: The vehicle is tasked with ser-

vicing a request ψ = (ωstart, φ,Δ), where φ is the route

specification expressed as an scLTL formula over the available

service regions Ω, a start (pick-up) location ωstart ∈ Ω,

and a deadline Δ ∈ R≥0. The transportation task is thus to

service the scLTL formula F(ωstart ∧ φ). In other words, the

solution to a transportation request is a trajectory x of the vehicle

together with a compliant minimal good prefix ςi1ςi2 . . . ςin of

F(ωstart ∧ φ) and the corresponding sequence of service times

ti1ti2 . . . tin . An optimal solution minimizes the total servicing

time tserv = tin . Ideally, the optimal solution guarantees

servicing φ before the deadline, i.e., tserv ≤ Δ. However, due

to traffic conditions, the requirement to satisfy the road rules,

the properties of the road network etc., the vehicle might not

service the request by the deadline. The delay in servicing the

transportation request is D = tserv −Δ.
2) Road rules: Let us introduce a special marking

ReqCompleted ∈ Π, such that L−1
Π ({ReqCompleted}) = ∅

for all times t < tserv and L−1
Π ({ReqCompleted}) = R for

all times t ≥ tserv . The rules of the road (RR) are represented

as a set Θ of scLTL formulae over Π in reactive form,

θj = (θaj
Re⇒ θgj )UReqCompleted (3)

for all θj ∈ Θ, where θaj and θgj are the Boolean assumption and

scLTL guarantee formulae,
Re⇒ (reactive implication) indicates

the separation between the two parts of θj . We say that a traffic

rule θj is active if θaj is satisfied. The rules in Θ may become

active at any time during the traversal of a road segment.
3) Safety preferences: In addition to the transportation re-

quest, the user also provides safety preferences in the form of a

set of scLTL formulae Φ over Π. Note that safety preferences

can be used to enforce global temporal constraints regarding the

violation of traffic rules throughout the whole journey.

Example 2 (Cont.) Consider the setup in Ex. 1, and the fol-
lowing road rules: 1) stay in the right lane; 2) if the road is
under construction, then avoid construction areas; 3) if u-turn
is not allowed, then don’t go to the sharp left quadrant of the
intersection; and 4) if speed is limited to 50mph, then drive at
under 50mph. The road rules written as an scLTL formula given
in Eq.(3), where

j θaj θgj
1 � RightLane
2 UnderConstruction ¬ConstructionArea
3 NoUTurn ¬SharpLeftU¬OutIntersection
4 50mphLimit Under50mph

Lastly, consider a transportation request to arrive at a
party by Δ = 40 at dropoff region. The customer is at region
ωstart = pickup, and needs to stop by the mall or bakery
first. The transportation request is (pickup, φparty, 40), where
φparty = F((mall ∨ bakery) ∧ X dropoff) is the scLTL formula
associated with the service request. While the customer is in a
hurry, she does not want the vehicle to travel above the speed
limit and also break other rules of the road. Moreover, at most
one illegal U-turn should be performed throughout the journey.
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The scLTL formulae for the safety preferences are ϕ1 =(
(θa4 ∧ ¬θg4) ⇒

∧3
j=1 θ

a
j ⇒ θgj

)
UReqCompleted, and

ϕ2 = (θv3 ⇒ (θv3U(¬SharpLeft ∧ θ3)))UReqCompleted,
where θv3 = θa3 ∧ SharpLeft.

C. Problem Statement

We focus on situations when the transportation request cannot

be completed by the deadline without violating the road rules,

i.e. we focus on minimum-violation motion planning problems.

For the former two types of specifications, we define a level of

violation as a function that assigns a penalty to each trajectory

of the vehicle and the transportation request and the set of road

rules, respectively. However, the user-defined safety preferences

are required to be fully satisfied.

1) Transportation request: For the transportation request,

the level of specification violation is measured through the delay

D as given by the penalty function Pψ : R → R̄.

2) Road rules: For the road rules, the level of violation

is defined through the level of unsafety, similarly as in [1].

Each road rule θj ∈ Θ is associated with a priority pj ∈ N.

Intuitively, the level of unsafety is measured as the cumulative

time spent satisfying the individual road rule assumptions, but

not the guarantees, weighted by the corresponding priority. For-

mally, given a duration output word oH = (σ1, d1)(σ2, d2) . . .
corresponding to a trajectory y, the level of unsafety is

PΘ(x) =
∑
θj∈Θ

⎛
⎝pj ·

∑
i∈{i|σi|=θa

j ∧¬θg
j }
di

⎞
⎠ .

3) Penalty structure: The relative importance of the delay

penalty of the request with respect to the penalties for violation

of road rules is denoted by β ∈ R>0. The triplet (Pψ, PΘ, β) is

called a penalty structure for the traffic network.

Example 3 (Cont.) In Ex. 1 we consider that rule θ2 is three
times more important than θ1, and θ3 and θ4 twice as much.
Therefore, the priorities for the rules are 1, 3, 2, and 2, respec-
tively. For simplicity, the penalty function for the delay is the
identity. The relative importance β is taken as 2, meaning that
the level of unsafety is twice as important as the delay penalty.

Problem 1 Given a vehicle V operating in the road network
({Mr}r∈R, T ), a transportation request ψ, a set of road
rules Θ, a set of safety preferences Φ, and a penalty structure
(Pψ, PΘ, β), find a control policy u(t) : R≥0 → U such that
the state trajectory x(t) of V is feasible, minimizes the total
penalty

P (x) = Pψ(D) + β · PΘ(x),

and the safety preferences encoded by Φ are all satisfied.

IV. SOLUTION

In this section, we propose a receding horizon approach to

solve Pb. 1 that leverages recent developments in minimum-

violation temporal logic planning. The proposed framework

exploits the natural decomposition of Pb. 1 into a global long-

term routing problem Pb. 2 and a short-horizon local motion

planning problem Pb. 3. Intuitively, a long-term routing plan

can be generated that disregards signs and markings since these

are a priori unknown, and focuses on minimizing the delay

penalty based on available routing decisions and the current

travel duration estimates for the network’s roads. In between

intersections, a local planner that takes into account discovered

markings and signs, is used to minimize both violation of road

rules and transportation delay as captured by the total penalty

function, and satisfies the safety preferences. The local planner

invokes the routing algorithm to recompute the global plan

whenever (1) the computed decision is unavailable or requires

a high degree of violation of road rules due to locally sensed

signs and markings, and (2) it is not optimal anymore due to

changing travel durations estimates.

A minimum-violation routing algorithm is used to gener-

ate routes at the road network level modeled as a WTS that

minimize the delay penalty associated with the servicing of

the transportation request. Routing decisions are made at the

intersections of the road network, and the routing algorithm is

used to find the next road segment to traverse on the optimal

route with respect to the current estimated travel durations. The

motion within each road segment (between two intersections)

is computed by a local planner. We propose a sampling-based

algorithm that incrementally constructs motion plans that mini-

mize the violation of traffic rules and transportation delay, while

obeying the customer’s safety preferences. The transportation

request, rules of the road, and the safety preferences are all con-

verted into DFAs annotated with transition weights that capture

the level of violation. Overall, the solution computes controls at

each time step to drive the vehicle towards the completion of the

transportation request with minimum cost, provided that local

motion problem are feasible.

A. Receding Horizon Planner

The receding horizon controller proposed in Alg. 1 is based

on the decomposition of Pb. 1 into the following two intercon-

nected, iteratively addressed problems.

Problem 2 (Routing) Given a WTS T with fixed weights, and
transportation request ψ = (ωstart, φ,Δ), find a trace τ that
services F(ωstart ∧φ) with minimum delay penalty PObj(Δ) if
one exits, otherwise report failure.

Problem 3 (Local Motion Planning) Given a vehicle V =
(f,Xr, U, h, Sense) in a road segment r, labeling maps LΩ,
and Lr,Π, a desired service region ω, a set of road rules Θ,
safety preferences encoded as ϕ =

∧
ϕ�∈Φ ϕ�, and the vehicle’s

trajectory prefix up to the current moment, find a control policy
u(·) that induces a continuation of the state trajectory that
services the region marked by ω, if one exits in r, minimally
violates the rules of the road, satisfies ϕ, and finishes in the
outgoing intersection of the road segment.

The receding horizon planner Alg. 1 has two stages: an off-

line part (lines 1-10) and an on-line part (lines 11-16).

In the off-line stage, the RRT* tree for local motion plan-

ning is initialized (line 2) and the initial state is labeled with

transportation and road observations (line 3) in the current road

segment (line 1). Next, the specifications for the transportation

request, safety specification, and each road rule are converted

to DFAs, and the initial state x0 is annotated corresponding to

automata states (lines 4-8). The conversion of the transportation
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request and safety preference to DFAs is provided using an off-

the-self tool such as Spot [11], which we denote by dfa(·)
in Alg. 1. The rules of the road are also translated to DFAs,

but annotated with transition weights as detailed in Sec. IV-B.

Lastly, the cost of x0 is set to zero, the current state is set to x0
and added to the solution state trajectory solution (lines 9-10).

In the on-line stage, at each step the current road segment

is retrieved (line 12). Based on the current location of the

vehicle, Alg. 2 either (1) returns the current road segment rc
in case the vehicle is not at an outgoing intersection (lines 1-

6), or (2) it switches to the next road segment that minimized

transportation delay (line 9). The routing problem Pb. 2 is solved

using the approach proposed in [3], and is denoted in Alg. 2 by

routing(·). It takes as input an intersection, the current state

in the transportation request DFA, and the current estimated

travel times (line 8) and outputs the route in the WTS road

network model as well as the next service region to be visited.

After the next road segment to be traversed is selected, the

receding horizon algorithm Alg. 1 proceeds to relabel and prune

the RRT* tree based on the currently available observations

inside the vehicle’s sensing area (line 13). The tree is relabeled

recursively starting from the root in Alg. 3, and states that

do not satisfy the safety preference are deleted together with

associated subtrees (line 4). The update procedure is described

in Sec. IV-C, and uses the labeling functions restricted to the

sensing area around the current location h(xc) (line 2). Note

that the root1 of the RRT* tree is always the current state xc.

The updated RRT* tree then checked for a solution trajectory

that extends until the outgoing intersection of the current road

segment r (line 14), i.e., existsSolution(T∗) = � if and only

if OutIntersection ∈ Lr,Π(leaves(T∗)). In case a solution

trajectory does not exist, the local planner is called (line 15).

The algorithm reports failure if the local planner is unable to

generate a motion plan. In case, a solution trajectory exists, the

current state xc is set to the next state on the optimal trajectory,

and added to the solution (line 16). The nextRoot(·) procedure

also deletes the old root and all subtrees corresponding to the

siblings of the new root. The optimal leave state is selected based

on the accumulated cost J described in Sec. IV-C.

B. Weighted DFA
Similar to [1], the scLTL formulae for road rules are trans-

lated to weighted DFAs that capture the level of violation. The

operation is denotedmva(θ) in Alg. 1 (line 5), and involved two

steps: (1) θ is translated to a DFA Āθ = (Q̄θ, q
θ
init, 2

Πθ , δ̄θ, F̄θ)
using dfa(·), and (2) self-loops and a weight function are

added to the Āθ. Let Aθ = (Q̄θ, q
θ
init , 2

Πθ , δθ,Wθ, F̄θ) ←
mva(θ), where the edge set of A is δθ = δ̄θ ∪ {(q, σ, q) |
σ ∈ 2Πθ s.t. q �= δ̄θ(q, σ)}. The weights of A are defined as

Wθ(τ) =

{
p τ ∈ δ̄θ
0 τ ∈ δθ \ δ̄θ

, where p is the priority of road rule

θ, and τ ∈ Q̄θ × 2Πθ × Q̄θ.

As opposed to [1], in this work we use deterministic automata

and we do not combine the automata corresponding to road

rules into a product automaton. Moreover, the DFAs are defined

over subsets of Π denoted by Πθ that include only the markings

1 We use standard tree operations to retrieve the parent and children of a
state, the root and leaf states, and to delete a sub-tree, and we denote them
by pa, ch, root, leaves, and deleteSubTree, respectively.

Algorithm 1: Receding Horizon Planner

Input: V – vehicle, ({Mr}r∈R, T ) – road network, ψ –
transportation request, Θ – road rules, ϕ – safety
preferences, (Pψ, PΘ, β) – penalty structure

Output: solution – a solution state trajectory or “Failure”

1 r ← getRoadSegment(x0, ��) // off-line
2 T∗ ← (S∗ = {x0}, x0, R∗ = ∅,W∗ = ∅, L∗ = ∅)
3 L∗(x0) = LΩ(x0) ∪ Lr,Π(x0)
4 for θ ∈ Θ do
5 Aθ = (Qθ, q

θ
init , 2

Πθ , δθ,Wθ, Fθ) ← mva(θ)
6 stateθ(x0) ← δθ(q

θ
init , L∗(x0))

7 Aϕ ← dfa(ϕ); stateϕ(x0) ← δϕ(q
ϕ
init , L∗(x0))

8 Aψ ← dfa(F(ωstart ∧ φ)); stateψ(x0) ← δψ(q
ψ
init , L∗(x0))

9 J(x0) ← 0
10 xc ← x0; solution ← (xc)
11 while stateψ(xc) /∈ Fψ do // on-line
12 r ← getRoadSegment(xc, r)
13 prune(root(T∗), T∗)
14 if ¬ existsSolution(T∗) then
15 if ¬ localP lanner(T∗, r) then return Failure

16 xc ← nextRoot(T∗); solution.append(xc)

17 return solution

Algorithm 2: getRoadSegment(xc, rc)
1 Rc ← {r ∈ R | xc ∈ Xr}
2 if Rc = {rc} then // not at intersection
3 return rc
4 else // intersection: in multiple road segments

5 Rc = {rp, r�n} s.t. rp = (s′, sc) ∧ r�n = (sc, s�), ∀�
6 if ∃� rc = r�n then return r�n
7 else // switch road segments: best routing
8 Wc ← W (·, tc))
9 return argmin�{C� + routing(s�, stateϕ(xc),Wc)},

where C� = β
∑
Wθ(stateϕ(xc), stateϕ(s�))

Algorithm 3: prune(x, T∗)
1 foreach xch ∈ ch(x, T∗) do
2 L∗(xch) = {LΩ(xch) ∪ Lr,Π(xch) | h(xch) ∈ Sense(h(xc))}
3 if update(xch) then prune(xch, T∗)
4 else deleteSubTree(xch, T∗)

involved in the rule. These changes allow the planner to consider

only active road rules during computation, and possibly add

and remove a priori unknown rules on-the-fly in scenarios such

as accident sites. The latter is part of ongoing work. Another

advantage is that it generates DFAs with less number of states

and transitions.

C. Local Planner

The local planner Alg. 4 is responsible for generating mo-

tion plans that traverse the road segments selected using the

routing algorithm. The method is based on random sampling

of the workspace, and uses the following primitive functions:

(1) sample(Rr) generates a uniformly distributed location in

Rr, (2) velocity(p) returns a velocity at location p (see below

for details), (3) near(x, T∗) returns all states in T∗ that are

close to x, i.e., Snear = {x′ ∈ S∗ | ‖p − p′‖2 ≤
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Algorithm 4: localP lanner(T�, r)
Input: T∗ – current RRT∗ tree, r – current road segment, and

all inputs of Alg. 1
Output: Boolean value – indicates if a solution was found

1 xroot ← root(T∗)
2 for i = 1, . . . , Nmax do
3 p ← sample(Rr)
4 x ← (p, velocity(p))
5 L∗(x) = {LΩ(x) ∪ Lr,Π(x) | h(x) ∈ Sense(h(xroot))}
6 J(x) ← ∞
7 for x′ ∈ near(x, T∗) do
8 if steer(x′, x) then
9 update(x, x′)

10 if x ∈ S∗ then
11 for x′ ∈ near(x, T∗) do // rewire
12 if steer(x, x’) then
13 update(x′, x)

14 return existsSolution(T∗)

Algorithm 5: update(x, xpa)
1 if δψ(xpa, L∗(x)) = �� then return ⊥
2 else
3 C ← c(xpa, x)
4 foreach θ ∈ Θ do
5 qθpa ← stateθ(xpa); q

θ ← δθ(q
θ
pa, L∗(x))

6 C ← C + β · Wθ(q
θ
pa, q

θ)

7 if J(x) > C + J(xpa) then
8 if x /∈ S∗ then
9 S∗ ← S∗ ∪ {x}; R∗ ← R ∗ ∪{(xpa, x)}

10 else
11 R∗ ← (R ∗ \{(pa(s, T∗), x)}) ∪ {(xpa, x)}
12 stateψ(x) ← δψ(stateψ(xpa), L∗(x))
13 stateϕ(x) ← δϕ(stateϕ(xpa), L∗(x))
14 foreach θ ∈ Θ do
15 stateθ(x) ← δθ(stateθ(xpa), L∗(x))

16 return �

γ
√
log(n)/n}, and (4) steer(x, x′) computes a pair (u(·), T )

such that
∫ T

0
f(x(τ), u(τ))dt = x′ with x(0) = x, and T is

minimized. Similar to RRT∗, Alg. 4 first attempts to expand the

tree T∗ (lines 3-9) and connect the new sample x to the best

parent (line 9). Then, the new state is used to improve the cost

of the nearby states in T∗ (lines 10-13). Note that the state is

labeled with markings and regions of interest within the sensing

area associated with the root’s location (line 5).

The velocity at the random location p (line 4) is computed

based on set of macro-action Act such as change to 0 (stop),

5, . . ., 70 mph. The primitive velocity(p) randomly chooses a

macro-action, and returns the corresponding velocity.

The update of DFA states and cost associated with a state x
is done by update(x, xpa) Alg. 5, where xpa is the potential

new parent of x. If the sample satisfies the safety preference

ψ (line 1), then the connection cost is computes as a sum of

the steering cost c(xpa, x) (line 3) and the road rule violation

cost (lines 4-6). If the current cost of x is is larger than the cost

induced by considering xpa as the parent of x (line 7), then

xpa becomes the parent of x (lines 8-11), and the DFA states

associated with x are updated (lines 12-15).

D. Analysis
Theorem 1 The probability that Alg. 1 returns a control policy
u such that the vehicle eventually services the transportation
request while satisfying the safety preferences approaches one
as number of samples per road (Nmax ) segment approaches
infinity, if a solution exists. Moreover, at each moment the
computed routing and motion plan is optimal with respect to the
current state and available information, i.e. it gives a solution
to Pb. 1 at each time t.

Proof: (Sketch) The proof of the first part follows from

the asymptotic optimality of RRT∗. If a solution exists, then

there exists a motion plan within each road segment, and the

sampling-based algorithm Alg. 4 finds it with probability 1

as Nmax tends to infinity. The second part follows from the

optimality of the local planner and the routing algorithm, see [3]

for the optimality proof of the routing algorithm.

E. Complexity
Theorem 2 The complexity of the off-line phase and each step
of the on-line phase of Alg. 1 are O(|Θ|2maxθ∈Θ|θ| + 2|ψ| +
2|φ| + |S| log |S|) and O(|S| log |S| + |Θ| · |T∗| + |Θ| ·
|T∗| log |T∗|), respectively.

Proof: The 3 terms of the off-line phase correspond to

translation of the scLTL formulae to DFAs, and the last term

is the complexity of the routing algorithm. The first term of the

on-line phase is again the complexity of the routing procedure

used to determine the next road segment to traverse. The second

term corresponds to the pruning procedure. The final term cor-

responds to the local planner, where |T∗| represents the number

of states of T∗. Note that the complexity of local planner does

not increase with respect to |T∗|, because we use deterministic

automata to represent the specifications.

Moreover, the decomposition of the road network into seg-

ments aids in the computation of motion plans, since it induces

smaller local planning problems within each segment that over-

all have lower complexity than computing a global motion plan

over the entire road network directly.

V. COMPUTATIONAL EXPERIMENTS

The algorithms presented in this paper were implemented in

Python2.7 using the LOMAP package [12]. All examples were

ran on a Intel Core i7 computer with 2.4GHz processor and 8GB

RAM under Ubuntu 14.04.

In the following, we present the a case study, where a vehicle

operating in the road network shown in Fig. 1a and 2e must

service a transportation request to “pickup the customer at

pickup, visit either the mall or bakery, and drop-off her off

at dropoff” within 40 time units. The vehicle must obey the

rules of the road in a minimum-violating manner, and the safety

preferences unconditionally. An extended description of the

setup is presented in Ex. 1, 2, and 3. We report computed routing

plans, the vehicle’s overall trajectory and associated cost, and

execution time of the on-line phase of the receding horizon

solution Alg. 1 to evaluate its performance with respect to Pb. 1.

We ran Alg. 1 for a vehicle with sensing radius 1, and with

Nmax = 2000 samples per road segment. Fig. 2a shows the tree
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TS computed from the initial state, where the construction area

is not within the sensing radius. The receding horizon algorithm

implements the motion prescribed by the local motion plan,

and Fig. 2b shows the vehicle after a few steps before sensing

the construction area. When the construction area enters the

vehicle’s sensing field-of-view, the planner recomputes a tree

TS 2b that avoids the region as shown in 2d, where the vehicle

has overtaken the construction (obstacle) region and is moving

towards the pickup regions. Note that the vehicle violates the

requirement θ1 to drive on the right in order to drive pass

the construction area, and the behavior is consistent with the

priorities of the road rules, i.e., p1 = 1 for θ1 compared to

p2 = 3 for θ3.

The overall trajectory of the vehicle that services the trans-

portation request from Ex. 2 is shown in Fig. 2e projected on the

road network. At the initial state, an optimal route for the vehicle

is (I0, I1, I4, I5, I7, I6, I7〈dropoff〉) with an estimated duration

of 48, assuming that dropff is at the middle of road segment

(I6, I7). However, after arriving at intersection I1, the vehicle

learns that the estimated travel times for (I1, I4) and (I5, I7)
changed to 6 and 26, respectively. Thus, the new optimal route

becomes (I0, I1, I0, I3, I0, I3, I4, I6, I7〈dropoff〉) with an esti-

mated duration of 56. In order to implement the new route, the

planner violates the rule θ3 by performing a forbidden U-turn

at intersection I1. However, the safety preferences are met as

the vehicle never performs a forbidden U-turn again nor exceeds

50mph on speed constrained stretches of the road segments. The

actual delay incurred by following the motion plan was 28.027

time units with a total cost of 56.114.

The on-line phase of Alg. 1 was performed 319 times with

an average execution time of 2.545 seconds (std. 6.044) and

13.52 minutes for the entire request. Note that computed local

plans are reused within road segments, and recomputing is

performed when the vehicle senses new markings and signs.

VI. CONCLUSIONS

We have studied the problem of motion planning for an

autonomous vehicle that is given a conflicting set of customer

demands and road rules specified in a temporal logic. A system-

atic receding approach to derive the minimum-violation motion

plan has been designed that builds on integrated high-level

routing in the road network and low level RRT� motion planning

along road segments. An illustrative computational experiment

demonstrates the use of the proposed approach.

Future work involves several research directions from sup-

porting a finer characterization of the state space to accom-

modating multiple demands and vehicle sharing to considering

other vehicles and dynamic elements in the traffic network.

REFERENCES

[1] L. Reyes Castro, P. Chaudhari, et al., “Incremental sampling-based al-
gorithm for minimum-violation motion planning,” in IEEE Conference
on Decision and Control, 2013, pp. 3217–3224.

[2] J. Tumova, G. C. Hall, et al., “Least-violating control strategy synthe-
sis with safety rules,” in International Conference on Hybrid Systems:
Computation and Control, Philadelphia, PA, USA, 2013, pp. 1–10.

[3] J. Tumova, S. Karaman, et al., “Least-violating planning in road net-
works from temporal logic specifications,” in ACM/IEEE International
Conference on Cyber-Physical Systems, 2016, pp. 1–9.

[4] K. Kim, G. Fainekos, and S. Sankaranarayanan, “On the minimal
revision problem of specification automata,” The International Journal
of Robotics Research, 2015.

(a) At initial state

(b) After a few steps

(c) Sensed construction area

(d) After several steps

I2

I1

I0

I5

I4

I3

I7

I6

pickup | |

dropoff| |

bakery

| |

mall

| |

(e) Overall trajectory projected in the road network

Fig. 2: The figures show the generated tree TS in road segment
(I0, I1), a–d, and the overall state trajectory of the vehicle servicing
the transportation request projected onto the planar road network, e.
The orange and grey regions represent the construction area and
the pickup location, respectively. The state and transitions of the
RRT tree are marked in black and blue, the computed path to the
target regions pickup is shown in red, and the trajectory up until the
current location is green. Note that the service regions, e.g., mall,
bakery, pickup and dropoff, can only be serviced if road segments
are traversed in the correct direction.

[5] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” International Journal of Robotics
Research, vol. 34, no. 2, pp. 218–235, Feb. 2015.

[6] M. Maly, M. Lahijanian, et al., “Iterative Temporal Motion Planning
for Hybrid Systems in Partially Unknown Environments,” in Int.
Conference on Hybrid Systems: Computation and Control, 2013.

[7] E. F. M. Pavone, S. L. Smith and D. Rus, “Robotic load balancing
for mobility-on-demand systems,” International Journal of Robotics
Research, vol. 31, no. 7, pp. 839–854, 2012.

[8] C. Vasile and C. Belta, “Sampling-Based Temporal Logic Path Plan-
ning,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2013.

[9] ——, “Reactive Sampling-Based Temporal Logic Path Planning,” in
IEEE Int. Conference on Robotics and Automation, Hong Kong, 2014.

[10] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Methods in System Design, vol. 19, no. 3, pp. 291–314, 2001.

[11] A. Duret-Lutz, A. Lewkowicz, et al., “Spot 2.0 – a framework for
LTL and ω-automata manipulation,” in International Symposium on
Automated Technology for Verification and Analysis. Springer, 2016.

[12] A. Ulusoy, S. L. Smith, et al., “Optimality and Robustness in Multi-
Robot Path Planning with Temporal Logic Constraints,” Int. Journal
of Robotics Research, vol. 32, no. 8, pp. 889–911, 2013.

1488



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


