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Abstract— This paper addresses a persistent vehicle routing
problem, where a team of vehicles is required to achieve a task
repetitively. The task is given as a Time-Window Temporal
Logic (TWTL) formula defined over the environment. The fuel
consumption of each vehicle is explicitly captured as a stochastic
model. As vehicles leave the mission area for refueling, the num-
ber of vehicles may not always be sufficient to achieve the task.
We propose a decoupled and efficient control policy to achieve
the task or its minimal relaxation. We quantify the temporal
relaxation of a TWTL formula and present an algorithm to
minimize it. The proposed policy has two layers: 1) each vehicle
decides when to refuel based on its remaining fuel, 2) a central
authority plans the joint trajectories of the available vehicles to
achieve a minimally relaxed task. We demonstrate the proposed
approach via simulations and experiments involving a team of
quadrotors that conduct persistent surveillance.

I. INTRODUCTION

In the Vehicle Routing Problem (VRP), the goal is to
find N trajectories for N vehicles achieving a task (e.g.,
visiting all locations in minimum time). There are various
extensions of VRP addressing time capacities, service time
windows, service orders (e.g., [1], [2]), or uncertainty in
service requests, travel time, or vehicle availability (e.g.,
[3], [4]). The VRPs are NP-hard combinatorial optimization
problems. Typically, finding the optimal trajectories requires
to explore all the possible routes. Such an exploration can be
achieved by various optimization methods (e.g., integer linear
programming, dynamic programming, branch and bound),
whose computational complexities increase exponentially
with the problem size. This has motivated the development of
heuristics or approximate algorithms that result in acceptably
good solutions with a lower complexity (e.g., [5]).

In some VRPs, simultaneous visits or relative timings
between visiting particular locations might be critical for the
task accomplishment. In general, if there exist some tasks
that involve a temporal and logical ordering, it is hard to
formulate them in the classical optimization setup. Temporal
logics (TL) are rich and expressive specification languages
that can be used to address this issue. For example, the
authors of [6] and [7] address motion planning problems with
specifications given in linear temporal logic. Alternatively, a
VRP with metric temporal logic formulae is solved in [8].

This paper addresses a persistent VRP involving a group of
energy-aware vehicles. The vehicles work together to satisfy
a global task infinitely many times. The task is given as
a Time-Window Temporal Logic (TWTL) formula over a
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set of locations. The semantics of TWTL is rich enough to
capture a wide variety of timed temporal logic specifications,
e.g., “Service A for 3 time units within [0, 5], and after
this, service B for 2 time units within [4, 9]. Within 9 time
units, if C is serviced for 2 time units, then D should be
serviced for 3 time units.” Each vehicle is assumed to have a
stochastic fuel consumption model, and it leaves the mission
area for refueling when necessary. We propose a decoupled
and efficient control policy, in which each vehicle makes
an individual decision for refueling whenever it reaches a
critical fuel threshold, and a centralized controller plans only
the trajectories of the vehicles in the mission area.

This paper is related to [2], where TWTL was first defined
and used for persistent VRP with explicit time constraints.
This work extends the results from [2] in three ways. First,
the method in [2] is an off-line strategy, which can not
handle uncertainty. In this paper, due to stochasticity in
fuel consumption, we propose an on-line control policy that
recomputes the trajectories during the mission whenever a
change occurs in the number of available vehicles. Second,
by decoupling refueling decisions from trajectory planning,
the proposed policy exhibits a significantly lower computa-
tional complexity than the strategy presented in [2]. Third,
while [2] returns failure in cases where the given TWTL
formula cannot be satisfied, here we allow for satisfaction
of minimally relaxed formulae. We introduce and quantify
the temporal relaxation of a TWTL formula and compute
trajectories by minimizing it. Accordingly, the resulting tra-
jectories provide the best possible satisfaction performance.
Notation: q[d] denotes d repetitions of q. Given x,x′ ∈ Rn,
n ≥ 2, the relationship x ∼ x′, where ∼∈ {<,≤, >,≥}, is
true if it holds for all components. x ∼ a denotes x ∼ a1n,
where a ∈ R and 1n is the n-dimensional vector of all ones.

II. TIME WINDOW TEMPORAL LOGIC (TWTL)

A. Syntax and Semantics
The syntax of TWTL is defined as:

φ ::= > | s |φi ∧ φj | ¬φi |φi · φj |Hds | [φi][a,b],
where > is the “true” constant; s ∈ S is a site label and S

is a set of site labels; ∧ and ¬ are the Boolean operators for
conjunction and negation , respectively; · is the concatenation
operator; Hd with d ∈ Z≥0 is the hold operator; and [ ][a,b]

with 0 ≤ a ≤ b is the within operator. The semantics is
defined with respect to finite output words o over S. Let
o(k) denote the kth element on o. The Boolean operators
retain their usual semantics. The hold operator Hds specifies
that a site s ∈ S should be serviced (satisfied) for d time
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units (i.e., o |= Hds if o(t) = s ∀t ∈ [0, d]). The within
operator [φ][a,b] bounds the satisfaction of φ with [a, b] time
window (i.e., o |= [φ][a,b] if ∃k ∈ (0, b − a) s.t. o′ |= φ
where o′ = o(a + k) . . .o(b)). Lastly, the concatenation of
φi and φj (i.e., φi ·φj) specifies that first φi must be satisfied
and then immediately φj must be satisfied.

The satisfaction of a TWTL formula can be decided within
bounded time. Accordingly, the time bound of φ, denoted as
‖φ‖, is the maximum time needed to satisfy φ, and it is
computed as follows:

‖φ‖ =



0 if φ ∈ {>, s}
max(‖φ1‖ , ‖φ2‖) if φ = φ1 ∧ φ2

‖φ1‖ if φ = ¬φ1

‖φ1‖+ ‖φ2‖+ 1 if φ = φ1 · φ2

d if φ = Hds

b if φ = [φ1]
[a,b]

(1)

An example of TWTL formula and its time bound are:
“service A for 3 time units within [0, 5], and after this, service
B for 2 time units within [4, 9]”, φ = [H3A][0,5] · [H2B][4,9],
‖φ‖ = 15. The reader is referred to [9] for more details.

B. Temporal Relaxation
In this section, we introduce a novel notion called the

temporal relaxation of a TWTL formula. This will be used
in Sec. III to formulate the problem. To illustrate the main
ideas, consider the following TWTL formula:

φ1 = [H1A][0:2] ·
[
H3B ∧ [H2C][0:4]

][1:8]
. (2)

In cases where φ1 cannot be satisfied, one question is: what is
the “closest” achievable formula that can be performed? One
way to do this is to relax the deadlines for the time windows,
which are captured by the within operator. Accordingly, a
relaxed version of φ1 can be written as

φ1(τ ) = [H1A][0:(2+τ1)] · [H3B ∧ [H2C][0:(4+τ2)]][1:(8+τ3)], (3)

where τ = (τ1, τ2, τ3) ∈ Z3. Note that a critical aspect while
relaxing the time windows is to preserve the feasibility of the
formula. This means that any sub-task expressed as a sub-
formula in φ should be achievable in the given time window.
Definition II.1 (Feasible TWTL formula). A TWTL formula
φ is called feasible, if the time window corresponding to
each within operator is greater than the duration of the cor-
responding enclosed task expressed via the hold operators.
Remark II.1. The formula φ1(τ) in (3) is a feasible TWTL
formula, if each τi has the following constraint: (i) 2 + τ1 ≥
1, (ii) 4 + τ2 ≥ 2, and (iii) 7 + τ3 ≥ max{3, 4 + τ2}. Note
that τ may be non-positive. In such cases, φ1(τ ) becomes
a stronger specification than φ1, which implies that the sub-
tasks are performed earlier than their actual deadlines.

Let φ be a TWTL formula. Then, a τ−relaxation of φ is
defined as follows:
Definition II.2 (τ−Relaxation of φ). Let τ ∈ Zm, where
m is the number of within operators contained in φ. The τ -
relaxation of φ is a feasible TWTL formula φ(τ ), where each
subformula of the form [φi]

[ai,bi] is replaced by [φi]
[ai,bi+τi].

Remark II.2. For any φ, φ(0) = φ.

Remark II.3. Let τ ′, τ ′′ ∈ Zm such that φ(τ ′) and φ(τ ′′)
are feasible relaxations, where m is the number of within
operators in φ. Note that if τ ′ ≤ τ ′′, then φ(τ ′)⇒ φ(τ ′′).

Definition II.3. Given an output word o, we say that
o satisfies φ(∞), i.e., o |= φ(∞), if and only if
∃τ ′ <∞ s.t. o |= φ(τ ′).

Similar to Remark II.3, if τ <∞, then φ(τ )⇒ φ(∞), ∀ τ .

Proposition II.4. Let φ(τ ′) and φ(τ ′′) be two feasible
relaxations. If τ ′ ≤ τ ′′ then ‖φ(τ ′)‖ ≤ ‖φ(τ ′′)‖.
Definition II.4 (Temporal Relaxation). Given φ, let φ(τ ) be
a feasible relaxed formula. The temporal relaxation of φ(τ )
is defined by |τ |TR = maxj(τj).

Remark II.5. If |τ |TR ≤ 0, then φ is satisfied.

III. PROBLEM FORMULATION

A. Environment Model
Consider an environment that contains a set of monitoring

sites (S) and a set of bases (or charging stations) (C). Let
E = (Q,∆, $) denote a weighted directed connected graph,
where Q = S ∪ C is the set of nodes representing the sites
and the bases, ∆ ⊆ Q × Q is the set of edges representing
the feasible travel between the nodes, and $ : ∆ → Z≥1

is the edge weight that represents the travel time between
the nodes. In this setting, we assume that there exists a path
from any site to one of the bases without visiting any other
sites (e.g., dashed edges in Fig. 1(a)).

B. Vehicle Model
Given E = (Q,∆, $), a team of vehicles move on the

edges ∆ to pursue persistent operations. For any q ∈ Q, ~q
denotes moving towards q. Let ~Q = {~q|q ∈ Q}. At any t, the
state of vehicle i is [fi(t), xi(t)], where fi(t) is its remaining
fuel, and xi(t) ∈ Q∪ ~Q is its target state (i.e., either the node
it is occupying or the node it is traveling to). In this paper, we
only focus on the high-level planning. We assume that low-
level controllers drive the vehicles from their current states
to the designated target states (more information is provided
in Sec. VI-B for a case when the vehicles are quadrotors).

Communication Model: We assume that 1) each vehicle
can communicate with all the other vehicles through a
complete communication graph, 2) there is no cost in com-
munication, and 3) the information propagates significantly
faster than the motion of the vehicles.

Fuel Model: Each vehicle has limited fuel capacity and
consumes fuel unless it is located at a base. Accordingly, we
use the following stochastic fuel model:

f(t+ 1) =

{
min

{
f(t) + δf c, fmax

}
if at base,

f(t)− δfd + ξ(t)− δfp otherwise, (4)

where δf c > 0 is a constant refuel rate at the base, δfd > 0
is a constant fuel consumption while operating, fmax is the
maximum fuel capacity, ξ(t) is a random variable modeling
uncertainty in the fuel consumption, and δfp ∈ {0, β1, β2}
models a fuel penalty if the vehicles avoid collisions through
some maneuvers. In other words, if multiple vehicles travel
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the same edge or operate at the same node, they avoid each
other by modifying their trajectories, e.g., a change in flight
altitude. Such operational changes typically cause more fuel
consumption. Thus, δfp = β1 > 0 for each vehicle traveling
the same edge or occupying the same node; δfp = β2 > β1

for each vehicle traveling the same edge and arriving the
same node simultaneously; δfp = 0 in other cases.

C. Control Policy
In a persistent surveillance mission, each vehicle needs to

(i) avoid running out of fuel, and (ii) work collaboratively
to achieve a desired objective. Thus, each vehicle needs
an efficient decision for when to refuel and how to move.
In this paper, we propose to decouple the decision-making
for refueling and operating in the surveillance area. In the
proposed policy, each vehicle has a label as active or inactive.
A vehicle changes its label from active to inactive if it
decides to return to the base, whereas its label switches
from inactive to active when it arrives at the surveillance
area after refueling. We assume that each vehicle broadcasts
any change in its label through the communication network.
Then, a central authority assigns a target node to each active
vehicle. Consequently, each vehicle’s trajectory depends on
two policies: the refuel policy results in a strategic decision
for safe return to a base; the operational control policy results
in efficient movement in the surveillance area.

1) Refuel Policy: In this paper, the vehicles follow a
threshold policy for refueling. Accordingly, given a fuel
threshold f cri (t) for an active vehicle i, if fi(t) > f cri (t),
then i remains to be active and it is in the surveillance area.
Otherwise, i is inactive and moves towards a base.

2) Operational Control Policy: For M active vehicles, the
operational control policy is a sequence ΠM = π(t)π(t +
1) . . . where π(t) ∈ (Q ∪ ~Q)M specifies at each time t and
for each vehicle i ∈ {1, . . . ,M} where to stay or to go at
t+ 1. We denote πi(t) as the target state of i at t and πi as
the control policy for i (the sequence of the target states).

D. Problem Definition
In this paper, achieving a persistent task means infinitely

many satisfactions of a TWTL formula φ (i.e., Gφ where G
stands for always). To formalize this concept, we define the
infinite concatenation closure of φ as the concatenation of
infinitely many copies of φ, i.e., (φ · φ · . . . ). Similarly, we
define the infinite concatenation closure of relaxed TWTL
formulae as (φ(τ 1) · φ(τ 2) · . . . ), where any φ(τ i) corre-
sponds to a τ i-relaxation of φ. Note that a control policy
ΠM = π(1)π(2) . . . induces an output word o.
Definition III.1 (Output word). The output word generated
by a control policy, ΠM = π(1)π(2) . . ., is o = o1o2 . . .,
where ot = {πi(t)|πi(t) ∈ S, i ∈ {1, . . . ,M}} is the set of
all monitoring sites occupied by M vehicles at time t.

Ideally, it is desired to find a policy that generates o
satisfying (φ(τ 1) · φ(τ 2) · . . . ), where τ 1 = τ 2 = · · · = 0.
However, τ i may contain nonzero elements due to uncertain
vehicle availability in the surveillance area. In that case, the
objective becomes to find a policy that minimizes |τ i|TR,
i.e., the temporal relaxation.

Problem III.1. Given an environment E = (S∪C,∆, $), M
active vehicles, and a persistent task Gφ, let ΠM generate
an output word o that satisfies (φ(τ 1) ·φ(τ 2) · . . . ). Find an
optimal operational control policy

Π∗M = arg min
ΠM

|τ i|TR , ∀i. (5)

Note that if M is constant during the mission, Π∗M results in
the optimal trajectories minimizing the temporal relaxation.
However, M varies during the mission due to fuel uncer-
tainty. Thus, solving (5) as M changes results in switching
control policies. In Sec. V, we show that there always exists
a solution under the switching policies and our proposed
algorithm can find one. Nonetheless, resulting trajectories
under the switching policies are not necessarily optimal.

IV. CONTROL SYNTHESIS

Our proposed solution to Prob. III.1 (Alg. 1) is inspired
from automata-based model checking and has two phases.
In the off-line computations, first, a list of active modes are
created (e.g, a total number of N vehicles corresponds to N
modes, where mode n represents the presence of n active
vehicles in the environment). For each mode, a transition
system is generated from the environment model. These are
then combined with a special finite state automaton to obtain
a list of product automata, each of which captures both
motion and satisfaction in the corresponding mode. In the on-
line computations, a centralized controller uses the product
automata to compute the target states of all active vehicles.
To this end, the control policy, ΠM , is computed on the
currently active product automaton using a Dijkstra-based
algorithm, and it is recomputed if any change occurs in M .
A. Multiple-Vehicle Motion

The motion model of a single vehicle is captured by a
deterministic transition system.
Definition IV.1. A Deterministic Transtion System (DTS) is
a tuple T = (Q, q0,∆, AP, h), where Q is the finite set of
states; q0 ∈ Q is the initial state; ∆ ⊆ Q ×Q is the set of
transitions; AP is the set of observations; and h : Q→ AP
is the labeling function.

The DTS of a vehicle is obtained by transforming the
environment graph into an unweighted directed graph. To
this end, we split up all transitions to have an edge weight
of 1 and define new auxiliary states on the divided edges.
Let Saux and Caux denote the set of auxiliary states between

Algorithm 1: Hybrid Control Policy
Input: E = (Q,∆, $) environment, φ TWTL formula, N number of vehicles

1 Extract T and Tfull from E and construct Tk , 1 ≤ k ≤ N // Off-line
2 A∞ ← translate(φ), the FSA corresponding to φ(∞)

3 Create product automata Pk = Tk ×A∞, 1 ≤ k ≤ N
4 while True do // On-line
5 foreach active vehicle do
6 if vehicle.fuel is critical then
7 vehicle.mode ← inactive; controls.inactive ← returnToBase()

8 controls.active ← operationalPolicy(active vehicles)
9 foreach vehicle do

10 vehicle.move(); vehicle.updateFuel()
11 if vehicle.state ∈ Q̂ (surveillance area) then vehicle.mode ← active
12 else vehicle.mode ← inactive
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Fig. 1. (a) Environment E containing four monitoring sites A,B,C,D
and a base, (b) the full motion DTS on E, and (c) the reduced DTS modeling
motion only in the surveillance area.

the sites and between the sites and the bases, respectively.
The DTS of a vehicle is Tfull = (Qfull, q0,∆

full, AP, h),
where Qfull = S ∪ C ∪ Qaux and Qaux = Saux ∪ Caux;
q0 ∈ Qfull; ∆full ⊆ Qfull × Qfull; AP = S ∪ {ε} where
ε indicates that no site is occupied; and h : Qfull → AP is
the labeling function such that it assigns a label to each site,
i.e., h(q) = q if q ∈ S and h(q) = ε for q /∈ S.

For example, Fig. 1(b) illustrates the full DTS of a vehicle,
which is extracted from the environment in Fig. 1(a). We also
define a reduced DTS as T = (Qred, q0,∆

red, AP, h), where
Qred = S ∪ Saux involves only the sites and the auxiliary
states connecting them as shown in Fig. 1(c).

We use T for the planning of active vehicles in the
surveillance area. This enables to decouple the operational
planning from the refuel decisions. Moreover, using a re-
duced DTS in planning significantly reduces the state-space
of the overall system since the concurrent motion of the
vehicles is represented by a product transition system.
Definition IV.2. A Product Transition System (PTS) Tk for
k ≥ 1 is a DTS Tk = (Qk, qk0 ,∆

k, 2AP , hk), where Qk ⊆
Qred × · · · ×Qred for k times is the set of states; qk0 ∈ Qk
is the initial state; ∆k ⊆ Qk × Qk is the set of transitions
such that ([x1, . . . xk], [x′1, . . . x

′
k]) ∈ ∆k if (xi, x

′
i) ∈ ∆red

for all i ∈ {1, . . . , k}; 2AP is the set of observations (power
set of AP ); and hk([x1, . . . , xk]) = {h(xi)|i ∈ {1, . . . , k}}.

In the proposed approach, the centralized controller only
tracks the occupied states of T with multiplicities. Thus,
we use quotient PTSs, whose states are equivalence classes
induced by the permutation of the state vectors (e.g., the
states (A,A,B), (A,B,A) or (B,A,A), representing 3
vehicles occupying A and B, are merged into a single state).
This representation greatly reduces the sizes of the resulting
PTSs, and any PTS along the paper implies a quotient PTS.

B. Specification
The specification is enforced using a deterministic finite

state automaton.
Definition IV.3. A deterministic Finite State Automaton
(FSA) is a tuple A = (SA, s0,Σ = 2AP , δ, FA), where SA

is a finite set of states; s0 ∈ SA is the initial state; Σ is the
input alphabet; δ : SA×Σ→ SA is the transition function;
and FA ⊆ SA is the set of accepting states.
Note that A can be constructed from any φ. However, A rep-
resents only the specification with the given time windows. In
order to compactly represent all temporal relaxations of φ, a

special automaton A∞ is constructed based on the procedure
in [9]. Accordingly, A∞ represents φ(τ ) for all possible τ .

C. Operational Control Policy
The operational control policy is computed on the product

automata between the PTSs and A∞, which capture both the
motion of the active vehicles and satisfaction of the formula.
Definition IV.4. A Product Automaton (PA) Pk = Tk×A∞
for 1 ≤ k ≤ N is a tuple Pk = (SPk

, (qk0 , s0),∆Pk
, FPk

),
where SPk

= Qk×SA∞ is the finite set of states; (qk0 , s0) ∈
SPk

is the initial state; ∆Pk
⊆ SPk

× SPk
is the set of

transitions; FPk
= Qk ×FA∞ is the set of accepting states.

A transition
(
(q, s), (q′, s′)

)
∈ ∆Pk

implies (q, q′) ∈ Qk and

s
h(q)→ A∞ s′. The notions of trajectory and acceptance are the

same as in FSA. A satisfying run of Tk with respect to φ
can be obtained by computing a path from the initial state to
an accepting state over Pk and projecting the path onto Tk.

We propose Alg. 2 (line 8 in Alg. 1) to compute the target
states of the active vehicles at each time step. Alg. 2 stores
a local policy generated on the currently selected PA P and
the last returned PA state p = (q, s) ∈ SP, where q is the
PTS state, and s is the state on A∞. The switching between
PAs occurs when the last stored q is different than the actual
PTS state of active vehicles q′ (line 4). When s reaches an
accepting state and the policy becomes empty, s is set to the
initial state of A∞ and the next satisfaction of φ initiates (line
8). Using P and p, the target states of the active vehicles are
computed in line 10 by computePolicy(), which proceeds
by traversing the structure of φ from smaller to larger
sub-formulae. It uses special annotation on the automaton
A∞ to compute satisfying paths in P without considering
within operators. Then, these paths are recursively filtered
and extended based on the boolean and temporal operators
connecting them. If there is no satisfying policy, then the
procedure returns the current p. The detailed description of
computePolicy() can be found in [9]. The target states are
distributed to vehicles via Hopcroft-Karp algorithm (line 11).

V. ANALYSIS OF THE HYBRID CONTROL POLICY

A. Performance
First, we show that a relaxed TWTL formula can always

be satisfied under an assumption on vehicle capabilities.
Definition V.1 (Operational Cycle). An operational cycle of
a vehicle is an ordered sequence of traveling to the area,
operating in the area, returning to the base, and refueling.

Algorithm 2: On-line planning – operationalPolicy()
Input: the set of active vehicles; Output: the next state for each active vehicle
Data: p = (q, s) – last PA state,P – selected PA, policy – current policy

1 if no active vehicles then return {}
2 q′ = [vehicle.state | vehicle.mode = active]
3 replan = False
4 if q 6= q′ then // any change in the PTS state
5 P← P|q′|; q ← q′; replan← True // switch PA

6 else
7 if policy 6= {} then p = policy.next() else replan← True

8 if s ∈ FA∞ then s← s0 // update FSA state
9 if replan = True then

10 policy ← computePolicy(P, p); p← policy.next()

11 return distributeControls(q)
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Definition V.2. The Abstract Syntax Tree of φ is denoted by
AST (φ), where each leaf is an atomic proposition s ∈ S or
>, and each intermediate node corresponds to an operator.

·

[ ][0:2] H1A

[ ][1:8]

H3B

H2C

∧
[ ][0:4]

Fig. 2. The AST corresponding to [H1A][0:2] ·
[
H3B∧ [H2C][0:4]

][1:8].
Definition V.3 (Formula Primitive). Given φ, a formula
primitive is a maximal subtree in AST (φ), which does not
contain a within operator.
Assumption 1. Given φ, a vehicle is able to satisfy any φ
primitive(s) at least once in one operational cycle.

Consider φ = [H4A][3,8]∧[H2B·H1C][4,9] whose formula
primitives are H4A and H2B ·H1C. Assump. 1 implies that,
in one operational cycle, the vehicle can reach A, stay there
for 4 time steps, and return to the base safely. Similarly, it
can also reach B, stay there for 2 time steps, then reach C,
stay there for 1 time step, and return to the base.
Definition V.4 (Feasible Sequence of Formula Primitives).
Given φ, a feasible sequence of formula primitives is an
ordered sequence of formula primitives, whose overall sat-
isfaction implies a feasible relaxation of φ.

Again, consider φ = [H4A][3,8]∧ [H2B ·H1C][4,9]. There
exist only two feasible sequences of formula primitives,
which are (H4A,H2B ·H1C) and (H2B ·H1C,H4A).
Theorem V.1. Let φ be a TWTL formula. If Assump. 1 holds,
then there always exists a feasible sequence that induces a
valid relaxation φ(τ ) such that

∥∥φ(τ i)
∥∥ ≤ k t∗OC , where k

is the length of the longest feasible sequence of φ primitives,
and t∗OC is the maximum duration to finish a cycle.

B. Safety
In Alg. 1, the decision to refuel (be inactive) based on the

threshold policy should ensure safe return to the base.
Proposition V.2. Let Ni(t) be the set of adjacent nodes to
vehicle i on Tfull and let ξ̄ be the maximum uncertainty in
the fuel consumption. Executing Alg. 1 ensures safe return
to the base for vehicle i, if the refuel policy has a threshold

f cri (t) ≥ max
qj∈Ni(t)

(1 +$qjqB )(δfd + ξ̄ + 2β) (6)

C. Complexity
In Alg. 1, the construction of T and Tfull has com-

plexity O(
∑
e$e), where $e is the weight of edge e in

E. For N vehicles, the complexity of constructing all PTS
is O

((|Qred|+N
N

))
since the size of PTS Tk is equal to

the number of permutations of k objects from Qred with
repetitions. Constructing A∞ from φ has complexity O(2|φ|)
where |φ| is the length of the formula [9]. Finally, the
complexity of computing each PA Pk is O(

∣∣Qk∣∣ · |SA∞ |).
In Alg. 2, the on-line planning is O(|SPk

| + |∆Pk
|) for

1 ≤ k ≤ N [9]. Moreover, how to return to the base is
computed by running Dijkstra’s algorithm on Tfull, which
gives a complexity of O(

∣∣Qfull∣∣ +
∣∣∆full

∣∣). Overall, we
improve the complexity of the solution (compared to the

one in [2]) by 1) using multiple smaller PAs instead of a
single complex PA, 2) decoupling the refuel decision from
the trajectory planning, which significantly reduces the state-
space, 3) representing φ via the special automaton A∞ in a
more compact way, and 4) using quotient PTSs instead of
the normal ones.

VI. CASE STUDY
A. Simulation Results

We consider two identical vehicles, an environment with
four sites and a base as in Fig. 1(a), and the TWTL formula
φ = [H2A][0,8] · [H3B ∧ [H2C][1,5]][0,7] · [H1D][0,3], which
means “perform in order: 1) service A for 2 time units within
[0, 8]; 2) within [0, 7], service B for 3 time units and service
C for 2 time units within [1, 5]; and 3) service D for 1 time
unit within [0, 3]”. Note that ‖φ‖ = 20 so a single satisfaction
of φ needs to be achieved in 20 time units. The parameters of
each vehicle are selected as fmax = 20, δf c = 0.5, δfd = 1,
δfp ∈ {0, 0.2, 0.4}, ξ(t) ∼ unif(−0.1, 0.1).

The simulations were implemented in Python2.7 on a
Intel Core i7 laptop with a 1.8 GHz processor and 8GB
memory. φ was translated to A∞ with 16 states and 36
transitions in 9 msec. The construction of T1, T2, P1, and P2

took <1 msec, 1 msec, 3 msec, and 19 msec, respectively.
Moreover, T1, T2, P1, and P2 have 5, 15, 80, 240 states
and 11, 78, 255, 2115 transitions, respectively. Overall, the
off-line computation of Alg. 1 took 65 msec, while a single
iteration in its on-line computation took less than 1 msec.

The remaining fuel of each vehicle at each time step is
displayed in Fig. 3(a). The green and red markers indicate
that the vehicle is active and inactive, respectively. In order
to measure the progress towards satisfaction, we define the
distance to satisfaction (dsat) at each t as the length of the
shortest path in A∞ from the current specification state to a
final state. The vertical lines in this figure indicate a single
satisfaction of φ(τ i), which we call a satisfaction loop.
The first 2 relaxed formulae satisfied by the vehicles are:
φ(τ 1) = [H2A][0,8−4] · [H3B ∧ [H2C][1,5−2]][0,7−4] · [H1D][0,3−2];
φ(τ 2) = [H2A][0,8−6] · [H3B ∧ [H2C][1,5+37]][0,7+35] · [H1D][0,3−2].

In Fig. 3(a), dsat decreases if there is at least one active
vehicle. While two vehicles are active, whenever one of them
becomes inactive, dsat increases abruptly. Also, if there are
no active vehicles, dsat becomes undefined, shown as gaps
in Fig. 3(a). If both vehicles return to the base and dsat 6= 0,
the satisfaction loop is not re-initiated. Instead, whenever a
vehicle becomes active, it continues to make progress for
the uncompleted loop. Hence, the results demonstrate that a
relaxed φ is eventually satisfied in a periodic fashion.

We also compare the proposed policy with a benchmark
policy (ΠB) where a relaxation is not allowed. In other
words, if φ can not be satisfied by the active vehicles, all
vehicles return to the base. While ΠB results in only the
satisfaction of φ, it causes a significant amount of time gaps
between the satisfactions as illustrated in Fig. 3(b). Note
that 10 satisfactions of φ require 550 time steps whereas 10
satisfactions of the relaxed formulae are achieved in 380 time
steps. The results indicate that allowing temporal relaxation
of a formula increases the number of satisfactions.
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(a) (b) (c)
Fig. 3. (a) Simulation results: 10 satisfactions of the relaxed formulas via the proposed policy, (b) Simulation results: 10 satisfactions of the original
formula via the benchmark policy, (c) Experimental results with two quadrotors.

B. Experimental Results
We present some preliminary results on a multi-quadrotor

testbed at the BU Robotics Laboratory. The flight space
is equipped with an indoor OptiTrack localization system,
which tracks reflective markers mounted on K500 quadrotors
from KMel Robotics. Each quadrotor is equipped with an
11.57 V 3-cell LiPo battery and custom charging gear, which
allows them to automatically recharge their batteries at a
charging station. The quadrotors hover and move via local
controllers, which were designed based on the differential
flatness property of the quadrotors’ dynamics [10].

We consider two quadrotors and a grid environment with
4 sites and 2 charging stations as in Fig. 4(a). A quadrotor
can move to any adjacent cell other than the brown cell
(representing an obstacle). A unique flight altitude and
charging station is assigned to each quadrotor to avoid
collisions. The objective is to satisfy φ = [H2A∧H2C][0,8] ·
[H3B ∧H3D][0,7] · [[H2A][2,6] ∨ [H2C][1,5]] repeatedly. The
remaining fuel, the distance to satisfaction, and the number
of active vehicles are shown in Fig. 3(c) . Fuel in this case is
interpreted as battery voltage level. In Fig. 3(c), there exists
some fluctuations in the remaining fuel due to the potential
measurement errors, but a decreasing trend is observed in
both the remaining fuel and the distance to satisfaction.

VII. CONCLUSION

We considered a persistent vehicle routing problem involv-
ing a team of vehicles that are required to achieve a task
repetitively while refueling when necessary. We expressed
the task as a TWTL formula over a set of locations. We
proposed a hybrid control policy that decouples the refueling
decision of each vehicle from the joint planning in the mis-
sion area. The proposed policy has two main benefits. First,
the trajectories are computed on-line, and they are updated
whenever a change occurs in the mission area. Second,

(a) Initial state (b) Servicing A and C (c) Servicing B and D

Fig. 4. 2 quadrotors in an environment with 4 sites and 2 charging stations.

if the TWTL formula is unsatisfiable, the trajectories for
the active vehicles are computed by minimally relaxing the
formula. To achieve this, we introduced a new notion called
“temporal relaxation”. We demonstrated the performance of
the proposed policy via simulations and experiments.
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