
Multi-robot routing and scheduling with temporal
logic and synchronization constraints

1st Alessio Mosca
University of Pavia

Pavia, Italy
alessio.mosca01@ateneopv.it

2nd Cristian-Ioan Vasile
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
cvasile@mit.edu

3rd Calin Belta
Boston University

Boston, MA 02215, USA
cbelta@bu.edu

4th Davide M. Raimondo
University of Pavia

Pavia, Italy
davide.raimondo@unipv.it

Abstract—We consider the problem of scheduling and planning
the motion of a fleet of robots involved in semiconductor manu-
facturing. The robots are tasked with transportation demands of
goods that must be fulfilled according to given time constraints
and synchronization rules. The demands and synchronization
rules are specified using Time Window Temporal Logic (TWTL).
Inspiring by model checking techniques, we develop a solution
able to guarantee to satisfy both demands and synchronization
rules. The proposed approach is tested through simulation on a
semiconductor production site of the European project “Power
Semiconductor and Electronics Manufacturing 4.0 - (SemI40)” .

Index Terms—Time Window Temporal Logic, Routing and
Scheduling, Synchronization, Manufacturing

I. INTRODUCTION

The manufacturing industry has become increasingly com-
petitive over the last decades. In order to survive in such
an environment, manufactures must satisfy customer demands
exactly in time, quality and quantity. Generally, the production
of goods is a complex task which requires several steps. In
a medium-complexity semiconductor fab, the process needs
250-500 steps and uses from 50 to 120 different machines
[1]. Furthermore, in order to maximize plant efficiency, several
goods are usually processed/transported at the same time. In
this challenging scenario, the optimal routing and scheduling
of goods are of major importance. While in the past the
dispatching was performed mainly by human operators, the
advance of technology is allowing to move towards fully
automated transportation (e.g. fleet of robots). In this case, the
routing and scheduling problem consists in finding the optimal
robot routes able to minimize transport time while fulfilling
constraints (i.e. deadlines, priorities, etc.).

Recently, there has been an increasing interest in using
approaches based on temporal logics in motion planning and
robot control applications [2, 3, 4]. Temporal logics provide
formal high-level languages to describe complex problems,
such as the routing and scheduling problems. When explicit
time constraints are involved, e.g. the pick up and delivery of
a product need to be completed within 10 minutes or before
time T=10 min, temporal logics with explicit time must be
adopted. Examples include Metric Temporal Logic (MTL)
[5], the Signal Temporal Logic (STL) [6] and Time Window
Temporal Logic (TWTL) [2].

In this work we use a temporal logic with explicit time
to solve routing and scheduling problems [7, 8] for the case
where some demands must be delivered in a synchronous way
by the robots. We capture the motions of the robots by using
weighted Transition Systems (TS)[9]. The transport demands
within the production site are expressed by using TWTL. This
choice is motivated by the TWTL capability to deal with
both time constraints and possible unsatisfiable tasks. In fact,
it may unfortunately occur that some demands can not be
satisfied due to possible strict time constraints. TWTL provides
temporal relaxation, which offers the possibility of finding the
minimally relaxed formulae (in terms of time constraints) that
the robots can satisfy. The TWTL formulae are translated to
finite state automata which are then composed with the TS in
order to obtain Product Automata (PA)[9]. On the resulting PA
the optimal routing and scheduling solution is found by using
the Dijkstra’s algorithm and selecting among the accepting
states of PA the one that can be reached in the shortest time,
thus minimizing time constraints relaxation.

This work is related to [4, 10], where the authors rely
on Mixed Integer Linear Programming to obtain the vehicle
trajectories satisfying the transport demands. In particular, the
demands are expressed by using MTL. However, the authors
do not consider neither the possibility to find a solution when
the demands can not be satisfied due to strict time constraints,
nor the capability to guarantee the synchronized delivery. The
problem of least-violating planning using linear programming
is considered in [11, 12] but their proposed approach does
not take into account the synchronization demands. In [2, 13]
TWTL is defined and then used for solving the persistent vehi-
cle routing problem but the authors do not take into account the
possibility to have the synchronization demands.The closest
related work is [14], where the problem of plan synthesis for
multi-agent systems in presence of synchronization demand
is solved by using Linear Temporal Logic (LTL). However,
this approach considers the assignment of the tasks among
the robots as prior knowledge and does not allow to deal with
explicit time constraints.

II. PRELIMINARIES

For a finite set Σ, we denote 2Σ and |Σ| the set of all
subsets, and the cardinality of Σ, respectively. A word σ is a
finite or infinite sequence of elements from Σ. Let |σ| indicate

the length of a word σ. The repetition of symbol σ d times
is denoted by σ{d}. A language is a set of words over the
alphabet Σ.

Definition 2.1 (Deterministic Transition System, DTS): A
(weighted) Deterministic Transition System is a tuple T =
(Q, q0,∆, AP , h, ω), where Q is the finite set of states; q0 ∈ Q
is the initial state; ∆ ⊆ Q×Q is the set of transitions; AP is
the set of observations (atomic propositions); h : Q→ 2AP is
the labeling function and; ω : ∆→ Z>0 is a map that assigns
a positive integer weight to each transition.

A transition (q, q′) ∈ ∆ of T is also denoted by q →T q′.
We define a trajectory of the system as a sequence of states
q = q0, q1, . . . such that qk →T qk+1 for all k ≥ 0. A
trajectory generates an output word o = o0 · o1 · o2 . . .,
where o0 = h(q0), ok = h(qk)

{ω((qk,qk))} if qk = qk−1, and
ok = ∅{ω((qk−1,qk))−1}h(qk) if qk 6= qk−1 for all k ≥ 1. The
sub-word ok corresponds to the observations generated along
the transition qk−1, qk of duration ω((qk−1, qk)). Note that, as
opposed to state trajectories, output words are defined at each
discrete time k ∈ Z≥0, where the weights of T are interpreted
as transition durations. Thus, we consider no observations (i.e.,
∅) along transitions. We also denote o by h(q). Let L(T) be
the set of all output words generated by T , i.e., its generated
language. Let q1, . . . ,qm be trajectories of T1, . . . , Tm with
the same alphabet AP , and o` = h`(q`) = o`,0, o`,1 . . . the
corresponding output words for all ` ∈ {1, . . . ,m}. The joint
output word generated by all trajectories is h(×m`=1q`) =
o0, o1, . . ., where ok = (

⋃m
`=1 o`,k) ∈ 2AP , and k ∈ {0, 1, . . .}

indicates the time instants at which observations occur.

Definition 2.2 (Time Window Temporal Logic): A Time Win-
dow Temporal Logic formula over a set of atomic propositions
AP is defined as follows

ϕ ::= Hds |Hd¬s |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 |ϕ1 · ϕ2 | [ϕ1]
[a,b]

,

where s ∈ AP ∪ {>} is either an atomic proposition or the
”true” constant >; ¬,∧,∨ are the negation, conjunction, and
disjunction Boolean operators, respectively; · is the concatena-
tion operator; [ϕ1]

[a,b] with 0 ≤ a ≤ b is the within operator,
and Hd with d ≥ 0 is the hold operator. When d = 0, we
drop H from the notation, e.g., s ≡ H0s. The satisfaction of an
TWTL formula ϕ is defined with respect to finite output words
o over 2AP . The hold operator Hds is satisfied if s ∈ AP is
repeated for d time units. Instead, the Hd¬s requires that for
d time units only symbols from AP \ {s} appear. The within
operator [ϕ]

[a,b] is satisfied if the formula ϕ becomes true
in the given time window [a, b]. The concatenation operator
ϕ1 ·ϕ2 requires that formula ϕ1 is first satisfied and then ϕ2 is
satisfied immediately after. The Boolean operators have their
usual semantics.

A complete description of the semantics of TWTL can be
found in [15].

The satisfaction of a TWTL formula can be decided in
bounded time. We denote the maximum time needed to satisfy

φ by ‖φ‖, which can be computed as follows:

‖φ‖ =

d if φ ∈ {Hds,Hd¬s}
max(‖φ1‖ , ‖φ2‖) if φ ∈ {φ1 ∧ φ2, φ1 ∨ φ2}
‖φ1‖ if φ = ¬φ1

‖φ1‖+ ‖φ2‖+ 1 if φ = φ1 · φ2

b if φ = [φ1]
[a,b]

(1)

Let φ =
[
M1 · [M2]

[c,d]
][a,b]

be a TWTL formula that
describes, for example, a possible transport demand from the
pickup point M1 to the delivery point M2. Note that every
time there is a concatenation between two formulas, the time
constraints of the second formula are relative to the time
when the first one was satisfied. In the previous example
one has “satisfy M2 between c and d time instants after the
satisfaction of M1”. The formula will be satisfied if and only
if all the sub-tasks (pickup and delivery) are fulfilled within
the time window expressed by the external within operator,
i.e. [a,b]. What if φ can not be fulfilled in the given time
window? In order to cope with this possible problem, in [15]
the authors propose temporal relaxation of TWTL formulae.
The temporal relaxation introduces the possibility to relax
the deadlines for the time windows, which are expressed
by the within operator. Thus, the relaxed version of φ is

φ(τ) =
[
M1 · [M2]

[c,d+τ2]
][a,b+τ1]

, where τ = (τ1, τ2) ∈ Z2.
Furthermore, the φ(τ) has to preserve the feasibility of φ,
i.e. every time window of a within operator has to be greater
or equal than the time needed to satisfy the task enclosed
by the within operator. Note that, in the following we allow
only the relaxation of the deadlines (upper bound) because
the relaxation of the lower bound of a within operator would
correspond to anticipating the pickup time of an order. Unfor-
tunately, this is not possible in general since the order may
not be already available.

Definition 2.3 (τ -relaxation of φ): Given a TWTL formula
φ with m within operators, the feasible τ -relaxation of φ
is defined as φ(τ), where τ ∈ Zm and each subformula
of the form [φi]

[ai,bi] is replaced with [φi]
[ai,bi+τi] for all

i ∈ {1, . . . ,m}.
Definition 2.4 (Linear Temporal Relaxation): Given φ, let

φ(τ) be the feasible relaxation of φ. The linear temporal
relaxation of φ is |τ |LTR =

∑m
i=1 τi.

Definition 2.5 (Deterministic Finite State Automaton): A
Deterministic Finite State Automaton (DFA) is a tuple A =
(SA, s0, δA, 2

AP , FA), where SA is a finite set of states;
s0 ∈ SA is the initial state; δA : SA × 2AP → SA is the
transition function; 2AP is the input alphabet; and FA ⊆ SA
is the set of (final) accepting states.

We denote a transition from s to s′ = δA(s, σ) with
input symbol σ as s

σ→A s′. A finite sequence of sym-
bols σ = σ0, σ1, . . . , σn generates a trajectory of the DFA
s = s0, s1, . . . , sn such that s0 ∈ SA is the initial state of
A, and sk

σ→A sk+1 denotes the transition from time k to
k + 1. The word σ is accepted by the DFA if and only if the

corresponding trajectory ends in the final automaton state, i.e.,
σn+1 ∈ FA. The accepted language of the DFA A is defined
as L(A).

Formulae expressed in TWTL can be captured by DFAs as
shown in [15]. Methods to compute DFAs accepting possible
deadline relaxations, and to perform synthesis and verification
using a bottleneck temporal relaxation cost have been proposed
in [15]. Here, we employ the automata construction methods,
but consider a linear temporal relaxation cost instead.

III. PROBLEM FORMULATION

In this section we define the environment, the robot model,
and the transport demands that characterize, for example, the
dispatching problem in a semiconductor manufacturing fab.

A. Environment Model

Let G = (Q,∆, ω) denote a weighted directed connected
graph, where Q represents the set of locations of interest
(machines location, charging stations, interconnection nodes)
labeled with observations from AP as given by map h : Q→
2AP . The edges ∆ ⊆ Q×Q capture feasible motions between
locations with nominal travel times given by ω = ∆→ Z≥1.
Travel times are expressed in terms of a global discrete clock
with time step ∆t.

B. Robot Model

Consider a team of m robots moving in an environment G.
The motion model of each robot v ∈ {1, . . . ,m} is captured
by a TS Tv = (Q, qv,0,∆, AP , h, ω), where qv,0 ∈ Q is the
initial state of the v-th robot, and ω is its deterministic travel
time function such that ω = ∆→ Z≥1.

We assume that all robots can communicate with all other
robots. Furthermore, each robot is able to detect its position
when it reaches a node of interest q ∈ Q. In the following,
we assume that each robot can transport (fulfill) at most one
transport demand at a time, i.e., robots have single capacity.

C. Specification: Transportation Demands and Synchroniza-
tion Rules

Let D = {D1,D2, . . . ,Dn} be the set of the n transport
demands that must be satisfied. The i-th demand is defined as
the tuple Di = (φi, π

start
i), where φi is a TWTL formula, and

πstarti ∈ AP indicates the start proposition of the formula φi,
i.e., the pick-up location. For brevity, we assume that trans-
portation demand formulae include the pick-up specification,
i.e., are of the form φi = [πstarti ∧ φ′i]

[0,‖φ′i‖], where φ′i is a
TWTL formula.

Since some elements of D may require to be fulfilled
(i.e. demands delivered) at the same time, we define a set
R = {R1,R2, . . .} of synchronization rules. The j-th rule
is defined as tuple Rj = (ψj , Ij), where ψj is the TWTL
formula of the task to be performed in a synchronous way, and
Ij ⊆ {1, . . . , n} indicates which elements of D are involved
in ψj . Let ψ̂j =

(∧
`∈Ij [πstart`]

[0,‖φ`‖]
)
·ψj with the meaning

that the synchronization task ψj of rule Rj must be satisfied
after the start of all associated transportation demands in Ij .

The overall specification, in which all transport demands
and synchronization rules are considered, is expressed as

ϕ = Φ ∧Ψ, (2)

where Φ =
∧|D|
i=1 φi, and Ψ =

∧|R|
j=1 ψ̂j .

D. Problem Definition

Given a set of demands to be satisfied and a list of syn-
chronization rules, our goal is to find the optimal assignment
of demands and the corresponding optimal paths for the
different robots. Optimality is with respect to the total deadline
deviations over all demands and rules.

Problem 3.1: Given ϕ, i.e. the specification of transportation
demands and synchronization rules as in (2), an environment
G, m robots modelled as T1, . . . , Tm, find trajectories Traj =
{q1, . . . ,qm} such that ϕ is satisfied with minimum temporal
relaxation

min
Traj

|τ |LTR
subject to ∀Di ∈ D, ∃qri ∈ Traj : h(qri) |= φi(τφi)

∀Rj ∈ R : h(×`∈Ijqr`) |= ψ̂j(τψj),

where τ = [τφ1
, . . . , τφ|D| , τψ1

, . . . , τψ|R|] is the vector of
all deadline relaxation variables for transportation demands
and synchronization rules.

IV. SOLUTION

In this section, we present the solution of Problem 3.1
First, for each robot v we create the deterministic motion
transition system Tv . In particular, we define this latter so
to have all edges with weight one. This is achieved by
replacing original transitions e ∈ ∆ with ω(e) transitions.
Second, the transportation demands and synchronization rules
are translated to DFAs. The i-th automaton obtained from φi
is denoted by Aφi , while Aψ̂j refers to the j-th automaton of

Ψ obtained from ψ̂j =
(∧

`∈Ij [πstart`]
[0,‖φ`‖]

)
·ψj . Next, we

construct a product automaton P as defined in Definition 4.1
that captures the motion of the m robots and the satisfaction
of the specification ϕ from (2). On the resulting product
automaton, the solution in terms of optimal assignments and
shortest paths is then found using Dijkstra’s algorithm.

Definition 4.1 (Product Automaton): Given the product tran-
sition system T m =

�m
v=1 Tv = (Qm, qm0 ,∆

m, 2AP , hm),
the automata Aφi = (SAφi , s0,i, δAφi , 2

AP , FAφi),
for all i = 1, . . . , |D|, and the automata
Aψ̂j = (SA

ψ̂j
, ŝ0,j , δA

ψ̂j
, 2AP , FA

ψ̂j
), for all

j = 1, · · · , |R|, the product automaton (PA) is a tuple
P = (SP , s0,P ,∆P , FP , ωP), where

• SP = Qm ×
(
SAφi × {0, · · · ,m}

)|D|
i=1
×
(
SA

ψ̂j

)|R|
j=1

is

the finite set of states;
• s0,P =

(
x−1, (s0,i, 0)

|D|
i=1 , (ŝ0,j)

|R|
j=1

)
is the initial state;

• ∆P ⊆ SP × SP is a transition relation. Let
ri be the robot assigned to i-th demand. Then(
x, (si, ri)

|D|
i=1 , (ŝj)

|R|
j=1

)
→P

(
x′, (s′i, r

′
i)
|D|
i=1 ,

(
ŝ′j
)|R|
j=1

)
∈

∆P iff:

– x = (q1, . . . , qm), x′ = (q′1, . . . , q
′
m), qv →Tv q′v ∈

∆, ∀v ∈ {1, . . . ,m};
– (ri = 0 ∧ si = s0,i ∧ si

σi→ s′i ∧ σi = h(q′v) =
πstarti ∧ r′i = v) ∨
(ri = v ∧ si

σi→ s′i ∧ σi = h(q′v) ∧ r′i = v),
∀i ∈ {1, . . . , |D|};

– ŝj
σ̂j→ ŝ′j ∧ σ̂j = {h(q′ri) | i ∈ Ij ∧ ri > 0},

∀j ∈ {1, · · · , |R|};
• ωP(sP , s

′
P) = |D| −

∑|D|
i=1 |{s′i} ∩ Fφi |+ c(x, x′) is the

weight function, where
∑|D|
i=1 |{s′i} ∩ Fφi | is the number

of fulfilled demands in s′, and c(x, x′) is a cost used
to penalize the number of robots changing positions in
the transition from x to x′ so to avoid unnecessary
movements;

• FP = Qm × (Fφi × {1, . . . ,m})
|D|
i=1 ×

(
Fψ̂j

)|R|
j=1

is the

set of accepting states.
For simplicity, we introduce the initial state x−1 =
(q1,−1, . . . , qm,−1) ∈ Qm such that, for all v ∈ {1, . . . ,m},
the only transition available from qv,−1 is qv,−1 →Tv qv,0.

Similar to TS, a trajectory of P is a sequence p = p0, p1, . . .
such that p0 = s0,P and (pk, pk+1) ∈ ∆P for all k ≥ 0. Any
satisfying (accepted) trajectory of P ends in a state of FP . The
solution of Problem 3.1 is obtained by computing an optimal
satisfying trajectory p∗ using the Dijkstra’s algorithm and
selecting among the accepting states of PA the one that can be
reached in the shortest time, thus minimizing time constraints
relaxation. By construction, p∗ encodes valid movements
of robots in the environment G, i.e., transitions in ∆, and
satisfies all transportation demands and synchronization rules.
The trajectories that robots have to follow are obtained by
projecting p∗ onto each Tv , v ∈ {1, . . . ,m}, as given by
Definition 4.2.

Definition 4.2: (Projection of a trajectory of P onto Tv).
Let p = p0, p1, . . . be a trajectory of P , where pk =(
xk, (si,k, ri,k)

|D|
i=1 , (ŝj,k)

|R|
j=1

)
and xk = (q1,k, . . . , qm,k).

The projection of p onto Tv is the trajectory qv =
qv,0, qv,1, . . . for all v ∈ {1, . . . ,m}.

Algorithm 1 summarizes the solution to Problem 1.

Algorithm 1: Solution
Input : G - the environment
Input : D - the set of demand to be satisfied
Input : R - the set of synchronization rules
Output: The optimal run qv for each robot v ∈ {1, . . . ,m}

1 Construct the TSs {T1, . . . , Tm} for all robots
2 Construct the FSAs {Aφ1 , · · · ,Aφ|D|} corresponding to D
3 Construct the FSAs {Aψ1 , · · · ,Aψ|R|} corresponding to R
4 Construct the product automaton P as defined in Definition 4.1
5 Find the shortest trajectories from the initial condition s0,P to

the accepting states FP of PA using Dijkstra’s algorithm and
select the optimal one p∗ in terms of time relaxations

6 Project the optimal trajectory p∗ onto T1, . . . , Tm as defined in
Definition 4.2

Remark. The collision avoidance can be achieved by remov-

ing unwanted states and transitions of P (Definition 4.1).
For simplicity, we do not consider collision avoidance in this
paper, and leave it for future work.

A. Complexity

In Algorithm 1 the computational complexity for construct-
ing the vehicle transition system T is O (

∑
e ω(e)), where ω

is the travel times. The size of the transition system T m that
models m identical vehicles is O (|Q|m). The time complexity
for translating a formula φ into FSA is O(2|φ|), where |φ| is
the length of the formula [15]. Finally, the time complexity of
P is O

(
|Q|m ·m · |D| ·

∣∣SAφ ∣∣ · |R| · ∣∣SAψ ∣∣), while the time
complexity of Dijkstras algorithm is O(|SP | log |SP |).

V. SIMULATIONS AND RESULTS

The algorithms presented in this work are implemented in
Python2.7 using the PyTWTL package [15]. All simulations
were performed on a MacBook Pro with i5 @2.09 GHz 64bit
CPU, 8 GB of RAM, and MacOS Mojave.

In this section, we present simulation results in a semi-
conductor production site of SemI40 project, which is the
sponsor of this work. The end products of the semicon-
ductor manufacturing process are integrated circuits. Chips
are composed of several layers of chemical patterns that are
imprinted on silicon wafers by machines. To obtain a layer,
it is necessary that the wafer undertakes several steps, e.g.,
deposition, photolithography, and etching, performed by the
machines. Since the cost of the machines is prohibitive, the
wafers must revisit the machines multiple times to obtain the
end products. Moreover, some steps must be performed at the
same time on a machine (e.g. the diffusion furnaces [16]). We
employ a fleet of robots to perform transportation demands
between machines, and satisfy the synchronization rules of
the fabrication process. The objective of these latter is to
avoid time losses thus maximizing efficiency in the fabrication
process. The challenge in the semiconductor fab is to find
the optimal routing and scheduling for meeting the transport
demands and the synchronization rules. Robots are responsible
for the demand transportation among the various machines
present in the fab.

11

11

1 1 1 1

111

1

1

1

1 1

1 1

1 1

1

11 1 1

11111 1

M1 M2 M3

M4 M5 M6

TOUTI1 I2 I3TIN

1

1

1

1

1

11

1

Fig. 1: The environment transition system Tv

TABLE I: Transport Demands (D) and Synchronization Rules
(R)

D R

φ1 =
[
TIN · [M5]

[0,4]
][0,6]

, πstart1 = TIN ψ1 = [M5]
[0,6], I1 = {1, 3}

φ2 =
[
M6 · [TOUT][0,5]

][0,7]
, πstart2 =M6 ψ2 = [TOUT ∧M3]

[0,7], I2 = {2, 5}

φ3 =
[
M4 · [M5]

[0,4]
][0,6]

, πstart3 =M4

φ4 =
[
M2 · [M4]

[0,2]
][0,4]

, πstart4 =M2

φ5 =
[
M5 · [M3]

[0,5]
][0,7]

, πstart5 =M5

TABLE II: Optimal Nominal Solution p∗

T 2 φ1 φ2 φ3 φ4 φ5 ψ̂1 ψ̂2

q1 q2 Aφ1
ri Aφ2

ri Aφ3
ri Aφ4

ri Aφ5
ri A

ψ̂1
A
ψ̂2

M1 TOUT s0 0 s0 0 s0 0 s0 0 s0 0 s0 s0
M1 I3 s0 0 s0 0 s0 0 s0 0 s0 0 s0 s0
M2 I2 s0 0 s0 0 s0 0 s1 1 s0 0 s0 s0
I2 I1 s0 0 s0 0 s0 0 s1 1 s0 0 s0 s0
I2 TIN s1 2 s0 0 s0 0 s1 1 s0 0 s0 s0
M4 I1 s1 2 s0 0 s0 0 sF 1 s0 0 s0 s0
M4 I2 s1 2 s0 0 s1 1 sF 1 s0 0 s0 s0
M5 M5 sF 2 s0 0 sF 1 sF 1 s0 0 sF s0
M5 M5 sF 2 s0 0 sF 1 sF 1 s1 1 sF s0
I2 M6 sF 2 s1 2 sF 1 sF 1 s1 1 sF s0
I3 I3 sF 2 s1 2 sF 1 sF 1 s1 1 sF s0
M3 TOUT sF 2 sF 2 sF 1 sF 1 sF 1 sF sF

Consider a production site composed of 6 machines
M1, . . . ,M6, 1 Transfer Point In TIN , and 1 Transfer Point
Out TOUT . Demands processed in the fab sector appear at TIN
and are released at TOUT , respectively. Each demand must
follow its specific recipe based on following information avail-
able at its arrival: (a) pickup position, (b) delivery position, (c)
wafer transportation time window within, and (d) any synchro-
nization requirements with other demands. We abstract the fab
sector environment into a weighted graph, where the nodes
represent points of interest (machines and transfer points),
edges indicate the possibility of motion between nodes, and the
weights represent travel times associated with the edges. The
motion model of each robot is abstracted as a transition system
obtained from the environment graph by splitting each edge
into a number of transitions equal to the corresponding edges
nominal travel time, see Figure 1. The set of propositions (AP)
is AP = {M1,M2,M3,M4,M5,M6, TIN , TOUT }.

We consider 2 robots that must fulfill 5 transportation de-
mands subject to 2 synchronization rules shown in Table I. All
transportation demands and synchronization rules are captured
by TWTL formulae, and translated to FSAs.

The optimal trajectory p∗ of P satisfying the transportation
demands and synchronization rules is computed using Algo-
rithm 1 and shown in Table II.

The minimal temporal relaxation vector associated with p∗

is τ =
(
τφ1

, . . . , τφ5
, τ ψ̂1

, τ ψ̂2

)
= (1, 4, 1, 1, 4, 1, 4) and

the minimum linear temporal relaxation is |τ |LTR = 16.
Table II shows that the transportation demands φ4, φ3 and φ5

are satisfied by the robot 1, while φ1 and φ2 are satisfied by
the robot 2. Table III shows the runtime performance.

TABLE III: Quantitative information on scalability

Number of states Number of transitions Computational time

T 11 39 8 ms
T 2 121 1521 16 ms
Aφi 3 4 11 ms
Aψj 2 2 16 ms
P 23185 295802 58.4 s

VI. CONCLUSION

We have studied the problem of planning and scheduling
for a fleet of robots operating in a manufacturing systems,
where some demands require to be satisfied at the same time.
Inspiring by model checking techniques, we have proposed a
solution where both demands and synchronization rules are
satisfied. Future work will be devoted to develop an approach
able to guarantee the satisfaction of the synchronization rules
for a fleet of robots with motion uncertainty.

REFERENCES
[1] F. Thiesse and E. Fleisch, “On the value of location information to lot

scheduling in complex manufacturing processes,” International Journal
of Production Economics, vol. 112, no. 2, pp. 532–547, 2008.

[2] C. I. Vasile and C. Belta, “An automata-theoretic approach to the vehicle
routing problem.” in Robotics: Science and Systems, 2014.

[3] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality
and robustness in multi-robot path planning with temporal logic con-
straints,” The International Journal of Robotics Research, vol. 32, no. 8,
pp. 889–911, 2013.

[4] S. Karaman and E. Frazzoli, “Vehicle routing problem with metric tem-
poral logic specifications,” in 2008 47th IEEE Conference on Decision
and Control. IEEE, 2008, pp. 3953–3958.

[5] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-time systems, vol. 2, no. 4, pp. 255–299, 1990.

[6] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[7] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith, “Dynamic
vehicle routing for robotic systems,” Procs. of the IEEE, vol. 99, no. 9,
pp. 1482–1504, 2011.

[8] P. Toth and D. Vigo, The Vehicle Routing Problem. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2001.

[9] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[10] S. Karaman and E. Frazzoli, “Linear temporal logic vehicle routing with
applications to multi-uav mission planning,” International Journal of
Robust and Nonlinear Control, vol. 21, no. 12, pp. 1372–1395, 2011.

[11] J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-
violating control strategy synthesis with safety rules,” in International
Conference on Hybrid systems: computation and control. ACM, 2013,
pp. 1–10.

[12] J. Tumova, S. Karaman, C. Belta, and D. Rus, “Least-violating planning
in road networks from temporal logic specifications,” in Procs. of the
7th International Conference on Cyber-Physical Systems. IEEE, 2016,
p. 17.

[13] D. Aksaray, C.-I. Vasile, and C. Belta, “Dynamic routing of energy-
aware vehicles with Temporal Logic Constraints,” in IEEE International
Conference on Robotics and Automation (ICRA), 2016, pp. 3141–3146.

[14] J. Tumova and D. V. Dimarogonas, “Multi-agent planning under local
ltl specifications and event-based synchronization,” Automatica, vol. 70,
pp. 239–248, 2016.

[15] C.-I. Vasile, D. Aksaray, and C. Belta, “Time window temporal logic,”
Theoretical Computer Science, vol. 691, pp. 27–54, 2017.

[16] L. Mönch, J. W. Fowler, S. Dauzère-Pérès, S. J. Mason, and O. Rose,
“A survey of problems, solution techniques, and future challenges
in scheduling semiconductor manufacturing operations,” Journal of
scheduling, vol. 14, no. 6, 2011.

	Introduction
	Preliminaries
	Problem Formulation
	Environment Model
	Robot Model
	Specification: Transportation Demands and Synchronization Rules
	Problem Definition

	Solution
	Complexity

	Simulations and Results
	Conclusion

