
When to Terminate: Path Non-existence Verification Improves
Sampling-based Motion Planning

Jesper Karlsson1, Anastasiia Varava1, Cristian-Ioan Vasile2,
Sertac Karaman3, Danica Kragic1, Daniela Rus3 and Jana Tumova1

Abstract— In this work, we combine a sampling based motion
planner with path non-existence verification. We show that,
using our approach, it is possible to: 1) provide termination
criteria to sampling-based motion planners, based on the
problem specific constraints; 2) generate a method for rejection
sampling that can adapt to the scenario, for instance, lever-
aging the relative priority between constraints. Furthermore,
we describe a language-guided sampling technique based on
IRRT?, that utilizes the results from the path non-existence
verification procedure to reduce runtime of the underlying
motion planner. The approach is studied using route and
motion planning for an autonomous vehicle that aims to service
transportation tasks while constrained by rules of the road. We
evaluate the proposed approach using a set of real-life inspired
traffic scenarios. Finally, we show that the resulting runtime
of a motion planner with path non-existence verification is
significantly shortened when compared to the same motion
planner with traditional termination criteria, such as a resource
or time limit.

I. INTRODUCTION

Motion planning for safety critical application re-
quires predictable and stable runtime performance. Al-
though sampling-based planners are very popular [1], they
lack formal termination criteria and infeasibility guarantees.
Termination criteria can improve (a) the safety and explain-
ability of planning by showing when and why sampling
should stop, and (b) the efficiency by avoiding unnecessary
computation. Moreover, methods for termination decisions
must take into account rich problem specific contexts. In this
work, we show how to use path non-existence verification
to improve sampling-based motion planning under temporal
logic rules.

For path finding in continuous spaces, asymptotically com-
plete motion planners are a popular tool, as the computational
complexity of complete motion planners make practical
implementations infeasible. Sampling-based motion planners
such as probabilistic roadmaps (PRM) and rapidly exploring
random tree star (RRT?) [2] are probabilistically complete.
Extensions to RRT?, achieving real-time performance have
been proposed by for instance, Arslan et al. and Otte et al.
in RRT# [3] and RRTX [4], respectively. There has been

1Jesper Karlsson, Anastasiia Varava, Danica Kragic and Jana Tumova are
with the division of Robotics, Perception and Learning at KTH Royal Insti-
tute of Technology, Stockholm, Sweden. They are also affiliated with Digital
Futures. {jeskarl, varava, dani, tumova}@kth.se

2Cristian-Ioan Vasile is with Lehigh University, Bethlehem, PA, USA
crv519@lehigh.edu

3Sertac Karaman, and Daniela Rus are with the Massachusetts In-
stitute of Technology, Cambridge, MA, USA sertac@mit.edu,
rus@csail.mit.edu

work on exploring the theoretical properties of sampling-
based motion planners [5]. However, termination criteria are
generally given in terms of a time limit or a set number of
samples drawn. This can be detrimental to the performance
of the motion planner. For instance, when no solution exists
in the current configuration, the planner will continue to
search for a solution until the time limit is reached. Vice
versa, if a path is not found within the given time limit, no
conclusions can be drawn regarding the existence or non-
existence of a path. Attempts has been made to alleviate
this problem, and in [6] the authors attempt to provide a
confidence value for the finite-time solution, i.e. a probability
on the existence of a solution in a certain environment.

In contrast to our previous work proposing asymptotically
optimal route and motion planning for autonomous driving
with road rules [7], we strive here to direct the search
for plans in order to outperform the original algorithm in
terms of convergence rate and solution cost. This can be
seen in relation to works such as [8], where the authors
use reachability analysis for the computation of reachable
sets that provide the planner with information regarding
the drivable area. However, the computation of reachable
sets for more complex dynamics (i.e. non-linear) is difficult.
Similarly, works such as [9][10] are inherently unsuitable for
providing termination criteria for sampling-based approaches
as they require an evaluation of trajectories, rather than
regions of the workspace. Furthermore, these approaches
do not support Linear Temporal Logic (LTL) constraints.
Therefore, we propose the use of the path non-existence
verification approach described in [11], as it does not require
the user to provide the dynamics model.

Several works attempt to integrate path non-existence veri-
fication in sampling-based motion planners. For instance, the
authors in [12] present a path non-existence verification
algorithm based on adaptive cell decomposition of the con-
figuration space. A similar approach was implemented in
[13], where the author construct parts of the collision space
using alpha shapes. The main limitation of these approaches
is their computational complexity, as even a two-dimensional
object in a planar setting presents a computational chal-
lenge. These methods have not been generalized to higher
dimensions. A more efficient path non-existence algorithm
that can be generalized to higher dimensions was proposed
in [11]. This algorithm constructs an approximation of the
configuration space of an object in order to analyze its
connectivity, and provide provably correct path non-existence
verification. Tajvar et al. [14], employed this method in

combination with abstraction refinement in order to provide
motion planning for systems with non-holonomic dynamics
and non-trivial geometry.

In this work, we propose to combine a sampling-based
motion planner [7] with a method for provable path non-
existence verification [11]. Our approach utilizes a sampling
procedure based on the Informed RRT? [15] (IRRT?), which
focuses the drawn samples to regions of interest specified by
the path non-existence verification method.

To evaluate the approach, we consider the problem where a
vehicle operates in a road network aiming to complete A-to-
B transportation tasks, while obeying a set of road rules. The
road rules are encoded in the syntactically co-safe fragment
of linear temporal logic (scLTL), which is rich enough to
express a variety of complex constraints. The road-rules that
we model are: 1) to avoid the left lane and bus lanes; 2)
to maintain the speed limit; 3) to avoid construction zones
and parked vehicles. As it might not be possible to strictly
enforce all road rules throughout the vehicles’ trip, the route
and motion planner in this work is least-violating. As such,
potential solutions can violate road rules in order to complete
the transportation task. However, the planner aims to find the
solution that minimizes said violation with regards to the
duration spent violating a road rule as well as the priority
(importance) of that road rule.

The contributions can be summarized as follows: 1) We in-
troduce a termination criterion for a least-violating sampling-
based motion planner based on path non-existence verifi-
cation; 2) We design a road rule relaxation and re-routing
procedure triggered by a proof of path non-existence for a
particular road segment; 3) We guide sampling in the motion
planner according to the degree of road rules satisfaction; 4)
We propose a variant of the IRRT? algorithm, that takes into
account the active road rules in a scene. We show that these
enhancements, can significantly reduce the computational
runtime and improve the overall solution quality.

II. PRELIMINARIES AND NOTATION

Let R and N denote the set of real and natural numbers, re-
spectively. Given a set S , let 2S denote the set of all subsets
of S. A word w = w1w2w3 . . . wk is a sequence of elements
from S.

A syntactically co-safe Linear Temporal Logic (scLTL)
formula is defined over an alphabet Π as follows:
ϕ ::= π | ¬π | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | ϕUϕ,
where π ∈ Π are atomic propositions, ¬, ∧ and ∨ are
Boolean operators, and U (Until), X (neXt), F (eventually, in
the Future) are temporal operators [16]. scLTL formulae are
interpreted over infinite words over 2Π, but can be captured
using deterministic finite-state automata (DFA), because their
satisfaction can be decided in finite time. There are readily
available tools for translation of scLTL to DFA, such as:
ltl2ba [17], ltl3ba [18] and spot [19].

Least-Violating RRT? (LV-RRT?) is an algorithm devel-
oped in [7] that aims to return a motion plan minimizing
the level of violation – the (weighted) cumulative time spent
satisfying the assumptions, but not the guarantees – of a

set of (weighted) scLTL formulas in a reactive form (θaj
Re⇒

θgj) U goal, where θaj is a boolean assumption formula, θgj is

an scLTL guarantee formula, Re⇒ is a (reactive) implication,
and goal ∈ Π is an atomic proposition indicated completion
of the specification.

LV-RRT? starts by translating each scLTL formula into a
DFA and enhances it with self-loops and a weight function,
so that the resulting weighted DFA captures the level of
violation of all words w.r.t. the scLTL formula. Next, LV-
RRT? proceeds similarly as RRT?, however, starting from
the initial state, it randomly samples the workspace, connects
new samples to the best parent in the tree, and rewires the
tree. In addition, LV-RRT? keeps track of the current state
of weighted DFAs and the rewiring is based on the weights
of the DFAs, in order to ensure asymptotic optimality of the
level of violation of the found motion plan.

III. PROBLEM STATEMENT

In this work, we follow the problem setup we developed
in [7]. In particular, we consider an autonomous vehicle oper-
ating in a traffic network, servicing transportation requests,
while constrained by rules of the road. In this work, we
only consider the static obstacles. The road network is rep-
resented as a hierarchical model consisting of a road network
graph, the road segment the AV currently traverses, as well
as its dynamics (see Fig. 1). The model allows for route
planning in the network graph to satisfy the transportation
task, while at the same time support lower level motion
planning in the road segment to obey by the rules of the
road. The hierarchical model is described in detail in [7]
and here, we pinpoint the parts relevant to this work.

1) Vehicle model: We define a vehicle ν as a tuple ν =
(X,U,R, f, x0, h, Sense,L,Π), where X ⊂ Rm, U ⊂ Rn
and R ⊂ R2 are the state, control and workspaces. R
corresponds to the road network, which consists of road lanes
and intersections. The vehicle’s dynamics are as follows:

ẋ = f(x, u), x(0) = x0, (1)
y = h(x) (2)

where x0 is the initial state at time t = 0, f : X × U → X
and h : X → R2 are the continuous dynamics and the
observation function. Let Sense : R2 → 2R be the vehicle’s
sensing region, which defines the region where road signs
and markings can be seen by the vehicle. Let Π denote the set
of road signs and markings that annotate the road network.
Furthermore, let L : X → 2Π denote the road labeling map
that assigns labels from Π to the vehicle states in the sensing
area Sense(y). These labels are used to specify where certain
road rules hold. This means that L(t) defines the bounds
of each road rule in a road segment, e.g. where a specific
speed limit holds. In this work we assume that we have
access to perfect sensors, so that the labelled regions are
fully deterministic. We define the duration output word o =
(σ1, d1)(σ2, d2) . . . (σk, dk), corresponding to a trajectory
x, such that L(x[ti, ti+1]) = σi and σi 6= σi+1 ∀i ≥ 0,
where ti+1 = ti + di and t1 = 0.

2) Road segment model: The road network consists of
a set of road segments Rs ⊆ R. Each road segment Rs

contains a road lane segment r as well as an outgoing
intersection ro together with an ingoing intersection ri. Let
span(r) denote the bounds of region where the road lane seg-
ment, or intersection, is defined. We further define span(r)w
as the width of the road lane segment, and span(r)l as its
length.

3) Task: The vehicle task is defined as follows:

Θ U gdrop−off ≡ (θaj
Re⇒ θgj) U gdrop−off , (3)

where θaj ∈ Θa, θgj ∈ Θg and Re⇒ are boolean assumption
formulas, and a reactive implication, respectively. Θ is the
set of road rules that are considered and gdrop−off ∈ R
is the goal location of the vehicle. A traffic rule θj is
considered active if the assumption formula θaj is satisfied.
Intuitively, the reactive implication can be understood as
adding restrictions on the AV based on what road signs or
markings are seen in the sensing region. We say that a road
rule is critical if it needs to be strictly enforced throughout
the run in order to ensure safety. Such a road rule is specified
as θcj ⊆ Θ. Furthermore, each road rule, θj ∈ Θ, has a
corresponding priority, pj ∈ N∞, which signifies the relative
importance of satisfying the road rule. The priority of critical
rules is ∞. Each road rule is translated into DFA, annotated
with transition weights corresponding to the priority, in order
to capture the violation cost.

4) Trajectory cost: The cost of the trajectory considers the
duration of a task is weighed against the accumulated cost of
violating road rules throughout the run. In other words, given
a duration output word, o = (σ1, d1)(σ2, d2) . . . (σk, dk), as-
sociated to a trajectory x of vehicle ν, we define the level
of violation as:

P (x) =
∑
θj∈Θ

pj ∑
k∈{k|σk|=θaj ∧¬θ

g
j }

dk

 . (4)

Finally, the total cost of a trajectory x is specified as

J(x) =

|o|∑
k=1

dk + βP (x), (5)

where β is a constant relaying the relative importance of
safety versus the duration of a task.

The motion planning problem that we address throughout
this work is closely related to the problem defined in previous
work [7], in which the goal is to find the optimal trajectory
x? with respect to J(x) (Eq. 4). The goal of this work is
to present an approach that can provide termination criteria
for sampling-based motion planners by utilizing path non-
existence verification. Furthermore, we construct a method
for rejection sampling based on the information provided by
the path non-existence verification.

IV. PROBLEM SOLUTION

In this section we give an overview of path non-
existence verification problem. We then present how path

non-existence informs route and motion planning and fi-
nally, we discuss completeness and complexity of the overall
algorithm.

A. Algorithm overview

The approach is illustrated in Fig. 1 and outlined in
Alg. 1. First, an initial route through the road network is
computed (line 1) [7], [20]. As long as the goal destination
is not reached, the algorithm follows the planned route, and
repeatedly plans the motion in the next road segment (line 2).
In each iteration, we check whether a path exists given the
current road segment Rs and information from Sense(y)
by running the path non-existence verification algorithm
from [11] (line 3). Path non-existence is performed by
checking the existence of a path for every set of road
rules in 2Θ. The algorithm returns θ?, which is interpreted
as the maximal road rule combination that can be strictly
enforced throughout the road segment, and P̃ which is
the estimated cost of violating θ? (see Sec. IV-C). The
road segment is blocked if there does not exist a path in
the free space obeying by all critical rules θcj . The road
segment is considered sub-optimal if the estimated cost P̃
of traversing the road segment would trigger higher overall
cost then when following an alternative route through the
road network. Both blocked and sub-optimal road segment
triggers rerouting (see Sec. IV-C.1). In the motion planning
algorithm (least-violating road-rule-informed RRT?, or LV-
RR-IRRT?), we bias sampling so as to strictly enforce the
road rule combination θ? (line 12) (see Sec. IV-C.2).

Algorithm 1: Least-violating route and motion planner
with path non-existence queries

input: V - vehicle; R - Road network; Θ - road rules;
1 Routing(V,R,Θ);
2 while goal destination not reached do
3 (θ?, P̃)← pathExist(Rs);
4 if Blocked or Sub− optimal then
5 R← R \Rs;
6 Re-Routing(s,R);
7 if ¬route then
8 return Failure
9 end

10 LV -RR-IRRT ?(V,R,Θ);
11 else
12 LV -RR-IRRT ?(V,Rs, θ

?);
13 end
14 return Success

B. Path non-existence

The problem of verifying path non-existence can be con-
sidered as dual to path planning. It deals with the question
whether or not an object (e.g. robot or vehicle) can move
between a start and a goal configuration. In this case, we
consider the path non-existence problem, formulated in
[11], of computing the connected components of the free
space for 2D and 3D workspaces. Although the algorithm
is general and can handle objects with no rotational sym-
metries, in this paper it is sufficient to use its simplified

Application:
- Motion Task, g

drop-off
- Safety Specification, Θ Work space abstraction:

Network Graph

Routing [7,20]

Path non-
existence
verification [12]

{rij,rkl,...,rmn}

Path
Valid?

No

Yes
Θ*

gdrop-off

reached?
Yes

Return{rkl,...,rmn}

2Θ

ε

rij

wi

Vehicle model
(see Sec. III.)

No

w1 w2

w3

w6w5

w4

,r12 ,r23

,r36

,r65,r54

,r41

Motion Planning [7]

w7,r25

Fig. 1: Illustration of the algorithm proposed in Alg. 1. The blue boxes (dotted border), represents the the hierarchical model (see Sec. III). The red boxes
(solid border), represents the steps combining the two approaches, least-violating motion planning from [7] and path non-existence verification from [11].

Fig. 2: The picture in the top represents a scenario on a road with parked
vehicles. The red region denotes regions pruned away with path non-
existence queries. The green region shows region from which we could
sample, and finally the blue region represents the informed set from which
we actually sample.

version as the model of the vehicle is invariant with respect
to rotations. Therefore, its configuration space has only two
dimensions, which results in path existence checks that take
only 1 - 3 milliseconds.

Let E ⊂ R2, C denote the finite footprint of the vehicle and
its configuration space, respectively. LetR1,R2, ...,Rn ⊂ R
denote set of regions in the workspace corresponding to
obstacles and regions forbidden by the critical rules of the
road. The connectivity checker takes the segment of the road
under consideration as input, and verifies whether the vehicle
can move from the start to the end goal. Every time the local
planner is called, we construct an approximation of Cfreei,j,...,m

with respect to the constraints R0 = {Ri,Rj , ...,Rm} that
are specified. Once that is done, we check whether the start
and the goal regions are located in the same connected
component of the free space. If they are not, this means that
there is no path between them that would obey all constraints
under consideration.

C. Path non-existence-informed planning

In general it may not possible to satisfy all road rules Θ
throughout the run; with this in mind, we look for a subset
of Θ that can be satisfied simultaneously and represent the
most critical road rules. To identify them, we consider the
following cost estimation, based on Eq. (4):

P̃ (Θ′) =
∑
θj∈Θ

pj g(Lθj), (6)

where g(L) is any admissible heuristic function that esti-
mates the duration of violation of the road rules dk, and
Θ′ ⊆ Θ is a subset of road rules that can be strictly enforced
throughout the run. This subset is provided by the path non-
existence verification, as it allows us to determine whether a

solution exists that never violates the road rules θ ∈ Θ′. The
purpose of Eq. 6, is to provide a metric for comparing dif-
ferent combinations of hard vs. soft constraints on the rules
of the road. In this work we let g(L) = min(Al, Aw)/vmax,
where Al, Aw are the length and width of the region Lθk
where the kth road rule holds and vmax is the maximum
velocity allowed in the road segment. From this, the road
rule configuration that is strictly enforced throughout the road
segment is determined by:

θ? = argmax
θj∈Θ

P̃ (Θ′). (7)

In other words, we strictly enforce the set of road rules that
provide the highest estimated penalty. The chosen road rule
combination is added to the list of critical road rules, and is
strictly enforced. Due to the guarantees provided by the path
non-existence verification, sample rejection can be utilized
on these regions without a loss to the quality of the resulting
trajectory, thus maintaining the completeness of the motion
planner [7] while improving the overall efficiency.

1) Rerouting: The primary effect that path non-existence
guarantees has on the planner is, whether or not it is nec-
essary to find an alternative route through the road network.
A road segment is blocked if θc = ∅, i.e. when we can
not ensure the safety-critical road rules according to the
path non-existence algorithm. A road segment is sub-optimal
when the union of the regions induced by LΘ\θ? satisfies the
following relations:

span(LΘ\θ?)w ≥ span(r)w − ε, (8)

P̃ (θ?) ≥ D′ −
|o|∑
k=1

dk, (9)

where D′ is the duration to the transportation task resulting
from following an alternative path through the road network,
and span denotes a width of a region. In other words, we say
that a road segment is blocked if the region induced by the
road rules Θ \ θ? is larger than the width of the road with
some margin ε, and the alternative cost is larger than the
duration resulting from following the alternative path. Both
blocked and sub-optimal segments trigger rerouting.

2) Sample Biasing: Informed RRT? (IRRT?), first intro-
duced in [15], is an extension to RRT? constraining the
search space in the sampling procedure so as to improve
the convergence rate. As our problem is concerned with not
only minimizing path length, but also the violation of the
rules of the road Θ, using the standard version of IRRT? is
too conservative. We propose Road rule-informed RRT? (LV-
RR-IRRT?), a variant of IRRT? that takes into consideration
active road rules.

IRRT? maintains an informed subset Xf in the form of
a hyperspheroid around a proposed solution. The informed
region is defined as:

Xf = {x ∈ X | ||x0 − x||2 + ||x− xk||2 ≤ cbest}, (10)

where xk is the final state and cbest is the cost of the
current best solution under consideration. The road rule-
informed version we propose in this work functions in a
similar manner, with one key difference. The informed subset
Xf does not consist of a single hyperspheroid, rather a
set of hyperspheroids, each defined over the segment of
the solution where the markings of a separate road rule
holds, i.e. L(xi,i+T) = Πθ. Once an informed region is
defined, we sample such that: Pr(x ∈ Xf) = 1 − ε and
Pr(x ∈ X \ Xθ?) = ε. This ensures that the solution does
not converge towards a local minimum.

Example 1 In Fig. 2, a vehicle traverses a road with
parked cars on both sides of the road. The forbid-
den regions in this example are labelled LeftLane and
ParkedCars, respectively. Initially, path non-existence
checks are sent for the road rule combinations. This results
in θ∗ = {true Re⇒ ¬ ParkedCars}, which corresponds
to the red region in Fig. 2. Rejection sampling is performed
so that no samples are drawn from this region. The motion
planner attempts to find an initial solution using uniform
sampling within the region X \Xθ∗ . Once an initial solution
is found, we construct the informed region Xf as the set
of hyperspheriods (blue in Fig. 2) defined over the segment
of the trajectory x where a certain road rule, or label
corresponding to that road rule L(xi,i+T), holds.

D. Completeness and Complexity

Following the combined properties employed in this work,
if our algorithm reports path non-existence then it is guar-
anteed to be correct. Otherwise, the algorithm will operate
under the asymptotically completeness properties of the
least-violating planner.

If our vehicle model was not invariant with respect to
rotations, it may happen that our path non-existence verifi-
cation algorithm would report that there is a path while in
reality the start and the goal regions are disconnected [11].
The reason for this is that the algorithm constructs an over-
approximation of the free space; hence two disconnected
regions of the free space can be over-approximated to the
extent that they appear to be connected in the approximation.
This does not happen in the present work, as the vehicle is
assumed to have a disk-shaped safety footprint, and therefore

we do not take different orientations into account when
constructing the free space approximation.

Let |S| be the number of intersections in R, T ? the
RRT? tree, n and m be the number of balls in the object’s
and obstacle’s spherical representation, and b the maximum
number of balls in each pair of connected components. k is
the number of pairwise intersections of the balls.

Theorem 1 (Complexity) The complexity of the algorithm
is: O(|Θ|2maxθ∈Θ |θ|+2|Θ|+ |S| log |S|) and O(|S| log |S|+
|Θ||T ?| log |T ?|+n2m2 + b log3(b) +k), for the offline and
online stages respectively.

Proof: The offline stage consists of translating the
scLTL formulae to DFA as well as the routing procedure.
The first term of the online stage corresponds to the routing
procedure, the second and third to the pruning and local plan-
ning [7]. The final two terms of the online stage corresponds
to the path non-existence verification procedure [11].
The main benefit comes in the scenario where no solution
exists, in these cases the complexity of the online stage is
reduced to: O(|S| log | S| + n2m2 + b log3(b) + k), which
corresponds to the routing and path non-existence verifica-
tion procedures. As we can see, the complexity in this case
is completely independent on |T ?|, and scales purely with
respect to the complexity of the environment.

V. SIMULATIONS

Here we present the results from running the motion
planner on a road network inspired by real-life road con-
ditions. The road network studied in this work is depicted
in Fig. 3a. The pick-up location is illustrated in black, and
the drop-off location in green. The first segment of interest
(intersection 1-2) is a chicane. The second road segment
(intersection 2-3) is one where traversing the road is difficult
due to parked cars on both sides of the road. The third
one (intersection 2-5), is a road that is closed, thus forcing
cars to take a different route. The final segment of interest
(intersection 3-6), is one with a bus lane and a blocked
middle lane, which requires the planner to chose whether
to enter the bus lane or the left lane. For all cases, we want
the vehicle to maintain a speed limit of 50 mph and stay
in the right lane whenever possible. For more details on the
encoding of the road rules we refer to our previous work [7].

The experiments have been performed using both sam-
ples and time limit as resource constraint, in this case
4000 samples and 60 seconds. We compared the original
least-violating motion planner (LV-RRT?) [7] with the path
non-existence extension, with and without the road rule-
informed sampling procedure described in Sec. IV-C.2 (LV-
RR-IRRT?). The data presented in this section is the mean
result over 20 runs of each method.

A. Rerouting Results

In Fig. 3b, we observe how the LV-RRT? is limited by
the initial route, while in Fig. 3c we see how the path
non-existence allows the planner to detect a blockage and

(a) (b)

B
L
O
C
K
E
D

(c)

Fig. 3: (a) A road network. The vehicle is to move from the initial configuration in the black marked region, to the green region. (b) Results without
path non-existence verification. The resulting trajectory violates a critical road-rule. (c) Results with path non-existence verification. Purple (dashed border)
indicates those regions that the path non-existence verification guarantees can be strictly enforced, and are therefore rejected during sampling.

re-route. The least-violating planner from [7] provides a
costly solution by entering the construction zone, since the
chosen route is based on initial knowledge of the network.
Conversely, the extended version incorporates the new infor-
mation, determines that this segment is blocked and reroutes.
This results in a path that is safer, in terms of road rule
violation, but longer.

B. Sample Bias Results

An alternative approach to implement rerouting criteria, is
to impose a highest allowed cost on the resulting solution. We
implemented this strategy in order to illustrate the improved
performance when using path non-existence verification.

Fig. 4a outlines the comparison of path cost against time in
segment 1-2. We can see that there is no clear computational
benefit of running the extension on a single segment, that
also has a simple workspace. This is consistent with the
complexity analysis provided in Sec. IV-D. In fact, we
can see that the LV-RR-IRRT? actually performs worse
on aggregate than both LV-RRT? and path non-existence
without LV-RR-IRRT?. The reason for this is that the LV-
RR-IRRT? approach represents an inherently greedy search
where exploitation of a known solution is elected over
exploration of the workspace. This can be detrimental in
simpler workspaces such as the one in segment 1-2. However,
the performance is significantly improved in the complex
parts of the route, and, overall, the runtime is improved.

Fig. 4b outlines the evolution of the length of the solution
trajectory over time, from the time an initial solution is found
until the time limit. This is an important metric as the length
of the resulting trajectory has a significant impact on the
trajectory duration, and therefore its overall cost. This case
illustrates the final segment (Segment 6-5) in the mission
and we can see how the LV-RR-IRRT? reduces the overall
runtime. By utilizing the LV-RR-IRRT? approach, we can
represent the same information, but with a smaller tree. This
becomes especially important over longer runs, as it reduces
the time necessary to perform graph processing, such as
updating information as a new object has been sensed in the
scene. Fig. 4c and Fig. 5 illustrates the tree size over time
for the first segment and the full run, respectively. We can

see that the LV-RR-IRRT? approach consistently provides
smaller trees. However, the solutions are comparable, and
in some cases better than uniform sampling and sample
rejection using path non-existence verification, which is
illustrated in Fig. 4b. Thus the algorithm is able to overcome
difficult traffic situations much faster.

VI. CONCLUSION

We have shown that by combining a sampling-based
motion planner with a path non-existence verification algo-
rithm, we can produce a more efficient motion planner, in
particular when no solution exists as well as in more complex
workspaces. We have also provided a biasing approach using
the information provided by the verification procedure. The
LV-RR-IRRT? allows us to express the same information in a
smaller tree. This in turn provides an efficiency improvement
in cases where graph processing is necessary. For instance,
when new information is introduced to the scene. The
performance improvement has been shown theoretically and
illustrated using a real-life inspired traffic scenario.

Currently we consider a simple vehicle model with a
safety footprint that is invariant with respect to rotations,
such that its configuration space is two-dimensional. In the
future we will generalize our approach to higher dimensions.
This will allow us to consider less conservative vehicle
safety footprints, as well as joint configuration spaces of
multiple vehicles. In our experiments we have not considered
dynamic environments (for instance, involving other vehicles
in the scene). In future work we plan on exploring how
scenario classification on the mapping layer can provide
information on when the scene has changed enough to
necessitate replanning, and thereby allow our approach to
be extended to dynamic environments.

VII. ACKNOWLEDGMENTS

We would like to thank Christian Pek for his valuable and
constructive suggestions.

This work is supported in part by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by Knut and Alice Wallenberg Foundation, the Swedish
Research Council (VR) (project no. 2017-05102), by the NSF

(a) (b) (c)

Fig. 4: (a) Path cost vs. execution time (i.e. runtime of the entire pipeline, including planning and execution of the trajectory) in segment 1-2 in road
network defined in Fig. 3. (b) Path length vs. execution time in segment 6-5. The LV-RRT? (blue) algorithm is delayed since it exhausted the resource
constraints in segment 2-5. The path non-existence with LV-RR-IRRT? is faster than both LV-RRT? and path non-existence without LV-RR-IRRT?. (c)
Graph size vs execution time in first segment. Due to the rejection sampling, the resulting tree is smaller, which increases the efficiency of any graph
processing methods.

Fig. 5: Graph size vs. execution time over the full run. In each new segment,
the tree is reset. The change in colour illustrates when a new segment is
reached by any method. Segment label is listed in the bottom of the figure.

Grant 1723943, and the Office of Naval Research (ONR)
Grant N00014-18-1-2830.

REFERENCES

[1] Z. Kingston, M. Moll, and L. E. Kavraki, “Sampling-based methods
for motion planning with constraints,” Annual review of control,
robotics, and autonomous systems, vol. 1, pp. 159–185, 2018.

[2] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” Robotics Science and Systems VI,
vol. 104, no. 2, 2010.

[3] O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-
based algorithms for optimal motion planning,” in IEEE International
Conference on Robotics and Automation, pp. 2421–2428, IEEE, 2013.

[4] M. Otte and E. Frazzoli, “RRTX: Asymptotically optimal single-
query sampling-based motion planning with quick replanning,” The
International Journal of Robotics Research, vol. 35, no. 7, pp. 797–
822, 2016.

[5] L. Janson, B. Ichter, and M. Pavone, “Deterministic sampling-based
motion planning: Optimality, complexity, and performance,” The In-
ternational Journal of Robotics Research, vol. 37, no. 1, pp. 46–61,
2018.

[6] A. Dobson and K. E. Bekris, “A study on the finite-time
near-optimality properties of sampling-based motion planners,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1236–1241, 2013.

[7] C.-I. Vasile, J. Tumova, S. Karaman, C. Belta, and D. Rus, “Minimum-
violation scltl motion planning for mobility-on-demand,” in 2017
IEEE International Conference on Robotics and Automation (ICRA),
pp. 1481–1488, IEEE, 2017.

[8] S. Manzinger, C. Pek, and M. Althoff, “Using reachable sets for
trajectory planning of automated vehicles,” IEEE Transactions on
Intelligent Vehicles, pp. 1–1, 2020.

[9] S. Söntges and M. Althoff, “Determining the nonexistence of evasive
trajectories for collision avoidance systems,” in 2015 IEEE 18th Inter-
national Conference on Intelligent Transportation Systems, pp. 956–
961, IEEE, 2015.

[10] S. Sontges, M. Koschi, and M. Althoff, “Worst-case analysis of the
time-to-react using reachable sets,” in 2018 IEEE Intelligent Vehicles
Symposium (IV), pp. 1891–1897, IEEE, 2018.

[11] A. Varava, J. F. Carvalho, F. T. Pokorny, and D. Kragic, “Caging
and path non-existence: a deterministic sampling-based verification
algorithm,” Robotics Research, pp. 589–604, 2020.

[12] L. Zhang, Y. J. Kim, and D. Manocha, “A simple path non-existence
algorithm using C-obstacle query,” in Algorithmic Foundation of
Robotics VII, pp. 269–284, Springer, 2008.

[13] Z. Mccarthy, T. Bretl, and S. Hutchinson, “Proving Path Non-existence
Using Sampling and Alpha Shapes,” IEEE International Conference
on Robotics and Automation, pp. 2563–2569, 2012.

[14] P. Tajvar, A. Varava, D. Kragic, and J. Tumova, “Robust motion plan-
ning for non-holonomicrobots with planar geometric constraints,” in
The International Symposium on Robotics Research, Hanoi, Vietnam,
pp. 1–16, 2019.

[15] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT*:
Optimal sampling-based path planning focused via direct sampling
of an admissible ellipsoidal heuristic,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2997–3004, 2014.

[16] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Methods in System Design, vol. 19, no. 3, pp. 291–314, 2001.

[17] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,” in
International Conference on Computer Aided Verification, pp. 53–65,
Springer, 2001.

[18] T. Babiak, M. Křetı́nskỳ, V. Řehák, and J. Strejček, “Ltl to büchi
automata translation: Fast and more deterministic,” in International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pp. 95–109, Springer, 2012.

[19] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault,
and L. Xu, “Spot 2.0 — a framework for LTL and ω-automata
manipulation,” in Proceedings of the 14th International Symposium
on Automated Technology for Verification and Analysis (ATVA’16),
vol. 9938 of Lecture Notes in Computer Science, pp. 122–129,
Springer, Oct. 2016.

[20] J. Tumova, S. Karaman, C. Belta, and D. Rus, “Least-violating
planning in road networks from temporal logic specifications,” in
Proceedings of the 7th International Conference on Cyber-Physical
Systems, p. 17, IEEE Press, 2016.

