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ABSTRACT Signal Temporal Logic. In Proceedings of the 26th ACM International Confer-

This work presents an optimization-based control synthesis ap-
proach for an extension of Signal Temporal Logic (STL) called
weighted Signal Temporal Logic (WSTL). wSTL was proposed to
accommodate user preferences for importance and priorities over
concurrent and sequential tasks as well as satisfaction times denoted
by weights over the logical and temporal operators, respectively.
We propose a Mixed Integer Linear Programming (MILP) based
approach for synthesis with wSTL specifications. These specifi-
cations have the same qualitative semantics as STL but differ in
their quantitative semantics, which is recursively modulated with
weights. Additionally, we extend the formal definition of wSTL
to include the semantics for until and release temporal operators
and present an efficient encoding for these operators in the MILP
formulation. As opposed to the original implementation of wSTL,
where the arithmetic-geometric mean robustness was used with
gradient-based methods prone to local optima, our encoding allows
the use of a weighted version of traditional robustness and efficient
global MILP solvers. We demonstrate the operational performance
of the proposed formulation using multiple case studies, showcas-
ing the distinct functionalities over Boolean and temporal operators.
Moreover, we elaborate on multiple case studies for synthesizing
controllers for an agent navigating a non-convex environment un-
der different constraints highlighting the difference in synthesized
control plans for STL and wSTL. Finally, we compare the time and
complexity performance of encodings for STL and wSTL.

CCS CONCEPTS

« Computer systems organization — Robotic control; - Hard-
ware — Safety critical systems; « Computing methodologies —
Computational control theory.

KEYWORDS

Temporal Logic, Control Synthesis, Mixed Integer Linear Program-
ming, User Satisfaction Preferences

ACM Reference Format:
Gustavo A. Cardona, Disha Kamale, and Cristian-Ioan Vasile. 2023. Mixed
Integer Linear Programming Approach for Control Synthesis with Weighted

This work is licensed under a Creative Commons Attribution International
4.0 License.

HSCC °23, May 09-12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0033-0/23/05.
https://doi.org/10.1145/3575870.3587120

ence on Hybrid Systems: Computation and Control (HSCC ’23), May 09-12,
2023, San Antonio, TX, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3575870.3587120

1 INTRODUCTION

Owing to their rich expressivity, temporal logic formalisms have
proved to be useful in capturing complex, precise high-level mission
specifications with logical and temporal modalities [5, 20]. There
is a vast body of literature on verifying and synthesizing temporal
logic formulae to provide guarantees on the system behavior. We
consider the problem of formal control synthesis, which deals with
generating a control signal that leads the system to reach the desired
behavior per the given temporal logic specification. The synthesized
control strategies can be optimized by considering a relevant cost
function, thereby optimizing the behavior of the system subject to
correctness constraints.

Linear Temporal Logic (LTL) [3] and its fragments have been
widely used for control synthesis of dynamical systems [6, 33, 37,
38]. Although highly expressive and close to natural language, LTL
is unable to capture explicit time constraints. Several temporal logic
formalisms such as Signal Temporal Logic (STL) [23], Time Win-
dow Temporal Logic (TWTL) [36], Bounded Linear Temporal Logic
(BLTL) [35], Metric Temporal Logic (MTL) [19] have been proposed
that accommodate explicit time constraints. Among these, STL
is defined over continuous signals and real predicates, and it has
been widely used for verification [2], continuous-monitoring [10],
multi-agent control synthesis [7, 9, 34], etc. Moreover, STL provides
quantitative semantics, also known as the robustness of satisfaction,
that indicates the margin of satisfaction or violation of the given
specification [30]. Thus, the control synthesis of STL can be posed
as an optimization problem where the objective is to maximize
robustness. Various robustness functionals have been proposed in
the STL literature, including traditional robustness, [12], cumula-
tive robustness [14], AGM robustness [25], discrete-average space
robustness [22], etc. In this paper, we limit the discussion to the def-
inition of traditional robustness. However, STL implicitly assumes
that all sub-parts of the specification have the same importance.
For instance, consider a service robot tasked with the following
mission specification:

ExampLE 1. “Always between 9 am to 10 am bring tea or preferably
coffee to the office desk. Always between 12 to 1 pm, be as far from
the office room as possible and visit the living room between times 2
pm to 3 pm, preferably towards the end of the period.”

Here the preferences for a particular alternative (e.g., coffee)
and the preference for the execution of an activity within a given
time interval (e.g., towards the end of the period) cannot be readily
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Figure 1: Possible trajectories for the specification in Exam-
ple1

expressed using standard temporal logic formalisms thus, limiting
the specification of complex and demanding missions. As shown
in Fig. 1, all three trajectories are valid, but only one closely fol-
lows the user specification. This has motivated the research toward
satisfying temporal logic specifications robustly while also captur-
ing user preferences. Existing works can be broadly classified into
expressing user preferences using temporal logic formulae [4, 18],
regular expressions [16], or integrating the preferences into the
planning problem as (soft) constraints [1, 27, 28]. Weighted Signal
Temporal Logic (wSTL) was proposed as an extension of STL to
accommodate user preferences for satisfaction, priorities, and im-
portance of subformulae directly within the specification captured
using weights over logical and temporal operators.

The authors in [24] employed a gradient-based approach to syn-
thesize control policies for maximizing the robustness of satisfac-
tion. Several other approaches for optimization-based synthesis
include heuristics or control barrier functions [39]. These methods
are sound (a solution returned by the algorithm satisfies the speci-
fication) but not complete (it is not guaranteed to obtain a solution
even if one exists) [21]. Given LTL specifications, [17] formulated
as a Mixed Integer Linear Program (MILP) applied to LTL and has
since been widely adopted for STL [8, 29, 31], MTL[32], etc. Al-
though MILPs have exponential time complexity in the number of
binary variables, it has been shown that efficiently encoding the
constraints results in an efficient controller allowing for real-time
synthesis [32].

In this work, we consider the problem of control synthesis for
wSTL specifications that express mission specifications as well as
user preferences for control synthesis of a given linear discrete-time
dynamical system. Restricting ourselves to linear predicates, the
problem is cast as a mixed integer linear program (MILP) where the
goal is to maximize the robustness of satisfaction while minimizing
the cost function associated with control execution. Note that our
framework can capture user preferences for priorities over Boolean
and temporal operators with the help of weights.

The main contributions of this work are

(1) We propose a MILP formulation that captures the qualitative
and quantitative semantics of wSTL developed in [26]. Our

Carddona, G., Kamale, D., Vasile, C-I

MILP encoding captures weighted traditional robustness to
quantify satisfaction instead of the AGM and gradient-based
approach in [26].

(2) We extend the definition of wSTL [26] to include Until and
Release operators.

(3) We demonstrate the versatility of wSTL specifications and
the functionality of weights to modify the solution of an
equivalent STL specification. Additionally, we present case
studies for control synthesis using the proposed wSTL MILP
formulation and compare it against equivalent STL specifi-
cations.

(4) Finally, we present the time performance comparison be-
tween the proposed MILP formulation and the STL MILP
encoding presented in [31].

2 PRELIMINARIES AND NOTATION

Let Z, R, and B denote the sets of integer, real, and binary numbers
sets, respectively. The set of integers and real numbers greater
than a are Z>, and Ry, respectively. For a set S, 25 and |S|
represent its power set and cardinality. For S C R and a € R, we
denote by a + S the set {¢ + x | x € S}. The sign function is
denoted by sign : R — {-1,0,1}. The empty set is denoted by 0.
Let [a..b] = Z N [a, b] denote the range of integers between a and
b (inclusive). For a range I = [a..b], weuse [ = aand I = b.

2.1 Signal Temporal Logic (STL)

STL was introduced in [23] to monitor the temporal properties of
real-valued signals. A signal s is a function s : Z>¢ — R" that maps
each time point k € Z>¢ to an n-dimensional vector of real values
s(k), with s; being its i-th component.

DEFINITION 1 (STL syNTAX). The syntax of STL in Backus-Naur
form over linear predicates is

Gu=T [ Llpl-dlgrAd2|d1Val|ord|ord| d1Urds | p1R1¢2

where T and L are the logical True and False; y is a linear predicate
of the form s; > m, with threshold 7 over the i-th component of
signal s; =, A, and V are the Boolean negation, conjunction, and
disjunction operators, respectively. ¢ (eventually), O (always), U
(until), and R (release) are temporal operators with time bound
in the range I. ¢1¢ is satisfied if “at least at some time point in I
the specification ¢ is true” while O7¢ requires “¢ must be true at
all times in I”. The satisfaction of ¢;U¢ requires that “¢; must
hold at least until ¢ turns true within time range I”. Whereas
$1R1$2 means that “¢; releases ¢ if ¢p holds within I up until and
including a time instance in I at which ¢, is true”. Note that if ¢;
does not become true, ¢, must hold for the entire duration I.

The (qualitative) semantics of STL formulae describes whether a
signal s satisfies ¢, and it is defined recursively for every Boolean
and temporal operator as follows

DEFINITION 2 (QUALITATIVE SEMANTICS). Given an STL specifi-
cation ¢ and a signal s satisfaction of the specification at time k by
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signal s is defined by
(s,k) = (si = p) =si(k) > p,
(5,k) = =¢p = (s,k) £ ¢,
(s,k) =1 Az = ((s,k) =) A ((s.k) [ ¢2),
(s.k) E¢1 Vo= ((s.k) 1) V((s.k) = $2),
(s,k) Eorg =3k ek+Ist (sk') =,
(s.k) FOr¢ = VK € k+Ist (s,K) = 6, ey
(s.k) = prUrgpy = Ak’ € k+1 st ((s.k) |= o
AVE" € [k.K] (k") ),
(5,k) |= 1 Rrdp = VK’ € k+ st ((s,K) [E 2
v 3k € [k.k'] st (s, k") = 1),

where |= and = denote satisfaction and violation, respectively. A signal
s satisfying @, denoted as s |= ¢, is true if (s,0) | §.

In addition to the qualitative semantics of STL, the quantitative
semantics, also called robustness, measures how much the signal s
is satisfying or violating the specification ¢ at time k.

DEFINITION 3 (TRADITIONAL ROBUSTNESS). Given a specification
¢ and a signal s, the robustness score p(¢, s, k) at time k is recursively
defined as [12]:

P, s, k) = si(k) -,
P(_‘¢, S, k) = _p(¢a S, k),

p(P1 A ¢a,5,k) = min{p(¢1,s, k), p(¢2,5.k)},

p(¢1 \ ¢2’S:k) ‘= max {P(¢1’S)k),P(¢2:S:k)} >

p (019,5,k) = kr,r;%p(tﬁ,s, K, @

p(Qr$,s.k)) = min p($,s k'),
P (1Uiga.s.k) = max {min{p(z.5.k). min p(g1.s.k")}}.

k’ ek+.

P ($1Rigo.s.k) = min {max(p(g,s.K'). max p(dr.s.k")} ],

where I’ = [k..k'].

THEOREM 1. The robustness score for an STL specification is sound,
meaning that p (¢, s, k) > 0 implies s |= ¢ that signal s satisfies ¢ at
time k, and p (¢, s, k) < 0 implies s [~ ¢ that s violates ¢ at time k.

We denote the robustness score of specification ¢ at time k = 0
with respect to the signal S by p(¢, s). We refer to this definition as
the traditional STL robustness score.

The time horizon of an STL formula [11] is the minimum time
horizon required to decide on the satisfaction or violation of any
given signal. It is computed recursively as follows

0, ifgp=s; >m,
Il if ¢ = —¢y,

llgll = § max{lig1ll, lIp211}, ifgp e {p1Ado, p1Veg2}, (3
I+ max{llgill, Ig21l}, if ¢ € {p1Ui b2, p1R12},
I+, if ¢ € {or¢1, Org1}.

3 WEIGHTED SIGNAL TEMPORAL LOGIC

This section describes an extension of STL referred to as Weighted
STL (wSTL) introduced in [26] that allows specifications to capture
user preferences, priorities, and importance associated with the
Boolean and temporal operators.
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DEFINITION 4 (WEIGHTED SIGNAL TEMPORAL LogIic (WSTL) [26]).
The syntax of wSTL! in [26] with the inclusion of until and release
temporal operators is defined as follows:

P P
pi=TlLlpl=ol A Toil \/ Teilofelorel
ie[1..N] ie[1..N] 4)

01U o2 | 1R 02

where all Boolean, temporal operators, true T, false L, and predicate
pt have the same definitions as for STL. The positive weights over con-
Jjunction and disjunction formulae are assigned by weight functions p :
[1..N] — Rs, where N is the number of sub-formulae under the op-
erator. For sub-formulae in conjunction, denoted as (AP (¢1,. .., oN)),
the weights capture the importance of parallel tasks, whereas, for
the sub-formulae in disjunction, denoted as (VP (¢1,...,¢N)), the
weights indicate priorities for alternatives. The positive weight func-
tions w : I — R capture user preferences for satisfaction times for
the eventually operator and the importance of satisfaction times in
the case of the always operator. Similarly, the weights over until and
release operators indicate the preference for the time instance when
switching from satisfying one subformula to the other should happen.

Note that the qualitative (Boolean) semantics of a wSTL formula
is the same as the associated STL formula without the attached
weight functions.

REMARK 1. In case a wSTL specification ¢ has all unit weights,
i.e, p=1andw =1 for every sub-formula, then it does not impose
any preference, priorities, or importance over the Boolean or temporal
operators. Thus, STL formulae are wSTL formulae with unit weights.

ExAMPLE 2 (CONTINUATION OF EXAMPLE (1)). Thus, the exam-
ple (1) can now be expressed as ¢ = APL(@1, @2, p3) where ;1 =
DE“;I’IOJ(VPZ(tea, coffee)) , p2 = Drfz’lj—'o]ﬁce,(pg = Or;’“ living
room. p1, p2, w1, wa, w3 are weight vectors with py = [pa1, p22],
P21 < pa2 and w3 = [ws1,...,w3p], n is the number of timesteps
considered between [2,3] and ws, > ws;j, Vi € [1..(n — 1)]. Since
all three sub-tasks are equally important, py is a vector of all ones,
p1 = [1,1,1]. Since there are no temporal preferences for ¢1 and @2,
w1 and wy are vectors of all ones of appropriate lengths. O

The time horizon of a wSTL specification ||¢|| is the same as for
STL and computed using (3).

3.1 Weighted traditional robustness for wSTL

Similar to STL, wSTL admits quantitative semantics. However, in
this case, it is modulated by the weights on the Boolean and tempo-
ral operators that capture user satisfaction preferences. Informally,
it is a weighted version of the transitional robustness in (2). The
definition below extends the wSTL traditional robustness from [26]
to include the until and release temporal operators.

DEFINITION 5 (WEIGHTED TRADITIONAL ROBUSTNESS). Given a
wSTL specification ¢ and a signal s, the weighted robustness score

!From now on, we refer to an STL specification as ¢ and a wSTL specification as ¢
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p(o, s, k) at time k is recursively defined as follows
pp, s, k) =s;(k) -,
p(=¢,s,k) = —p(@,5,k),

p /\ 0i.s, k) = min {p) - p(¢i.5. K}

(\/ (pl’s k) _maX {pl P(‘Pbs k)}
p (O e s.k) = m1n {w (K" = k) - plo,s,k)},
p (o705 k) = max {w' (K" = k) - plo.s,k))}, ©)

- . U 10 -
p o U @z, 5.k) = ksrg;gil{mm{w (K" = k) - p(@2, 5, k),

mm {p(e1,s, k”)}}}

K e

5 Yy, 5,k) = mi Rk - k) - p K
p (1R} @2, 5, k) k;rel}crh{max{w ( ) - pl@a, s, k),

Jmax, {p(o1.5,K )}}}

where I’ = [k..k’], For Boolean operators, we have
1 ). 1
pi(ri) = (5 —Pi) sign(r;) + 2 pi (ri) =1=p}(ri),

where r; = p(¢i, s, k) is the weighted robustness of the subformula
@i, and p; = pTlp is its normalized weight. Similarly, for the unary

temporal operators, we have
1 1
WD(rk/) = (E - W(k - k,)) sign(rk«) + 5, Wo(rk/) =1- WD(rk/),
where rir = p(@,s,k"), w(t) = # and W = Z{iak
binary temporal operators until and release, we define
whre) = w (), wR(re) = wh (),

where ris = p(@2, s, k’). The weights p”, p¥, w5, and w® are defined
as DeMorgan aggregation functions [26].

w(t). For the

THEOREM 2 (WSTL SOUNDNESS [26]). The wSTL weighted robust-
ness is sound iff weights are positive. Let STL specification ¢ be the
wSTL specification ¢ with all weights equal 1 then

p(p,5,k) >0 = p(p,s,k) >0—>sE o,
p(p,s,k) <0 = p(p,s,k) <0 —>s £ o.

soundness proof outline is provided in [26].

(6)

Note that if all weights in the wSTL specification are positive,
then the robustness score is a scaled value of the equivalent STL
robustness.

ExaMmpLE 3. Consider a fully actuated robot with a scalar state
in the interval [1,12], initial position 7.5, and no control bounds
except for state saturation, e.g., 1D cart, conveyor belt. Let the spec-
ification require that “The robot should be - 1) either at a distance
of 7 to 8 units from the starting point; 2) or between 0 to 5 min-
utes, it should always be at least two units away from the start-
ing point. Moreover, it is five times more important to satisfy the
first choice (priority between alternatives), and it is especially impor-
tant to satisfy the second choice between 3 to 5 minutes (importance
for satisfaction times). ” This specification can be described using
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wSTL as ¢ = VP2 (/\pl((s <8),(s=>7), (O 05](8 > 2))) where
p1 = [L1], p2 = [51], wg = [0.5,0.5,0.8,0.8,0.9]. Note that the
weights are defined relative to each other and thus can be any positive
value as long as they reflect the relative preference (importance).

Let o1 = AP1 ((s £ 8), (s 2 7)) and ¢z = D[ ](s > 2). The time
horizon is given by max{||p1 |, ||¢2||} = max{1, 5} = 5. The plan thus
obtained is [7.5,12,12,12,12] where it is observed that at the first
timestep, the robot satisfies ¢p1 with equal importance to the conditions
(s < 8) and (s = 7). For the subsequent timesteps, it can then choose
to satisfy @2 where staying at 12 yields the maximum robustness. The
overall robustness thus obtained is p = 2.5 which can be calculated
as follows: p(¢, s) = max{min{p - p(¢1,s)}, min{w; - p(@2,$)}} =
max{5x min{(8 —7.5), (7.5—7)}, 1 X min{[0.5 X 5.5, 0.5 X 10, 0.8 X
10,0.8 X 10,0.9 X 10]}} = max{2.5,2.25} = 2.5.

4 PROBLEM STATEMENT

This section introduces the control synthesis problem subject to
temporal and logical constraints captured as wSTL specifications.
Let us consider a discrete-time dynamical system modeled as

5(0) = so, @)

where s(k) € S € R” is the state of the system and u(k) € U C R™
is the control input at the k-th time step, k € Z>, so € S is the initial
state, and A and B of appropriate sizes are the state transition and
input gain matrices, respectively, capturing the system’s dynamics.
Let us consider a system trajectory s = s(0)s(1) ... generated by a
control sequence u = u(0)u(1) ... starting with the initial state s,.
Additionally, let J (s, u) be a cost function associated with generating
control signal u while being at state s. We consider cost functions
as sums of weighted 1-norm, co-norm, and linear terms.

The control synthesis problem requires finding an input control
sequence u* : [0..K — 1] — U that minimizes cost J and maximizes
wSTL robustness of ¢ such that the specification ¢ is satisfied. For-
mally, the control synthesis problem subject to logical and temporal
constraints is defined as follows.

s(k+1) = As(k) +Bu(k),

PROBLEM 1. Given a discrete linear dynamical system of the form
(7), the initial state so, and a specification with user preferences given
as a wSTL formula ¢ as in (4), synthesize a sequence of control inputs
u* such that

u* = argmin J(s,u) — A p(¢,s)
u

s.t. (7) (linear discrete dynamics), ®)

s |E ¢ (mission specification satisfaction),

u<u<d (control signal saturation),

where u and @ are lower and upper control bounds and A > 0 is a
tuning parameter that defines the trade-off between the cost function
J and specification satisfaction captured via maximization of the
robustness.

The planning time horizon is denoted by K such that K > ||¢]|.

REMARK 2. Note that when cost function J(s,u) is not defined
in (8) Problem 1 reduces to maximizing the robustness p(¢, s). It leads
to satisfaction of ¢ while taking into account the user satisfaction
preferences and importance over subformulae.
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5 CONTROL SYNTHESIS

In this section, we formulate Problem 1 as an optimization problem
and introduce a Mixed Integer Linear Program (MILP) encoding for
wSTL. We consider the following assumptions throughout the rest
of the paper.

AssuMPTION 1. wSTL specifications are over linear predicates.

While wSTL formulae can be defined over general, non-linear
predicates [, (s(k)) > 7 for some function / : R” — R, we limit
them to simple linear functions s; (k) > 7 (ors;(k) < m, see below).
Our MILP encoding can still be employed by introducing output
variables y,, = [;,(s(k)) for all non-linear predicates y, and using
piecewise-linear approximations of the output functions ;.

STL was originally intended to express the desired behavior of
systems in the continuous-time domain. However, solving synthe-
sis problems with STL constraints as MILPs requires discrete-time
abstraction. For clarity and brevity, we consider uniform time dis-
cretization. However, the MILP encoding works for non-uniform
encoding as well, provided that the system dynamics are linear
or linearized. In both cases, the synthesized discrete-time control
policy may not guarantee the satisfaction of the wSTL specification
for continuous-time signals [31]. To ensure continuous-time satis-
faction, e.g., collision avoidance for robots, either state constraints
(such as funnels or tubes) or a robustness lower bound can be used
to ensure safety.

AssuMPTION 2. WSTL specifications are in positive normal form.

The assumption is not limiting because any STL, and by exten-
sion, the wSTL formula, can be put in positive normal form, where
the negation operators are only in front of predicates. In the follow-
ing, we eliminate negations completely by considering predicates
defined with either > and < comparison operators.

REMARK 3. Any wSTL formula can be represented using an Ab-
stract Syntax Tree (AST)? in which intermediate nodes correspond
to logical and temporal operators, and leaves to predicates [15]. Our
MILP encoding relies on a recursion definition that uses the AST to
compute the overall robustness score of the specification formula ¢.

5.1 MILP encoding for wSTL

The synthesis Problem 1 requires that the specification be satis-
fied (8), and by Assumption 2 wSTL specifications do not con-
tain negation operators. Thus, we simplify the definition of the
weighted traditional robustness (5). The gain functions in Def-
inition 5 for Boolean operators are constants p;\ = 1- p; and
p; = pi, and for temporal operators are w® (k") = 1 — w(k — k'),
and w®(k’) = w(k — k’). For simplicity, below, we consider that
weights have been normalized and changed to match the above
gains, e.g., pi = p;".

The MILP encoding is defined recursively over the nodes of the
AST of wSTL formula ¢ starting from the leaves, the predicates.

Let p be a predicate. We define the variables Z'Z € B that take
value one if the predicate y € R is taken into account in the satis-
faction of formula ¢ at time k € [0..K], zero otherwise, and §*' € R
the robustness score of the predicate y at time k € [0..K], where

2A formula can have many equivalent ASTs [15] determined by the parsing methods
used.
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K > ||¢||. Let M be a large enough number (e.g., larger than the
largest upper bound of signals used in wSTL specification ¢). The
following constraints capture the satisfaction of predicates of the
types(k) >

s(k) + M -2 > n+ "
p=p= k k
s(k)—Mzi < n+§£

, ©)

Notice that the set of constraints for predicates checks whether
or not the predicate is considered in the overall satisfaction and
does not constrain the variables s(k) and @;j otherwise. They can
take any value, but as the objective is to maximize robustness,
s(k) is forced to take the value that maximizes §*, i.e., as far as
possible from threshold value 7. In the case of predicates of the
form s(k) < 7, the set of constraints is modified as follows.

”- {s(k)—Mu—z;:)sﬂ—@;j

10
s(k)+Mz‘Z27r—§Z (10

For conjunction operator, let us define zlf € [0, 1] as the variable
taking value one if all the subformulae ¢; hold at time k € [0..K],
and zero otherwise, where i € [1..N] and N is the total number
of subformulae in the conjunction. Let zzi € [o, 1], é;f € R, and
pi € Ry be the variables defining satisfaction or violation, ro-
bustness score, and weights of subformulae ¢; at time k € [0..K],
respectively. The set of constraints capturing the conjunction se-

mantics and robustness is

</)=/\pfﬂi=> z
i z

2

T/ /A
IN A

pi- 6y, Vi
zy Vi ) (11)
1-N+ Zi Zki

\2

The objective here is to impose the satisfaction of ZZ if all subformu-
lae ¢; are satisfied. The first equation will impose an upper bound in
the overall robustness score as the minimum weighted robustness
of the component subformulae él(fi. The second equation requires
that the variable capturing the conjunction operator zg takes the
value of zero, indicating violation, if at least one or more of the
subformulae satisfaction variables z;fi are zero. Finally, we indicate
that z][f takes value one only if the total number of subformulae N
equals the summation of z]fi variables, i.e., all of the subformulae
are satisfied.

In the case of disjunction, we use the same type of variables as
for conjunction. We also introduce auxiliary variables ‘;‘I(f,i € B used
for the linear formulation of the “max" operator. M € R0 is a
sufficiently large value (see description for predicates).

¢ =i AN
Op Spi-op +M-(1 _zk,i)’Vl
3¢ < zZi,Vi

ki
P -
p=\"0i= Sity, 2 2f . (12)
! zz Zz](fi,\v’i
@ i
7, <2z,

The first equation captures the maximum robustness among all
subformulae ¢; that are taken into account z;f" = 1. The 2;:,1. vari-
ables select the maximum robustness, while the second equation
ensures that the subformula is considered. At least one subformula
is selected by the third equation if ¢ holds. The last two equations
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ensure that z? is set to one if and only if at least one subformula is
satisfied.

The always operator follows the same as the conjunction oper-
ator, but with weights and variables over time rather than over
subformulae. For temporal weights w(t) € R>o with t € I, we have

ék <w(t) - Qk+t,Vt el

=07y = |z} < zl‘/:+t,vt el , (13)
zl 2 1= |11+ Ster 7y,

where |I| denotes the length of the interval.
The set of constraints for the eventually operator are similar to
the ones for disjunction.

87 <w(t) -6, +M- (1~

P4 v
ey < zk+t,vt el

0 =07V = Ster#f, 2 7 (14)

N l//
Zk kt,VteI

= ZtEI Zk+t

) vtel

As before, the first three equations select the maximum robustness
of i over time interval I if ¢ holds, while the latter two ensure that
z;f is one if and only if ¢/ is satisfied at least once in I.

The weights over the temporal operator U denote the preference
for the timestep at which ¢ becomes true. It is required that ¢;
should remain true from time 0 until the beginning of I, and thus,
fort € [0, I—1], the robustness is upper bounded by the robustness
of ¢1. For t € I, the constraints on 3¢ ensure that the robustness
is upper bounded by the minimum of the robustness of ¢; and ¢;.

Furthermore, the constraint on the auxiliary variable i;f ; ensures
’ ¢

that g2 holds at some timestep t whereas the constraint on z;
ensures violation is encoded correctly.

op < k+t’t €lo.l-1]
Q;f < w(t)gk+t +M-(1- Awt) Vtel

57 < 591 t
O < Qk+t+M'Zt’0 k[,VtEI
@ P1
z, <z, .,tel0I-1]
=§01(L{pr2 = A](; k+t Viel (15)
et S k+t’ €

¢
Zte[ Zkt 2 Zk

2 < Nter Fyy

< 1
HEE TR DW I PR D

We leverage the cumulative nature of the until operator in terms of
satisfaction of ¢1 to reduce the number of constraints. Specifically,
the third and last equations constrain the variables for ¢ only until
@2 holds.

For the release operator, the weights denote the preference for
the timestep at which ¢2 may be released, i.e., when ¢; holds. The
robustness é;f is upper-bounded by the robustness of the ¢, times
its weight until ¢; becomes true in equation one. The maximum
value of the robustness of ¢ is also a bound if ¢; holds before I
(equation two). The ig " variables ensure that the correct maximum
is selected among all times @1 holds via equations three and four.
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o <wlt)-ofe, +M- S 2) Vel

50
Qk—9k+t+M 1- t)te[O I]
p=¢1Rip2= 4, (16)
Ift <zl Vte (0]
50
iz G st

Lastly, to ensure the satisfaction of the overall wSTL specification,
we impose that the top-level formula is taken into account and its
robustness is positive

=14y >0 (17)

PropPOsITION 1 (CORRECTNESS). The constraints (9) - (17) satisfy
the following properties:

(1) s = ¢ if constraints are feasible;
(2) s I ¢ if constraints are infeasible;
(3) the maximum ég} such that the set of constraints are feasible

is given by éotp = p(e,s,0).

Proor SKETCH. The first two properties follow similarly to the
proof in [31]. The last property follows structural induction over
the AST. The base case for predicates is trivially true. The induction
for the Boolean and temporal operators follows from the defini-
tion of max and min operators. For the until and release operator,
we leverage their cumulative structure to reduce the number of
variables and constraints needed. O

6 CASE STUDIES

In this section, we showcase and test the functionality of the wSTL
MILP encoding. First, we show how the variation of weights can
lead to multiple solutions compared to its equivalent STL specifica-
tions. Second, we test the control synthesis for an agent satisfying a
specification of navigating in a non-convex two-dimensional envi-
ronment with temporal and logical constraints. Lastly, we show the
time performance and complexity comparison between STL and
wSTL MILP solutions. All computations of the case studies were
performed on a PC with 20 cores at 3.7 GHz with 64 GB of RAM.
We used Gurobi [13] as an MILP solver.

6.1 Functionality of weights

For the three case studies considered here, we consider that sig-
nals are bounded but unconstrained, meaning there is no dynamic
governing the variables.

Signal values (s))

-

2
Timesteps (k)

Figure 2: The weights w;j, wz; indicate the preference for
satisfaction over sub-formulae resulting in the generation
of different signals.
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Figure 3: Generation of a signal close to the reference by
suitably designing time-varying weights w.

6.1.1 Satisfaction preferences over temporal operators. Consider
the wSTL specification

0= AP (om] (51 2 9,01 (si < 3)) . (18)

With unit weights over the conjunction operator, we vary temporal
weights w1 j, waj indicating different preferences for satisfaction in-
stances. The set of weights are as follows: 1) w11 = [0.1,0.2,0.3,0.4,
0.5], 2) wiz = [0.9,0.9,0.8,0.1,0.1], 3) w1z = [0.5,0.5,0.5,0.5, 0.5],
4) wig = [0.1,0.1,0.5,0.9,0.9]. In all four cases, wp; = [1,...,1] -
wij where j € [1,4]. Higher weights indicate a higher prefer-
ence for the satisfaction of the corresponding subformula at that
timestep.

Fig. 2 shows the generated wSTL signals compared to the STL
signal generated for the equivalent STL formula

¢ = 010,41 (si = 4) A Opoq1(si < 3). (19)

Thus, it can be seen that wSTL ¢ with wi2 satisfies the predicate
(si = 4) earlier during the interval, whereas with w4 it prefers the
satisfaction of (s; < 3) during the initial timesteps as the weights
w14 indicate that the satisfaction of (s; > 4) is preferred towards
the end of the interval.

6.1.2  Effect of time-varying weights on control synthesis. The weights
p, w can be time-varying over the interval leading to generating
the desired behavior. Consider two predicates s; > 1 and s; < 7.
The goal is to generate a signal close to a reference signal s, ¢ (solid
black) as shown in Fig. 3 where

¢ = 0[020] (AP<’<> ((si <7), (si = 1) )) . (20)
The time-varying weights p(k) = [p1(k) p2(k)] are as follows:
Vi3 k
p1(k) = W; pa(k) =1- i (21)

where k € [0..20] is the current time-step and |I| denotes the total

duration of the specification. Since the desired behavior is over the

entire interval without preferences to the specific sub-interval, w

can be chosen to be a vector of all ones, w = [1,...,1]x 7. Note

that the weights in (21) are design choices and, thus, not unique.
The equivalent STL formula is

¢ =Op0.201((si £7) A (si > 1)). (22)

The resulting signals are shown in Fig. 3. In the case of STL, both
subformulae in conjunction receive equal importance, and thus, the
synthesized signal (solid red) stays constant at 4. On the contrary,
the time-varying weights on these subformulae, in the case of
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the wSTL formula, allow the regulation of the generated behavior
(dashed blue) more closely with respect to the reference signal.

6.1.3 Generating time-varying weights for desired behavior. Con-
sider a scenario wherein some desired behavior is to be gener-
ated as a combination of given component signals. Fig. 4 shows a
solid black reference signal to be generated with the help of the
component signals s4 and sg. We consider two cases: 1) The com-
ponent signals need to be utilized at all times. 2) The component
signals need to be utilized at some instance in the given interval. Let
e11 = APH((s < 12),(s 2 3)), 912 = AP1((s < 9),(s > 2)),¢13 =
APL((s < 12), (s > 2)). The STL and wSTL formulae are:

$1 =041 ((s <12) A (s 2 3)) ADO[510]((s £ 9)
A(s 2 2)) AO[11,151((s £ 12) A (s 2 2)). (23)
P2 =0[041((s £ 12) A (s 2 3)) A 0[510]((s £ 9)

A(s 22)) AQ11,15]((s £ 12) A (s > 2)). (24)
g1 = NP2 (DFSA](PU’ DF?’lolfﬂlsz’lS](Pla) : (25)
02.= AP (0104101107210, 011:07, 15, 013) (26)

The time-varying weights are generated as follows:

) ) _ lsref(b) = sa(k)l
k) =Ty(k), 1=y (RIVE € 1 y(k) = =ommm

We consider the following set of temporal weights wi; to further
regulate the generated behavior. The weights indicate the impor-
tance of satisfaction for the sub-formulae and are as follows:
wSTL —wi1 =w=[1,...,1]1x15
wSTL — w12 =[1,1,2,2,2,3,9,5,1,1,9,9,5,1,1,9] X 107!
wSTL — wi3 = [5,5,5,5,5,1,1,5,9,9,1,1,5,9,9,9] X 107
wSTL — w14 = [1,1,5,9,9,1,1,5,9,9,1,1,5,9,9,9] X 107!

Higher weights indicate higher preference. Simply put, wSTL —
wi1 gives equal importance for satisfaction over the entire time
interval. According to wSTL—wq2, it is more important to satisfy the
subformulae towards the ends of intervals [5,10] and [11, 15]. The
weights wSTL — w13 and wSTL — w14 can be interpreted accordingly.
Fig.(4a) shows the generated wSTL signals for ¢; where higher
importance on the temporal operator results in generating a signal
closer to s_ref. We employ curve-fitting in Fig. (4b, 4c) to smooth
out the generated signals.

6.2 Control Synthesis

We consider three cases of the Problem 1. First, examples where
we set the cost function J(s,u) = 0. Thus the problem is to find
a control signal u(k) that maximizes the robustness p(¢, s). Sec-
ond, an infeasible case where an agent is tasked with traveling to
multiple places simultaneously. Finally, we add a cost function to
show how it could affect the synthesized controller. Consider a
single robot navigating in a planar environment M c R?. Thus,
s(k) = [sx(k),sy(k)]-r € R?. We define regions of interest A =
[-9.5,-5.5]%, B = [5.5,9.5] X [<9.5,-5.5], C = [5.5,9.5]%, D =
[-9.5,-5.5] x [5.5,9.5] in M, and region & = [-2.5,2.5]> ¢ M
that robot s(k) needs to avoid. We arbitrarily choose A = B = Ipx2
for the robot dynamics as in (7). We consider initial position as
$(0) = (52(0),54(0)) = (=9, -9).
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Figure 4: The time-varying weights p, w result in generating signals that closely follow the reference signal s_ref (a) generated
raw signals for specification (25); (b) signals generated for (25) by employing curve fitting; (c) signals generated for (26) by

employing curve fitting,.

6.2.1 Control synthesis without cost function. For the following
case studies, we consider the cost function J(s, u) = 0, making the
control synthesis problem to find control signals that maximize
robustness. We consider the STL ¢ and wSTL ¢ specifications

¢ = (O[0,1]A) A (O[10,15]C) A (T[2530] D) A (TO[0:30E°)> (27)
0= AP ((D%’l]ﬂ), (070.151C): (03530 D), (O15 51 E)), (28)

Going to regions of interest can be specified in STL and wSTL
form by constraining sy and s, inside the region boundaries. For
simplicity, with a slight abuse of notation, we define the formulae
directly over the regions instead of defining predicates over all
four boundaries of each region. Also, notice that instead of & the
predicate we use to avoid this region is its complement &€ = M\ &,
i.e., robot position is allowed to be in every region outside of &. The
variable bounds considered in these case studies are —10 < s, < 10,
~10 <5y <10,-3 <uyx <3,-3 <uy < 3.

The first scenario we consider is where all the weights p; =
[1,1,1,1] and w = [1,...,1]xp for b in time intervals [a, b] in ¢,
then wSTL is expected to behave as its equivalent STL specification.
In Fig. 5, we can see how the evolution of states s, and sy with
its corresponding control signals uy and uy for wSTL (blue line) is
very similar to the outcome of STL (red line). The trajectory of the
signals in the environment is shown in Fig. 8(a), where it can be
seen that the solution found for wSTL differs from the one in STL in
small intervals. Even though both of them satisfy the specification
by avoiding region & all the time and starting in the region A and
then visiting regions C and D.

However, the more interesting behaviors can be expressed when
the weight in the wSTL specification describes some preferences.
For instance, by imposing the following two different weights vec-
tors p2 = [0.1,0.1,0.1,0.8] and p3 = [0.9,0.9,0.9,0.1] over the
conjunction operator in ¢, the control signals and positions de-
scribed differ significantly from the solution of the equivalent STL,
as can be seen in Fig. 6 and Fig. 7, respectively. In Fig. (8b) and Fig.
(8c), the generated trajectories can be seen where the preferences
of avoiding the obstacle as much as possible are relaxed. Then, the
robot tries to avoid regions of interest until it is necessary to satisfy
the specification for the first set of weights. Whereas for the second
set of weights, the priority is given to staying as far as possible
from region & and maximizing the robustness in regions of interest,
which is achieved by being at the farthest boundary of region &.

- s
- wsTL

time. time.

(c) Evolution of u, with respect to (d) Evolution of u,, with respect to
time. time.

Figure 5: Position and control signals when all weights of
wSTL are set to be one such that the solution behaves very
close to its equivalent STL.

time. time.

(c) Evolution of u, with respect to (d) Evolution of u, with respect to
time. time.

Figure 6: Position and control signals when the weights in
wSTL are adjusted to marginally satisfy going to regions and
softly constraint avoiding region &.

Another case study we consider is when the specification is
infeasible; this can happen when subformulae are conflicting or
impossible to satisfy within their time windows given a bounded
control signal. In the case of an infeasible STL specification, its
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(c) Evolution of u, with respect to (d) Evolution of u, with respect to
time. time.

Figure 7: Position and control signals when the weights in
wSTL are adjusted to avoid region & as much as possible.

robustness score is negative, with the smallest overall violation
margin. Examples of infeasible STL and wSTL specifications are

¢ = (00,117 A (O[8,10)8) A (O[8,101D)s (29)
0 = AP ((D%,I]ﬂ), (@101 5) (DE‘Q’IO]Z))). (30)

Note that the infeasibility is given by requesting the agent to
be in two different places during the same time intervals. Here we
show how varying the weights can lead to different solutions to the
minimal violation of conflicting subformulae. We set =2 < uy < 2,
-2 < uy < 2,w = [1,...1];4; for all temporal operators and
p1 = [1,1,1]: (WSTL behaves the same as STL), p2 = [1,20,1]:
(higher preference to going to B), and p3 = [1,1,20] : (higher
preference to going to D). In Fig. 8(d), we can see that solution
for STL and wSTL with unit weights remains in the middle of
the two regions of interest since it will minimally violate both
subformulae. However, choosing a significant difference of weights
over the conjunction operator in ¢ leads to choosing the option

with higher weight and ignoring the other conflicting subformula.

Since the robustness of this subformula is the one that maximizes
the robustness and therefore minimizes the biased violation. It
is worth mentioning that we can not think of wSTL as a global
solution for the partial satisfaction problem since it will depend on
the predefined significant difference of weights between conflicting
specifications. A slight difference in weights will not induce partial
satisfaction (i.e., choosing at least one of the subformulae to satisfy);
instead, the solution will only deviate close to the one with higher
weight but will still not satisfy any.

Lastly, let us consider the initial position of the agent as sx(0) =
-5, s4(0) = —1, and the following wSTL specification

0= AP (@118 (OF% 15,0)) (31)

we generate four trajectories that avoid getting close to region &
and go to region C in the time intervals specified by varying weights
pi. Let us define the following different weights for the conjunction
operator in ¢ as p;1 = [1,0.1], p2 = [2,0.9], p3 = [1,0.8], ps =

[0.1,2], and p5 = [0.1,2]. Note that the latter two are the same.
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(a) Unit weights for wSTL ¢ and  (b) Adjusting weights for softly
STL ¢ trajectories. constraint avoiding region & in
wSTL trajectory.
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(c) Adjusting weights for being
as far as possible of region & in
wSTL trajectory.

(d) Defining preferences for vis-
iting a place in an infeasible spec-
ification.

Figure 8: Trajectories for wSTL ¢ and STL ¢ specifications in
a two-dimensional environment.

Figure 9: Trajectories around an obstacle changing the
weights in the wSTL specification.

The control bounds for the first four cases are =2 < u, < 2 and
-2 < uy < 2,and for ps as =3 < ux < 3and -3 < uy < 3. The
outcome of this case is shown in Fig. 9. The trajectories constrained
by control inputs bounds of two units are shorter. Some of them are
getting closer or farther to & according to the weights. However,
for the case where the control bounds are three units, the solution
is to go around the bottom boundary of &, keeping distance to
the obstacle and reaching the maximum robustness. Thus, varying
weights may produce trajectories that are topologically the same
or different from the STL one.

<
<

6.2.2  Control synthesis with cost functions. In previous case studies,
we have not considered any cost function affecting the objective
function in (8) since our main goal was to highlight the behavior
when varying the weights in the robustness. However, any linear
cost function J(s,u) can be added and implemented in Gurobi.
For instance, cost J(s) = |[|[T7s|ly = 3 |yisi| is captured using
variables v; and J = }; v; and constraint set {v; > yis;, v; = —yis; |
Vi}, where y; are regularization values and v; are variable bounds.
Similarly for J(s) = ||T"s|lc = max; |y;s;|, we add variable J and
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constraint set {J > y;s;, J = —yisi | Vi}. In both cases, the objective
function of the MILP becomes J — /1/531 . The same constructions
hold for control cost terms.

6.3 Time performance and complexity
comparison

In this section, we want to analyze the complexity regarding the
number of binary and continuous variables needed to capture wSTL
specifications, its equivalent STL, and its time performance. Firstly,
in Table 1, we show the robustness score 3, the number of binary
and continuous variables required, and the time performance for
every case study performed previously. In most cases, the encoding
used for STL is faster in time than the one used for wSTL because
the latter requires more binary and continuous variables to capture
preferences and importance. Usually, binary variables are the ones
that lead to complexity and affect the time performance of the encod-
ing. So we could say that every specification that includes multiple
eventually, disjunction, until, and release operators will diminish the
performance due to the necessity of inclusion of additional binary
variables. The wSTL synthesis problem is NP-complete, similar to
the STL case. The structure of the problem determines the perfor-
mance (e.g., close to totally unimodular) and the solver (e.g., Gurobi).
Thus, a good measure/predictor of performance is the number of
binary variables, but not always. The number of binary variables
is O(K|¢|), where K is the time horizon and |¢| is the size of the
formula.

Table 1: Complexity, time performance, and robustness value
for every case study.

Specification | Robustness | Binary | Continuous | Time (s)
STL (19) p=3 40 58 0.010
wSTL (18) p =0 40 102 0.061
STL (22) p =2 40 58 0.008
wSTL (20) p =18 40 100 0.021
STL (23) p=35 30 51 0.012
wSTL (25) p =0.002 32 88 0.027
STL (24) p =35 30 51 0.017
wSTL (26) p =1.748 48 88 0.788
STL (27) p=3 152 237 0.118
WSTL (28)-p; 5 =3 276 438 0.143
wSTL (28)-p2 p =03 276 438 0.197
wSTL (28)-p3 p=03 276 438 0.264
STL (29) p =6 16 79 0.034
wSTL (30)-p1 p =-20 16 106 0.057
wSTL (30)-p, p =20 16 106 0.034
WSTL (30)-ps p =6 16 106 0.030
wSTL (31)-p1 p =0.090 78 206 0.084
wSTL (31)-p2 p =0.620 78 206 0.140
wSTL (31)-ps3 p =0.444 78 206 0.064
wSTL (31)-p4 p =0.095 78 206 0.084
wSTL (31)-ps p=03 78 206 0.057

Finally, we show the run time performance comparison between
STL and wSTL encodings with unit and random weights by gradu-
ally increasing the size of the mission specification. Let us consider
3Note that p and j cannot be numerically compared since the weights introduce a

scaling effect on p and thus the magnitude of the p can be considerably smaller or
greater even for very similar STL and wSTL trajectories.
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Figure 10: Time performance comparison between STL and
wSTL with unit and random weights.

six variables x, y, z, u, v, and w, all with a lower-bound of —9 and
upper-bound of 9. The STL ¢ and wSTL ¢ specification for the time
performance comparison are the following

=\ (5181 81) L (5292 E2)),
1

n p
¢ = /\ T (LP ((s1 ©1 E1), (52 ®2 E2))),
1

where 7 € {0,¢}, L € {A,V},s1 and 53 € {x,y,z,u,0,w}, ® € {<
,<,>, >}, E1 and Ey = rand(-3, 8) are variables randomly chosen,
n is an iterator that grows from 1 to 200, and the time interval of
the temporal operator is defined randomly asI = [n+4,...,n+4+
rand(1, 5)]. For the case where the weights are not unit, the weights
for Boolean p and temporal w operators are randomly chosen in an
interval (0, 1]. In Fig. 10, we compare time performance for growing
STL and unit weights in wSTL and wSTL with random weights.
Note that the STL performance grows linearly and is faster than
the other two. However, there is a slight difference between STL
and wSTL, which is expected since more constraints are required
in the encoding to capture the importance or preferences in the
specification. Note that there is no significant change in using unit
weights on the wSTL and random weights in the wSTL.

7 CONCLUSIONS

We presented a Mixed Integer Linear Programming formulation
for Weighted Signal Temporal Logic. The weighted robustness as-
sociated with the wSTL improved the system’s optimal behavior
in a control synthesis framework where prioritized tasks and time
precedence are critical. We compare features that wSTL specifica-
tions can capture that STL cannot, for instance, preferences and
importance over Boolean and temporal operators. Another differ-
ence is shown when the specifications are infeasible standard STL
definition will result in a trajectory that averages the violation
within the conflicting sub-formulae, whereas wSTL can make the
solution to reduce violation towards a preferred option. In extreme
cases, if the weight difference is significant, it can lead to partial
satisfaction. Finally, the time performance of the MILP encoding
is shown compared with STL showing a small cost to pay at the
expense of being able to specify preferences and importance.
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APPENDIX A

MILP encoding for STL

Below is the MILP formulation for STL specifications as proposed
in [31].

For each predicate 1 = (y — ), we define a binary variable z €
0,1 where 1 indicates satisfaction. M is chosen to be sufficiently
large, M > max; y; fori € {1,...,ny}. The constraints for predicate
satisfaction are encoded as follows:

y+M(1-z") > p, (32)
y— Mzt <p, (33)
zp € {0, 1L, Vp=y-mVk €{0,....K} (34)

The logical operators - conjunction and disjunction are defined as
follows:

zz/\zi:zSzi,Vi (35)
i

z=\/z,-=>zSZzi (36)
i i

z€[0,1] (37)
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where z € [0, 1] is a continuous variable, but as it follows from the following constraints:
encoding above, it can only take binary values. Let us introduce ) b
zf € {0, 1} as a variable denoting the satisfaction of the given STL ¢ = /\ $i =z = /\ “k (38)
i
formula. Thus, an STL formula can be recursively defined using the 4
¢ = \/ ¢ = z \/ z' (39)
i
=017y = zf ZZ, (40)
k' ek+I
¢ = Ojl// =14 Z;f Z]l/:, (41)
k' ek+I

b=ty =z=\/ |2r N\ 4| @

k' ek+I k" ek,k’]
20 € [0,11.¥¢ # . Vk € {0...... K} (43)
=1 (44)
p=0 (45)

Equations (45) and (46) impose the constraint of satisfaction.
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