
Reactive Sampling-Based Temporal Logic Path Planning
Cristian Ioan Vasile and Calin Belta

{cvasile, cbelta }@bu.edu
Division of Systems Engineering, Boston University, Boston MA, USA

Abstract

We developed a sampling-based motion planning algo-
rithm that combines long-term temporal logic goals with
short-term reactive requirements. The mission specifica-
tion has two parts: (1) a global specification given as a
Linear Temporal Logic (LTL) formula over a set of static
service requests that occur at the regions of a known en-
vironment, and (2) a local specification that requires ser-
vicing a set of dynamic requests that can be sensed lo-
cally during the execution. The proposed computational
framework consists of two main ingredients: (a) an off-line
sampling-based algorithm for the construction of a global
transition system that contains a path satisfying the LTL
formula, and (b) an on-line sampling-based algorithm to
generate paths that service the local requests, while mak-
ing sure that the satisfaction of the global specification is
not affected. The off-line algorithm has three main fea-
tures. First, it is incremental, in the sense that the pro-
cedure for finding a satisfying path at each iteration scales
only with the number of new samples generated at that iter-
ation. Second, the underlying graph is sparse, which guar-
antees the low complexity of the overall method. Third,
it is probabilistically complete. We also provide a condi-
tional result showing that the incremental checking pro-
cedure has the best possible complexity bound. The on-
line algorithm leverages ideas of potential functions, which
ensure progress towards satisfaction of the global specifi-
cation, and on monitors for LTL. Examples illustrating the
usefulness and the performance of the framework are in-
cluded.

Setup

An environment is described by a tuple (D,RG,ΠG,LG,ΠL∪
{πO}), where:
• D is the workspace – assume that the robot can precisely localize

itself in the environment
• RG – set of disjoint regions of interest in D
• ΠG – set of service requests at the regions in RG

• LG : RG → 2ΠG – labeling map giving the location of the requests
• assume regions RG and labeling map LG are static and a priori known
• ΠL – set of dynamic service requests which are locally sense
• πO – special request: moving obstacles, unsafe areas, etc.
• each dynamic request from ΠL has an associated servicing radius –

once serviced, they disappears from the environment
• local requests: detected only inside the sensing area of the robot
• local obstacles: only the part inside the sensing area is detected

The mission specification is composed of two parts:
1. The global mission specification defines the long-term motion of

the robot and is given as an LTL−X formula ΦG. A path of the robot
satisfies ΦG if the (infinite) sequence of requests associated with the
global regions the path passes through, satisfies ΦG.

2. The local mission specification specifies how on-line detected
requests ΠL must be handled and is given as a priority function
prio : ΠL → N. Lower values indicate higher priority requests. The
robot must go and service the dynamic request with the highest
priority, if at least one is detected, while avoiding all local obstacles
marked by πO. Priority tiebreaking is random.

Planning is performed in the configuration space C of the
robot and we use a submersion H : C → D to map each
configuration x to a position y = H(x).

Example Scenario

Consider a simplified disaster response scenario, in which
a fully actuated point robot is deployed:
• A, B and C are the global regions;
• The set of dynamic requests is ΠL = {fire, survivor} and the local

obstacle is πO = unsafe. The circles around the dynamic requests are
the servicing radii and the limited sensing area is depicted by a cyan
rectangle.
• The global mission specification is: “Go to region A and then go to

regions B or C infinitely often”, which can be expressed as:
ΦG := GFA ∧G(A ⇒ (¬A U (B ∨ C)))

• The local mission specification is to “Extinguish fires and provide
medical assistance to survivors, with priority given to survivors, while
avoiding unsafe areas.”. Thus prio(survivor) = 0 and prio(fire) = 1.

x

y
Region A

Region B
Region C

unsafe

fire

survivor

Problem (Reactive Temporal Logic Path Planning Problem)

Given a partially known environment described by (D,RG,ΠG,LG,ΠL),
an initial configuration x0 ∈ C, an LTL−X formula ΦG over the set of
properties ΠG, and a priority function prio : ΠL → N, find an (infinite)
path in the configuration space C originating at x0 such that the path
y = H(x) in the environment satisfies ΦG and on-line detected dynamic
requests, while avoiding local obstacles.

Off-line Algorithm

The off-line algorithm is used to generate the global
transition system TG. The procedure is a modified version
of RRG with the following properties:

1. Sparsity: The generated transition system TG is “sparse” (metric), i.e.
the minimum distance between any two states of T is greater than a
prescribed function dependent only on the size of TG

(minx,x′∈TG ‖x− x′‖2 ≥ η(|TG|)). The metric sparsity implies that TG is a
sparse graph. Sparsity is desired because TG is used in the on-line
part of the framework. The environment is partially know by the robot
before the start of the mission. Since transitions of TG may need to be
locally re-planned on-line, TG must only capture the essential features
of D such that ΦG is satisfied. Sparsity also plays an important role in
establishing the complexity bounds for the incremental search
algorithm for a satisfying path.
In order to obtain a sparse TG, we
define a new primitive far(x, η1, η2).
The far function
far : C × R× R→ 2X returns the set
of states from TG that are at most at
η2 distance away from x. However, it
returns an empty set if any state of
TG is closer to x than η1. The bound
functions must satisfy η1(k) < η2(k)
and also c η1(k) > η2(k), for some
finite c > 1 and all k ≥ 0. Also, η1

tends to 0 as k tends to infinity.
2. Incremental: The RRG-based algorithm for generating TG is

complemented with an incremental search algorithm for satisfying
paths. The algorithm is based on the incremental update of the
product automaton PG = TG × B, where B is the Büchi automaton
encoding ΦG, and incremental maintenance of the strongly connected
components of PG using the algorithm from [4]. We show that the
overall execution time of the incremental search algorithm is O(n

3
2),

where n = |TG| is the number of states added during the search. We
also show that this is the the best possible complexity for sparse
transition systems among incremental algorithms, which have a
“locality” property [4]. The maximum number of neighbors for a state
of TG is of order 2d, where d is the dimension of C, but the actual
number is usually much lower.

3. Probabilistically Complete: The proposed algorithm is
probabilistically complete, i.e. the probability that a satisfying path is
found approaches 1 as the number of samples increases.

On-line Algorithm

The on-line planning algorithm is based on RRT, which we
modify in order to find local paths which preserve the sat-
isfaction of the global specification ΦG, while servicing on-
line requests and avoiding locally sensed obstacles.

To keep track of validity of samples (random configura-
tions) with respect to the global specification ΦG, we pro-
pose a method that combines the ideas presented in [5]
on monitors for LTL formulae and [3] on potential functions.
Monitors are used to decide whether an infinite word sat-
isfies or violates an LTL formula based on a finite prefix
of it. In our case, we just use half of a monitor, since we
are interested only in checking if steering the robot to new
samples violates ΦG. The potentials functions approach
described in [3] is used to address the problem of con-
necting the locally generated path to states in the global
transition system such that ΦG is satisfied.

A set A ⊂ SPG is self-reachable if and only if all states in A
can reach a state in A. The potential function VPG(p), p ∈
SPG is defined as the minimum (graph) distance between
p and a final state in F∗PG

, where where F∗PG
⊂ FPG is the

maximal self-reachable set of final states of PG.

The potential function is similar to a Lyapunov function and
is non-negative for all states of PG. It is zero for some
p ∈ SPG if and only if p is a final state and p can reach itself
or a self-reachable final state. Also, if VPG(p) = ∞, p ∈
SPG, then p does not reach any self-reachable final states.
The potential function takes O(

∣∣SPG

∣∣ log
∣∣SPG

∣∣ +
∣∣∆PG

∣∣) to
compute. We extend this definition to the states of TG.
Thus, the potential of a state x w.r.t. a set of Büchi states
B is the minimum potential of all the states in PG formed
from x and B. The potential VTG(x,B) is defined to capture
the fact that not all Büchi states may be available.

Planning Algorithm

Given the global LTL−X specification ΦG, the priority func-
tion for on-line requests prio and the initial configuration of
the robot x0, the steps of the path planning procedure are:

1. Convert ΦG to Büchi automaton B
2. Compute TG and PG = TG × B starting at x0 using the RRG
3. Compute potential function VPG(·)
4. path← emptyList(); xc ← x0; B(xc)← βPG(xc)

5. Repeat indefinitely:
5.1 I ← getLocalRequests()
5.2 If (checkPath(I, path) ∨ ¬path.hasNext()) then

path← planLocally(xc,PG,B, prior, I);
5.3 xn ← path.next(); enforce(xc → xn); xc ← xn;

In the above procedure, local paths are generated by the
RRT-based procedure planLocally() such that they satisfy
ΦG. This requirement is achieved by tracking of Büchi
states for local samples and connecting the leafs of the
local tree to states in TG which have (finite) minimum po-
tential after traversing the corresponding branch of the lo-
cal tree. Also, the line segment between the leaf state from
the tree and the state in TG must be collision free w.r.t. local
obstacles.
Theorem: Using the above planning procedure, the re-
turned infinite path x = x1, . . . in C satisfies the global
mission specification ΦG if every call of the local planner
planLocally() terminates in finite time.

Case Studies

Case Study 1 (Off-line algorithm):
• 2D configuration space w/ x0 = (0.3; 0.3)

• specification: “visit regions r1, r2, r3 and r4 infinitely many times while
avoiding regions o1, o2, o3 and o4”
• LTL−X φ1 = G(Fr1 ∧ (Fr2 ∧ (Fr3 ∧ (Fr4))) ∧ ¬(o1 ∨ o2 ∨ o3 ∨ o4))

• mean execution time: 6.954 sec; mean |TG| = (51, 277); mean
|PG| = (643, 7414); |B| = (20, 155), where B encoding φ1.

• 10D: mean time 16.75 sec, mean |TG| = (69, 1578) and mean
|PG| = (439, 21300)

• 20D: mean time 7.45 minutes, mean |TG| = (414, 75584) and mean
|PG| = (1145, 425544)

Initially After 9 steps

Local RRT tree After onecycle

Case Study 2 (On-line algorithm):
• four local obstacles (uo)
• three dynamic requests: two survivor and a fire
• survivor requests have higher priority than fire requests
• planLocally() was executed 5947 times, took 0.743 sec on average

(std. 0.216, min. 0.436sec, max. 1.645sec)
• mean |TL| = 7.6 (std. 13.15, max. 165)
• serviced 292 on-line requests from a total of 296 detected

Acknowledgment

This work was partially supported by the ONR under grants MURI
N00014-09-1051 and MURI N00014-10-10952 and by the NSF under
grant NSF CNS-1035588.

References

Cristian Vasile and Calin Belta. Sampling-Based Temporal Logic Path Planning. IROS, Tokyo, 2013.

Cristian Vasile and Calin Belta. Reactive Sampling-Based Temporal Logic Path Planning. ICRA, Hong
Kong, 2014.

Xu Chu Ding, Mircea Lazar, and Calin Belta. Receding Horizon Temporal Logic Control for Finite
Deterministic Systems, ACC, 2012.

B. Haeupler, et. al. Incremental Cycle Detection, Topological Ordering, and Strong Component
Maintenance. ACM Trans. Alg., 2012.

Andreas Bauer, et. al. Runtime Verification for LTL and TLTL. TUM-I0724, Institut für Informatik, Tech.
Universität München, 2007.

Hybrid and Networked Systems Laboratory - Division of Systems Engineering - Boston University http://hyness.bu.edu

