
Provably Correct Persistent Surveillance
for Unmanned Aerial Vehicles Subject
to Charging Constraints

Kevin Leahy, Dingjiang Zhou, Cristian-Ioan Vasile,
Konstantinos Oikonomopoulos, Mac Schwager and Calin Belta

Abstract In this work, we present a novel method for automating persistent
surveillance missions involving multiple vehicles. Automata-based techniques were
used to generate collision-freemotionplans for a teamof vehicles to satisfy a temporal
logic specification.Vector fieldswere created for usewith a differential flatness-based
controller, allowing vehicle flight and deployment to be fully automated according
to the motion plans. The use of charging platforms with the vehicles allows for truly
persistent missions. Experiments were performed with two quadrotors over 50 runs
to validate the theoretical results.

Keywords Persistent monitoring · Multi-robot systems · Aerial robotics · Formal
methods

1 Introduction

In this paper, we investigate the automatic deployment of multiple quadrotors under
resource constraints. The relatively short battery life in many unmanned aerial vehi-
cles (UAVs) presents a significant barrier to their use in complex, long term sur-
veillance missions. Moreover, the use of multiple vehicles allows for more complex
behavior and longer mission horizons, but further complicates the task of deploying
those vehicles given limited flight time. We present an algorithm that generates a
feedback controller for multiple quadrotors with charging constraints to meet a com-
plex temporal logic specification. The algorithm comprises a three-part tool chain
that first plans a high level routing schedule for the quadrotors, then generates a
vector field control input for the quadrotors to accomplish the schedule, and finally
controls the quadrotors’ nonlinear dynamics to follow the vector field with a feed-
back controller. The performance of the complete system, with its three interacting
parts, is investigated in 50 experimental runs using two quadrotors and three charging
stations in a motion capture environment.

K. Leahy (B) · D. Zhou · C.-I. Vasile · K. Oikonomopoulos · M. Schwager · C. Belta
Boston University, Boston, MA 02215, USA
e-mail: kjleahy@bu.edu

© Springer International Publishing Switzerland 2016
M.A. Hsieh et al. (eds.), Experimental Robotics, Springer Tracts
in Advanced Robotics 109, DOI 10.1007/978-3-319-23778-7_40

605

606 K. Leahy et al.

Fig. 1 Partitioned environment viewed from above and transition system.Green squares are charg-
ing stations, while blue squares are regions of interest. States in the transition system are charging
stations and regions of interest. Weights on transitions are based on calculated time bounds

We consider the following problem: given an environment and a temporal logic
mission specification with time deadlines that needs to be satisfied infinitely often,
generate control policies for a team of quadrotors to complete the mission, while
ensuring vehicles remain charged and collisions are avoided.

As a motivating example, we consider the environment shown in Fig. 1 consisting
of three charging stations, three regions of interest, and two aerial vehicles. We
assume vehicle battery life is 40 time units, and charging takes 120 time units,
where time units are a generic unit that can be instantiated based on a particular
implementation. Given this environment and these battery and charging constraints,
the vehicles must perform a persistent surveillance mission defined by a rich linear
temporal formula which imposes time bounds on each loop of the vehicle’s (infinite)
run. Thus, the specification is given as a bounded time formula which needs to be
satisfied infinitely often. In this example, we wish the multi-robot system to satisfy
the following mission specification infinitely often: “within 16 time units observe
Region R3 for at least 3 time units; within 28 time units, observe Region R1 for
at least 2 time units; and within 46 time units, observe Region R2 for at least 2
time units then within 8 time units observe Region R1 or Region R3 for at least 2
time units.” We seek a method to generate a control policy ensuring that vehicles
can be automatically deployed to successfully complete this mission in the specified
environment.

The solution to this problem requires the use of several sophisticated systems,
whose interaction both at a theoretical level and an experimental level produces
many unique challenges. Our approach is related to the Vehicle Routing Problem
(VRP) [1], which can be summarized as: given N identical vehicles at a depot and
the distances among all sites and the depot, find a minimum distance tour for each
vehicle such that it begins and ends at the depot and visits each site at least once.
By placing time bounds on when each site must be visited, we obtain a version of

Provably Correct Persistent Surveillance … 607

VRP called Time Window VRP (VRPTW) [2]. Multi-agent control for the VRPTW
has also been considered without temporal logic constraints in [3, 4]. Our work uses
temporal logic constraints for the VRPTW with richer specifications.

Temporal logic and formal methods [5] have been used for robot motion planning
and control in persistent surveillance as in [6, 7]. These works, while consider-
ing optimal persistent surveillance with temporal logic constraints, do not consider
resource constraints. These works also do not consider time windows, which we use
in this paper. Resource constraints have been modeled in the routing problem for one
vehicle without temporal logic constraints in [8]. Resource constraints have also been
modeled for persistent monitoring in [9], in which the authors present a platform for
autonomous charging of UAVs, including an algorithm for persistent surveillance
for multiple vehicles without temporal logic constraints. Our work allows for richer
mission specification while still modeling resource constraints.

The most closely related recent work includes [10] in which the authors propose
a fragment of metric temporal logic, which restricts temporal operators to atomic
propositions and their negation. In that work, each site may be visited only once, and
bounds on transition duration are not allowed. Additionally, their work does not take
into account resource constraints, and optimizes a weighted sum of distance traveled
over a finite horizon. Our approach allows for a vehicle to visit a site multiple times
during a tour if it is required, capturing resource constraints, and allowing bounds
on transition durations.

A version of this work, involving formal methods for creating task plans, appears
in [11]. Additionally, details on the differential flatness approach to vehicle control
appears in [12].

2 Technical Approach

The solution is outlined as follows: first, motion plans are generated to satisfy the
mission specification in Sect. 2.1. A vector field is constructed for navigating the
quadrotors, from which the transition system is abstracted as explained in Sect. 2.2.
Finally, in Sect. 2.3 a differential flatness-based approach is used to control the vehi-
cles through the previously constructed vector field.

2.1 Control Policy Generation

Generating a control policy for our persistent surveillance problem first requires cre-
ating an abstraction of the environment and quadrotor behavior, including a model
of the quadrotor battery charging and discharging. By specifying the mission using
a temporal logic formula, we are able to use automata theoretic techniques in con-
junction with theses abstractions to synthesize a control policy.

608 K. Leahy et al.

Finite Models of the Environment and Quadrotors For simplicity of presentation,
we assume the team is made of N identical quadrotors. Consider a finite abstraction
of the environment given as a graph G = (V = S ∪ C, E, w), where S is the set of
sites and C is the set of charging stations or depots. An edge e ∈ E ⊆ V × V denotes
that a vector field can be constructed such that a vehicle canmove between the source
and destination of the edge (see Sect. 2.2). Quadrotors can deterministically choose
to traverse the edges of G, stay at a site for service, or stay docked in a charging
station. A duration is associated with each edge, which represents the flight time and
includes docking or undocking, if applicable, and is given by w : E → Z≥1. The
construction of the environment graph G is described in Sect. 2.2.

In this paper, we assume that the team has a mutual-exclusive (ME) operation
mode, i.e. at any moment in time at most one quadrotor is flying. Thus, collision
avoidance is conservatively guaranteed.

Each vehicle has a limited amount of battery life, specified as an integer value, and
must regularly return to a charging station. The maximum operation time starting
with a fully charged battery is denoted by top, while the maximum charging time
starting with an empty battery is denoted by tch . The charge-discharge ratio, which
denotes the amount of time required to charge the battery versus how long the vehicle
may fly on a fully-charged battery, is γ = tch

top
≥ 1 and may only take integer values.

For simplicity, we assume that time is discretized, and all durations (e.g., w(E), top,
tch) are expressed as an integer multiple of a time interval Δt .

A battery is abstracted by a discrete battery state bt (i) ∈ {0, . . . , tch}, correspond-
ing to quadrotor i at time t ∈ Z≥0, and an update rule, which specifies the change of
charge after d time units:

bt+d(i) =
{
min{bt (i) + d, tch} vehicle i is docked

bt (i) − γ d otherwise
(1)

It is assumed that the quadrotors are equipped with identical batteries. The batteries
may be charged at any of the charging stations C. Charging may start and stop at any
battery state. Once a quadrotor is fully charged, it will remain fully charged until it
leaves the charging station. We assume that at the start of the mission all quadrotors
are fully charged and docked.

We will say that a quadrotor is active if it is flying, i.e. moving between sites and
charging stations or servicing a request. A request at a site is said to be serviced if a
quadrotor hovers above it. The time bounds in (2) represent the duration for which
each site is to be serviced. A time interval in which all vehicles are docked and none
are charging is called idle time.

Control Policy For q ∈ V , we use �q to denote that a quadrotor is flying towards
q. Let �V = {�q | q ∈ V }. A control policy for the team of quadrotors is a sequence
v = v1v2 . . . where vt ∈ (V ∪ �V)N specifies at each time t ∈ Z≥0 and for each
quadrotor i ∈ {1, . . . , N } if quadrotor i is at a site or charging station or if it is
moving. Let vt (i) and v(i), i ∈ {1, . . . , N }, denote the control value for quadrotor i

Provably Correct Persistent Surveillance … 609

at time t and the control policy for quadrotor i (i.e., the sequence of control values),
respectively. Then a transition (q1, q2) ∈ E performed by quadrotor i starting at time
t will correspond to vt (i) = q1, vt+d(i) = q2 and vt+k(i) = �q2, k ∈ {1, . . . , d − 1},
where d = w(q1, q2) is the duration of the transition. Servicing or charging for one
time interval (Δt time) by quadrotor i at time t corresponds to vt (i) = vt+1(i) ∈ V .
A control policy v = v1v2 . . . determines an output word o = o1o2 . . . such that
ot = {vt (i)|vt (i) ∈ S, i ∈ {1, . . . , N }} is the set of all sites occupied by the N
quadrotors at time t ∈ Z≥0. We use ε to denote that no site is occupied. Note ot

is either ε or a singleton set, because of the ME operation mode assumption. Let q [d]
and qω denote d and infinitely many repetitions of q, respectively.

Bounded Linear Temporal Logic To capture the richness of the specification, we
use bounded linear temporal logic (BLTL) [13], a temporal logic with time bounds
on each of its temporal operators. The mission specification presented in Sect. 1 can
be expressed as Gφ, where φ is given in (2) as a BLTL formula and the G operator
indicates that φ should be satisfied infinitely often.

φ = F≤16G≤3R3 ∧ F≤28G≤2R1 ∧ F≤46(G≤2R2 ∧ F≤10G≤2(R1 ∨ R3)) (2)

In (2), ∧ and ∨ are the usual Boolean operators indicating conjunction and disjunc-
tion, while F and G are the temporal operators “eventually” and “always”, respec-
tively. Superscripts on the temporal operators are time bounds on those operators.
Each Ri is a request associated with the region. A control policy is said to satisfy
the persistent surveillance specification Gφ, where φ is a BLTL formula, if the gen-
erated output word satisfies the BLTL formula φ infinitely often and there is no idle
time between any two consecutive satisfactions of φ. Note that, between successive
satisfactions of φ, the quadrotors may recharge their batteries, i.e. at least one may
not be idle, because it is charging its battery.

Problem Formulation and Overview of the Approach Let v be a control policy.
We say that v is feasible if at eachmoment in time all N quadrotors have non-negative
battery states, i.e., bt (i) ≥ 0 for all i ∈ {1, . . . , N } and t ∈ Z≥0.

Problem 1 Given an environment G = (V = S ∪ C, E, w), N quadrotors with
operation time top and charging time tch , and a BLTL formula φ over S, find a
feasible control policy that satisfies Gφ if one exists, otherwise report failure.

Let v be a feasible control policy satisfying Gφ. We define a loop as a finite
subsequence of v starting with the satisfaction of the formula φ and ending before
the next satisfaction of φ.

The proposed approach to Problem 1 is based on automata techniques [5]. The
motion model of the quadrotor team is represented as a product transition system
between N copies of G which is pruned of any states and transitions which violate
theME operation mode. The product transition system is then composed with a finite
state automatonwhich captures the charging constraints. The resulting productmodel

610 K. Leahy et al.

is then composed with another finite state automaton which accepts the satisfying
language corresponding to the given BLTL formula φ. The finite state automaton
encoding φ is obtained by first translating it [14] to a syntactically co-safe Linear
Temporal Logic formula [15] and then to an automaton using the scheck tool [16].
The satisfiability problem (Problem 1) is solved on the resulting product automaton
by considering all possible states of the team at the start of a loop and paths between
these states obtained with Dijkstra’s algorithm. For more details about the procedure
see [11], where the authors prove the completeness of the proposed approach. In [11],
they also consider the fully-concurrent mode of operation and optimality.

2.2 Vector Field and Transition System Weights

We use a vector field for the implementation of the control policies synthesized as
explained in Sect. 2.1, because it allows for the discrete environment model to be
combined with the continuous dynamics necessary for vehicle navigation. Addition-
ally, once the vector field has been created, upper limits on travel times through the
vector field provide the weights w for the environment graph G such that a control
policy can be synthesized.

Partition To generate the vector field, we first partition the environment into cubes.
Each cube is defined by two vectors, a = (a1, a2, a3) and b = (b1, b2, b3) where
ai < bi for all i = 1, 2, 3. Thus, each cube may be written as

C (a, b) = {
x ∈ R

3|∀i ∈ {1, 2, 3} : ai ≤ xi ≤ bi
}
. (3)

Paths corresponding to edges in the environment are found as sequences of these
cubes. The paths are constrained such that quadrotors fly to a fixed height from the
charging stations and perform all observations from that fixed altitude. From these
paths, we generate to ensure each sequence of cubes is followed.

Vector Field Construction A vector field everywhere inside a given cube can be
created as a convex combination of a set vectors at its vertices [17], expressed as

h (x1, . . . , xN) =
∑

v∈V(a,b)

N∏
i=1

(
xi − ai

bi − ai

)ξi (vi)
(

bi − xi

bi − ai

)1−ξi (vi)

· h (v) , (4)

where xi is the coordinate in the i th dimension of a point in the cube, V (a, b) are the
vertices of cube C (a, b), h (v) are the vectors at each vertex v ∈ V (a, b), N = 3,
and ξi (vi) is an indicator function such that ξi (ai) = 0 and ξi (bi) = 1. Such a vector
field can be used to keep the vehicle from leaving the cube (stay-in-cell) or to force
it to leave through a given facet (control-to-facet), as displayed in Fig. 2.

Provably Correct Persistent Surveillance … 611

Fig. 2 Vector field detail and quadrotor flight data. The cube at the top left shows a control-to-facet
vector field, and the cube at the bottom left shows a stay-in-cell vector field. One of these two kinds
of fields is given to the quadrotor in each cell along its path to guide it through the desired trajectory

For each cube in any given path, we create a control-to-facet vector field to lead
to the next cube in the path. Because discontinuities in the vector field could result in
undesirable behavior of the quadrotors, we must ensure that velocity is continuous
from one cube to the next. We ensure continuity by examining vectors at the facet
where cubes meet. For each corner of such a facet, the vectors from the two cubes
are compared to each other. Only the vector components that the two vectors have in
common are kept. This process is illustrated in Fig. 3. In the figure, cells A, B, and
C are joined together, and B then shares a facet with A and C. The vectors for cell B
and C on their shared facet are identical, and continuity is ensured. But the vectors on
A’s shared facet with B are different (Fig. 3b). Thus the vertical components of these
vectors are discarded, but the horizontal components, which are identical, are kept
(Fig. 3c). Because of this process, there are limitations to the types of arrangements
of cubes that can be constructed, because they would result in a vector of zero mag-
nitude (see Fig. 4b), but in practical examples, such arrangements are unlikely to be
desirable and can be avoided by using a finer partition of the environment if necessary.

Weights Because satisfaction of (2) depends on the time to travel among the regions
of the environment, these times must be known. We can calculate the upper bound
on the travel time between any two regions, which are captured as weights on the
transition system described above. We model hovering over a region or charging as
self-loop transitions of weight 1. Calculating the upper time bound for leaving a cube

612 K. Leahy et al.

Fig. 3 Two-dimensional example of combining vectors. a Control-to-facet vector field from A to
B and B to C, and stay-in-cell vector field for cell C. b Vector conflict where A, B and C meet. c
Final vector field, keeping only non-conflicting vector components

Fig. 4 Two-dimensional example of vector field configurations from A to B. a Allowable con-
figuration results in vectors with some zero-magnitude components, while resulting in no vectors
with zero-magnitude. b Not allowable configuration with an occurence of zero-magnitude for all
components (circled)

depends on the vectors at the vertices. If none of these vectors has a component of
magnitude zero, we calculate the time bound for exiting the cube through facet F as

T F = ln

(
sF

sF̄

)
bi − ai

sF − sF̄
, (5)

where F̄ is the facet opposite F , and sF , sF̄ are the minimum vector components in
the i th direction on facet F and F̄ , respectively [18]. In the event that sF approaches
sF̄ , T F approaches (bi − ai) /sF̄ .

Because of the continuity requirements on the vector field, it is possible to have
a vector with a component of magnitude zero (i.e. as seen in Fig. 4a). In this case, as
long as there remains a non-zero component in another direction, there is a guaranteed
upper bound on the time to leave the cell. This time bound, in the case of a zero-
magnitude component in the i th direction and a non-zero component in the j th
direction, while exiting in the i th direction through the facet containing the zero-
magnitude component, can be expressed as

T F = T F
i + T F

j =
(

bi − ai

sF
(

M
2 − 1

)
)

ln

(
M

2

)
+

(
b j − a j

−2sF

)
ln (1 − M) , (6)

Provably Correct Persistent Surveillance … 613

where 0 < M < 1 is ameasure of “conservatism.” The closer M is to 1, the larger the
time bound, and the higher the guarantee of the time bound being correct. This is due
to the asymptotic nature of the solution approaching the zero-magnitude component
in the i th direction.

2.3 Vector Field Following

Motion planning often involves the use of vector fields to be followed by a robot.
This is easily accomplished with most ground robots as well as slow aerial robots.
In our experiments however, we use quadrotors, which cannot easily follow a vector
field because of their high dimensional, nonlinear dynamics. Thus, we exploit the
differential flatness of quadrotor dynamics to design a controller which will allow
the quadrotor to follow the vector field, compensating for the quadrotor’s nonlinear
dynamics [12].

Differential Flatness Quadrotor dynamics are given by the nonlinear system of
equations

v̇ = ge3 + 1

m
R fze3 (7)

Ṙ = RΩ (8)

ω̇b = J−1τ − J−1Ω Jωb (9)

ḣ = v, (10)

where v = [vx , vy, vz]T is the velocity in the world frame, g is the acceleration due
to gravity, m is the mass, fz is the total thrust force from the rotors, e3 = [0, 0, 1]T ,
and hence fze3 is aligned with the negative vertical direction of the body frame,−zb.
R is the rotation matrix from the world frame to the body frame, defined in terms of
Euler angles ψ , θ , and φ. ωb = [p, q, r]T is the angular velocity of the quadrotor
expressed in the body frame, Ω = ω∧

b is the tensor form of ωb. The torque on the
quadrotor is given by τ in the body frame Fb. J is the inertia matrix of the quadrotor,
and h is the position of the quadrotor in the world frame.

The system as defined in (7)–(10) has a 12-dimensional state, ξ = [x , y, z, vx ,
vy , vz , ψ , θ , φ, p, q, r]T , and input, μ = [fz, τx , τy, τz]T , which is the total thrust
and three torques. The state and input are differentially flat. Their flat outputs

σ = [σ1, σ2, σ3, σ4]T := [x, y, z, ψ]T , (11)

consisting of position and yaw, are such that the state, ξ is a function of these outputs
and their derivatives. More precisely, ξ = β(σ, σ̇ , σ̈ ,

...
σ), with

614 K. Leahy et al.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[x, y, z, vx , vy, vz, ψ]T = β1:7(σ, σ̇) = [σ1, σ2, σ3, σ̇1, σ̇2, σ̇3, σ4]T

θ = β8(σ, σ̇ , σ̈) = atan2(βa, βb)

φ = β9(σ, σ̇ , σ̈) = atan2(βc,

√
β2

a + β2
b)

[p, q, r]T = β10:12(σ, σ̇ , σ̈ ,
...
σ) = (RT Ṙ)∨,

(12)

where ⎧⎪⎨
⎪⎩

βa = − cos σ4σ̈1 − sin σ4σ̈2

βb = −σ̈3 + g

βc = − sin σ4σ̈1 + cos σ4σ̈2,

(13)

and R is the rotationmatrix with the Euler angles (φ, θ) defined in (12). Furthermore,
the input,μ, is also a function of the flat outputs, expressed asμ = γ (σ, σ̇ , σ̈ ,

...
σ ,

....
σ),

with ⎧⎪⎨
⎪⎩

fz = γ1(σ, σ̇ , σ̈) = −m ‖ σ̈1:3 − ge3 ‖
[τx , τy, τz]T = γ2:4(σ, σ̇ , σ̈ ,

...
σ ,

....
σ)

= J (ṘT Ṙ + RT R̈)∨ + RT Ṙ J (RT Ṙ)∨,

(14)

where σ̈1:3 = [σ̈1, σ̈2, σ̈3]T for short and the ∨ map is the inverse operation of ∧. For
details and a proof, please refer to [12].

With the flat outputs and their derivatives obtained as described below, the above
equations can generate all the states and inputs. A standard SE(3) controller [19]
can be implemented to control the quadrotor flight along the vector field using the
states and inputs as a control reference.

Vector Field DerivativesThe inputs described in (14) require knowledge of velocity,
acceleration, jerk, and snap. Hence it is necessary to find the time derivatives (σ̇ , σ̈ ,
...
σ ,

....
σ) by taking spatial derivatives of the vector field. We only consider vector fields

which do not specify rotation, hence the yaw angle σ4 is irrelevant. We arbitrarily set
σ4(t) ≡ 0. In general, the flat output derivatives σ̇1:3, σ̈1:3,

...
σ 1:3,

....
σ 1:3 at any point x

in a vector field h(x) can be recursively calculated by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ̇1:3(x) = h(x)

σ̈1:3(x) = J (σ̇1:3(x), x)σ̇1:3(x)
...
σ 1:3(x) = J (σ̈1:3(x), x)σ̈1:3(x)
....
σ 1:3(x) = J (

...
σ 1:3(x), x)

...
σ 1:3(x),

(15)

where J (f (x), x) denotes the Jacobian matrix of the function f (x).
The velocity is obtained directly from the vector field described by (4), fromwhich

the derivatives required for the differential flatness controller given in (15) can be
derived analytically. First (4) is rewritten in matrix form as

Provably Correct Persistent Surveillance … 615

h(x1, . . . , x3) = [c1, . . . , c8]

⎡
⎢⎢⎣

h1x1 h1x2 h1x3

...
...

...

h8x1 h8x2 h8x3

⎤
⎥⎥⎦ . (16)

In this form, the coefficients c are functions of position, but the values of h are
fixed for any given cube. This form is therefore convenient for computation of the
acceleration and other vector field derivatives.
In general, the acceleration at x is given by

a(x) = J (v(x), x)v(x), (17)

whereJ (f (x), x) denotes the Jacobian matrix of the function f (x), which is a 3×3
matrix with entries

Ji j = ∂vi

∂x j
= h1xi

∂c1
∂x j

+ · · · + h8xi

∂c8
∂x j

. (18)

Through straightforward calculation, acceleration is therefore given by

ai =
3∑

j=1

(
8∑

k=1

hkxi

∂ck

∂x j

)
v j . (19)

It should be noted that the vector fields for acceleration, jerk, and snap are continuous
everywhere within a given cube but may be discontinuous at the facets between
cubes. Similar calculations can be done for jerk and snap and are omitted due to
space limitations.

3 Results and Experiments

The partitioned environment (Figs. 1 and 7) consists of 385 cubes each with edge
length 0.36m. Control policies for Gφ were calculated over the transition system
displayed in Fig. 1. The computation time, excluding encoding of (2), was 301.7 s on
a Linux system with a 2.1 GHz processor and 32 GB memory, and the final product
automaton had 579,514 nodes and 2,079,208 edges. No solutions were found for
quadrotors starting on Chargers C2 and C3, but all other combinations of starting
positions yielded solutions.

Experiments were performed in the Boston University Multi-robot Systems Lab.
The lab consists of a flight space with IR cameras to track reflective markers on the
quadrotors using an OptiTrack system. This system allows for real-time localization
of the quadrotors during experiments. Two K500 quadrotors from KMel robotics
were used to execute the control policies described in Sect. 3.

616 K. Leahy et al.

Fig. 5 Quadrotor resting on charging station

Fig. 6 Timeline of quadrotor flights for two loops. The first two rows display the first loop, with
Quadrotor 1 flying before Quadrotor 2. The next two rows show the second loop, with Quadrotor 2
flying first

Charging stations (Fig. 5) were designed and built at Boston University for auto-
matic docking and charging of quadrotors. These platforms allow a vehicle to land
when its battery requires charging. When using multiple such platforms, another
vehicle can then take off, ensuring continuous monitoring in situations where one
vehicle may not be able to satisfy a persistent monitoring mission specification on
its own.

The charging stations are made of laser cut acrylic parts connected with PLA
plastic 3D printed parts. The electronics of the station consist of the Hyperion
EOS0720i Net3AD charger, modified to enable control by MATLAB. To secure
a robust connection with the stainless steel pads of the charging station, the quadro-
tors are equipped with stainless steel contacts mounted on springs with magnets. The
platform is entirely controlled by MATLAB via USB connection, allowing for the
detection of the presence of a quadrotor, real-timemonitoring of battery and charging
status, and control of the charging parameters including battery type, capacity, and
charging rate. The maximum charging rate that can be achieved is 8amps.

Figure6 shows the results of a flight by two quadrotors. Seconds were used as the
time units for these experiments so flights could be rapidly performed and analyzed.

Provably Correct Persistent Surveillance … 617

Fig. 7 Screencaps of the first flight loop

The quadrotors, shown in red (Quad 1) and blue (Quad 2) in Fig. 7, start fully
charged from the charging stations C1 and C2, respectively. The control policy v for
the two quadrotors, generated as described in Sect. 2.1, is the following:

v(1) = C1[1] �R1[6]
R1[3] �R3[4]

R3[4] �C3
[10]

C3[41](
C3[31] �R2[5]

R2[3] �R3[10]
R3[3] �C3

[10])ω

v(2) = C2[29] �R2[12]
R2[3] �R1[10]

R1[3] �C1
[12](

C1[1] �R1[6]
R1[3] �R3[4]

R3[4] �C1
[12]

C1[32]
)ω

.

(20)

Under control strategy (20), in the first loop Quadrotor 1 (red) take-off first and
services sites R1 and R3 andQuadrotor 2 (blue) completes the loop by servicing sites
R2 and R1. In all subsequent loops, Quadrotor 2 (blue) takes-off first and services
sites R1 and R3 and Quadrotor 1 complete the loop by servicing sites R2 and R1.
After the first loop, Quadrotors 1 and 2 always return to C3 and C1, respectively.
The corresponding output word is

o = ε[7] R1[3]ε[4] R3[4]ε[23] R2[3]ε[10] R3[3]ε[12](
ε[7] R1[3]ε[4] R3[4]ε[18] R2[3]ε[10] R3[3]ε[10])ω

.

The flights presented in the experiments consist of the first two loops each satisfying
φ. Any subsequent loopwould be identical to the second loop. Sinceφ can be satisfied
repeatedly, these flights can satisfy the mission specification, Gφ.

Figure6 shows that the specification was satisfied for both loops in the flight.
Region R1 was visited in 5.76 s in Loop 1 and 7.48 s in Loop 2, ahead of the 28s
deadline. Likewise, Region R3 was visited in 12.44 and 12.64 s ahead of the 16s

618 K. Leahy et al.

deadline. In the second portion of each loop, Region R2 was visited in 34.00 and
30.27 s with a deadline of 46 s, and Region R1 was visited within the 8 s deadline
after each visit to Region R2.

The two-loop flight described above was performed 50 times, and both quadrotors
were consistent in their flight times. The standard deviation in the length of each
portion of the flight time was on the order of 0.1s. Despite this consistency, the
time bound on flying from Charger C1 to Region R1 was violated by the second
quadrotor in each flight, while not being violated by the first quadrotor. While the
vehicles were nominally identical, small physical differences between them required
the controllers to be tuned using different values. Because both quadrotors followed
the same vector field using the same controller, this time bound violation suggests
some potential for better tuning of the controllers.

4 Conclusion

The main insight gleaned from this experiment is how to automate a complex per-
sistent surveillance mission specified as a temporal logic formula. The methodology
explained herein allows for rapid experimentation following theoretic work using
temporal logics. By using the environment partition and transition system genera-
tion with time bounds, minimal human input is required to establish an experimental
framework for simulating and executing missions. Further, the inclusion of charging
stations, whose performance can be modeled using automata, allows for long-term,
truly persistent missions involving multiple vehicles not only to be modeled, but to
actually be performed in the lab.

The implementation of the persistent surveillance framework required three sys-
tems to be integrated together: the BLTL control synthesis algorithm, the vector field
generation algorithm, and the quadrotor differential flatness controller. Inevitably,
limitations appear at the interfaces of such systems. For example, the use of multiple
vehicles required tuning the controllers quite differently to ensure that the vector field
was followed, even though the vehicles are of the same make and model. Regard-
less of any such complications, because a conservative approach was used, such as
using upper bounds on travel time rather than expected travel time, the system met
the specifications reliably and predictably. These experiments establish a framework
that can be extended to a variety of future work.We are particularly interested in loos-
ening restrictions on mutually exclusive operation so that multiple vehicles may be
airborne simultaneously. This would also allow for more complex distributed tasks,
such as simultaneously servicing several sites. We are also interested in extending
this work to longer mission horizons with more vehicles.

Acknowledgments This work was supported in part by NSF grant number CNS-1035588, and
ONR grant numbers N00014-12-1-1000, MURI N00014-10-10952 and MURI N00014-09-1051.
The authors are grateful for this support.

Provably Correct Persistent Surveillance … 619

References

1. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1), 80–91 (1959)
2. Toth, P., Vigo, D.: The Vehicle Routing Problem. SIAM (2001)
3. Michael, N., Stump, E.,Mohta, K.: Persistent surveillancewith a team ofmavs. In: Proceedings

of the International Conference on Intelligent Robots and Systems (IROS 11), pp. 2708–2714.
IEEE (2011)

4. Stump, E., Michael, N.: Multi-robot persistent surveillance planning as a vehicle routing prob-
lem. In: Proceedings of the IEEEConference onAutomation Science and Engineering (CASE),
pp. 569–575. IEEE (2011)

5. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
6. Smith, S., Tumova, J., Belta, C., Rus, D.: Optimal path planning for surveillance with temporal

logic constraints. Int. J. Robot. Res. 30(14), 1695–1708 (2011)
7. Ulusoy,A., Smith, S.L., Ding,X.C., Belta, C., Rus,D.:Optimality and robustness inmulti-robot

path planning with temporal logic constraints. Int. J. Robot. Res. 32(8), 889–911 (2013)
8. Sundar, K., Rathinam, S.: Algorithms for routing an unmanned aerial vehicle in the presence

of refueling depots. IEEE Trans. Autom. Sci. Eng. 11(1), 287–294 (2014)
9. Mulgaonkar, Y., Kumar, V.: Autonomous charging to enable long-endurancemissions for small

aerial robots. Proc. SPIE-DSS 9083(64) (2014)
10. Karaman, S., Frazzoli, E.: Vehicle routing problem with metric temporal logic specifications.

In: IEEE Conference on Decision and Control, pp. 3953–3958 (2008)
11. Vasile, C., Belta, C.: An automata-theoretic approach to the vehicle routing problem. In: Robot-

ics: Science and Systems Conference (RSS), Berkeley (2014)
12. Zhou, D., Schwager, M.: Vector field following for quadrotors using differential flatness. In:

Proceedings of the International Conference on Robotics and Automation (ICRA) (2014)
13. Jha, S., Clarke, E., Langmead, C., Legay, A., Platzer, A., Zuliani, P.: A bayesian approach to

model checking biological systems. In: Proceedings of the 7th International Conference on
Computational Methods in Systems Biology, CMSB ’09, pp. 218–234. Springer, Berlin (2009)

14. Tkachev, I., Abate, A.: Formula-free finite abstractions for linear temporal verification of sto-
chastic hybrid systems. In: Proceedings of the 16th International Conference on Hybrid Sys-
tems: Computation and Control, Philadelphia (2013)

15. Kupferman, O., Vardi, M.: Model checking of safety properties. Form. Methods Syst. Des.
19(3), 291–314 (2001)

16. Latvala, T.: Effcientmodel checking of safety properties. In: 10th International SPINWorkshop,
Model Checking Software, pp. 74–88. Springer (2003)

17. Belta, C., Habets, L.C.G.J.M.: Controlling a class of nonlinear systems on rectangles. IEEE
Trans. Autom. Control 51(11), 1749–1759 (2006)

18. Aydin Gol, E., Belta, C.: Time-constrained temporal logic control of multi-affine systems.
Nonlinear Anal. Hybrid Syst. 10, 21–33 (2013)

19. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In:
2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2520–2525.
IEEE (2011)

	Provably Correct Persistent Surveillance for Unmanned Aerial Vehicles Subject to Charging Constraints
	1 Introduction
	2 Technical Approach
	2.1 Control Policy Generation
	2.2 Vector Field and Transition System Weights
	2.3 Vector Field Following

	3 Results and Experiments
	4 Conclusion
	References

