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Abstract— This work presents partial satisfaction control
synthesis over an extension of Weighted Signal Temporal
Logic wSTL called wSTL+. The new specification language
wSTL+ enables the definition of preferences and importance
of subformulae as weights over-inclusive (soft) operators (i.e.,
standard Boolean and temporal operators from wSTL). Fur-
thermore, it includes exclusive operators that impose hard
constraints to disallow specific subformulas to be partially
satisfied. All subformulae must be fully satisfied or violated
for conjunctive operators (conjunction and always). In the case
of disjunctive operators (disjunction and eventually), mutual
exclusive satisfaction is imposed, i.e., exactly one subformula
holds. The weights in the specification capture the preferences
and importance of fully satisfiable specifications and modulate
the solution over conflicting or infeasible specifications. We
formulate the partial satisfaction problem over wSTL+ spec-
ifications as a bilevel optimization problem. The inner level is
modeled as a MILP and captures the customized satisfaction
of the wSTL+ specification. The outer level is a linear program
that maximizes the robustness of the satisfiable solution found
in the inner level. Finally, we show the performance of our
method in different case studies involving robot navigation in
planar environments.

I. INTRODUCTION

In recent years, Temporal Logic formalisms have proved
to be useful for efficiently handling and scheduling com-
plex tasks [Bellini et al.(2000)Bellini, Mattolini, and Nesi],
[Kress-Gazit et al.(2018)Kress-Gazit, Lahijanian, and Ra-
man] due to their rich expressivity to specify complex
temporal and logical system behavior. Linear Temporal
Logic (LTL) allows imposing Boolean and temporal con-
straints [Baier and Katoen(2008)], [Bisoffi and Dimarogo-
nas(2020)]. However, the most significant limitation comes
from considering implicit time. Therefore, timed specifi-
cation languages, such as Signal Temporal Logic (STL),
have been proposed to capture time explicitly [Maler and
Nickovic(2004)], [Sun et al.(2022)Sun, Chen, Mitra, and
Fan]. Additionally, STL is defined over continuous sig-
nals and real predicates and provides quantitative semantics
(robustness) indicating the margin of satisfaction or vio-
lation of the specification [Haghighi et al.(2019)Haghighi,
Mehdipour, Bartocci, and Belta], [Lindemann and Dimarog-
onas(2019b)], [Mehdipour et al.(2020)Mehdipour, Vasile,
and Belta]. Hence, the control synthesis using STL can
be modeled as an optimization problem where maximiz-
ing robustness leads to optimal satisfaction [Sadraddini
and Belta(2015)], [Leahy et al.(2021)Leahy, Serlin, Vasile,
Schoer, Jones, Tron, and Belta].
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Fig. 1. Drone tasked to visit multiple regions in a planar environment.
(a) comparison of solutions for infeasible specification in STL, wSTL, and
wSTL+. (b) exclusive operators’ versatility in wSTL+ specification.

Although STL is a very versatile language, every subfor-
mula in the specification has the same importance. Neverthe-
less, in reality, there are situations where one formula or time
intervals are preferable over others. Therefore, an extension
to STL was proposed in [Mehdipour et al.(2020)Mehdipour,
Vasile, and Belta] called Weighted Signal Temporal Logic
(wSTL) that captures preferences, priorities, and importance
of subformulae by incorporating weights over logical and
temporal operators. In this work, we proposed an extension
to wSTL, referred to as wSTL+, where exclusive operations
are added to the Boolean and Temporal operators. These
capture that all subformulae are counted into the satisfaction
and at all times or not considered at all in case of exclusive
conjunction and exclusive always, respectively. In the case of
exclusive disjunction (exclusive eventually), one subformula
is satisfied (at a one-time step only), and no other is satisfied
(at no other time step within the interval).

On the other hand, even though STL and wSTL standard
robustness definitions can compute a minimally violated
solution in case of conflicting or infeasible specifications,
none of them can partially satisfy the conflicting formulae
in the specification. In this work, we propose a framework
that captures wSTL+ semantics in the context of partial
satisfaction. To make this clear, let us consider the following
example:

Example 1. A quadrotor in a planar environment, shown in
Fig. 1(a) with disjoint labeled regions of interest, is tasked
with the following mission specification: “Always between 2
to 4 hours after deployment monitor region A and B.”

In Fig. 1(a) shows the expected computed solution by STL
(red dashed line) and wSTL (cyan-filled area) corresponding
to the minimal violation of the specification (staying in the
middle ofA and B) in the case of STL and the span of a devi-
ated violation solution in the case of the wSTL depending on



the assigned preference weight, respectively. Note that none
of them actually satisfies in full or partially the specification.
The desired solution is the partial satisfaction of the speci-
fication given as wSTL+ (purple dashed line). Furthermore,
thanks to the inclusion of exclusive operators in wSTL+, it
can impose the partial satisfaction solution even if the regions
of interest are no longer disjoint sets that must not be visited
simultaneously. In Fig. 1(b) shows solutions corresponding
to exclusive disjunction (purple), both exclusive conjunction
(red), and none exclusive conjunction.

Multiple methods in the literature tackle partial sat-
isfaction in the context of temporal logic going from
automata based approaches [Cai et al.(2020b)Cai, Peng,
Li, and Kan], [Cai et al.(2020a)Cai, Peng, Li, Gao, and
Kan], [Kamale et al.(2021)Kamale, Karyofylli, and Vasile],
[Lacerda et al.(2015)Lacerda, Parker, and Hawes], [Lahi-
janian et al.(2015)Lahijanian, Almagor, Fried, Kavraki,
and Vardi], [Guo and Dimarogonas(2015)], control bar-
rier functions [Lindemann and Dimarogonas(2019a)] to
computing policies in an optimization model [Raman
et al.(2014)Raman, Donzé, Maasoumy, Murray, Sangiovanni-
Vincentelli, and Seshia], [Choudhury et al.(2020)Choudhury,
Gupta, Kochenderfer, Sadigh, and Bohg]. However, our
primary focus is on the extension of our previous work
[Cardona and Vasile(2023)] that captures the global partial
satisfaction of STL specifications as a bilevel optimization
problem. The inner level identifies satisfiable subformulae
prioritizing lower-depth on the Abstract Syntax Tree (AST)
modeled as a Mixed Integer Linear Program (MILP). The
outer level is a Linear Program (LP) that maximizes the
robustness of all satisfied subformulae by a solution of the
MILP. In this work, we consider the partial satisfaction over
wSTL+ specifications that allows us to modulate and capture
preferences over the partial satisfiable solution. Differently
from [Cardona and Vasile(2023)] that computed fractions of
satisfaction, the solution of our inner level measures how
close the solution is to the preferred specified solution.

The main contributions of this work are

1) We propose an extension to wSTL [Mehdipour
et al.(2020)Mehdipour, Vasile, and Belta], referred
to as wSTL+, including exclusive operators such as
exclusive conjunction, exclusive disjunction, exclusive
always, and exclusive eventually.

2) We propose a definition of the weights, Boolean, and
temporal operators in wSTL+ in the context of partial
satisfaction as tie-breaking rules for conflicting subfor-
mulae, inclusive (soft), and exclusive (hard) preference
constraints.

3) We formulate a MILP approach that captures the
semantics of wSTL+ specifications as fractions of
preferred satisfaction.

4) Finally, we show the versatility of the wSTL+ to
modulate the solution on conflicting or infeasible spec-
ifications and time performance in three case studies
involving agents navigating in planar environments.

II. PRELIMINARIES AND NOTATION

Let Z, R, and B denote the sets of integer, real, and binary
numbers. The set of integers greater than a is Z≥a. For a set
S, 2S and ∣S∣ represent its power set and cardinality. For
S ⊆ R and α ∈ R, we have α + S = {α + x ∣ x ∈ S}. The
integer interval (range) from a to b is [a..b]. For a range
I = [a..b], we use I = a and Ī = b. Let x ∈ Rd be a d-
dimensional vector. The i-th component of x is given by xi,
i ∈ [1..d].

A. Weighted Signal Temporal Logic

Here we describe the semantics of Weighted Sig-
nal Temporal Logic (wSTL) introduced in [Mehdipour
et al.(2020)Mehdipour, Vasile, and Belta]. It is an extension
of Signal Temporal Logic that allows specifications to cap-
ture user preferences, priorities, and importance associated
with the Boolean and temporal operators.

Definition 1 (Weighted Signal Temporal Logic (wSTL)
[Mehdipour et al.(2020)Mehdipour, Vasile, and Belta]). The
syntax of wSTL in [Mehdipour et al.(2020)Mehdipour, Vasile,
and Belta] is defined in Backus-Naur form as follows

ϕ ∶∶= ⊺ ∣ � ∣ µ ∣ ¬ϕ ∣ ⋀
i∈[1..N]

p
ϕi ∣ ⋁

i∈[1..N]

p
ϕi ∣ ◊

w
I ϕ ∣ ◻wI ϕ,

(1)

where ⊺ and � are the logical True and False; µ is a linear
predicate of the form si ≥ π with threshold π over the i-
th component of signal s; ¬, ∧, and ∨ are the Boolean
negation, conjunction and disjunction operators, respectively.
◊ (eventually) and ◻ (always) are temporal operators with
time bound in the range I with the same definitions as for
STL [Maler and Nickovic(2004)]. Weight functions assign
the positive weights over Boolean operators’ conjunction and
disjunction formulae p ∶ [1..N]→ R>0, where N is the num-
ber of sub-formulae under the operator. For sub-formulae in
conjunction, denoted as (∧p(ϕ1, ϕ2, . . . , ϕN)), the weights
capture the importance of parallel tasks, whereas for the sub-
formulae in disjunction, denoted as (∨p(ϕ1, ϕ2, . . . , ϕN)),
the weights indicate priorities for alternatives. The positive
weight functions w ∶ I → R>0 capture user preferences
for satisfaction times for the eventually operator and the
importance of satisfaction times in the case of the always
operator.

wSTL specifications with all weights p and w equal one
are equivalent to STL specifications. The Boolean (qualita-
tive) semantics of a wSTL specification ϕ is the same as the
STL specification φ, the unweighted version of wSTL.
The robustness (quantitative semantics) of a wSTL specifi-
cation ϕ captures the margin of satisfaction or violation of
a signal s over ϕ modulated by the specified weights.

Definition 2 (Weighted Traditional Robustness). Given a
wSTL specification ϕ and a signal s, the weighted robustness



score ρ̃(ϕ, s, k) at time k is recursively defined as follows

ρ̃(µ, s, k) ∶= si(k) − π,
ρ̃ (¬ϕ, s, k) ∶= −ρ̃(ϕ, s, k),

ρ̃(⋀
i

p
ϕi, s, k) ∶= min

i
{p∧i ⋅ ρ̃(ϕi, s, k)} ,

ρ̃(⋁
i

p
ϕi, s, k) ∶= max

i
{p∨i ⋅ ρ̃(ϕi, s, k)} ,

ρ̃ (◻w
I ϕ, s, k) ∶= min

k′∈k+I
{w◻(k′ − k) ⋅ ρ̃(ϕ, s, k′)} ,

ρ̃ (◊w
I ϕ, s, k) ∶= max

k′∈k+I
{w◊(k′ − k) ⋅ ρ̃(ϕ, s, k′)} ,

(2)

where I ′ = [k..k′], and p∧i , p
∨

i , w
◻(k′ − k), and w◊(k′ − k)

are appropriate normalized weights.

Note that if all weights in the wSTL specification are
positive, then the robustness score is a scaled value of the
equivalent STL robustness.

Theorem 1 (wSTL Soundness [Mehdipour
et al.(2020)Mehdipour, Vasile, and Belta]). The robustness
score of wSTL ρ̃(ϕ, s, k) is sound iff

ρ̃(ϕ, s, k) > 0 ⇐⇒ ρ(φ, s, k) > 0→ s ⊧ ϕ,

ρ̃(ϕ, s, k) < 0 ⇐⇒ ρ(φ, s, k) < 0→ s ⊭ ϕ,

Note that a positive robustness score of a wSTL specification
ϕ implies that the robustness score of its equivalent STL
specification φ is also positive and therefore signal s satisfies
the specification.

The time horizon of an wSTL formula [Dokhanchi
et al.(2014)Dokhanchi, Hoxha, and Fainekos] is defined as

∥ϕ∥ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if ϕ = si ≥ π,
∥ϕ1∥, if ϕ = ¬ϕ1,

max{∥ϕ1∥, ∥ϕ2∥}, if ϕ ∈ {∧p(ϕ1, ϕ2), ∨p(ϕ1, ϕ2)},
Ī + ∥ϕ1∥, if ϕ ∈ {◊w

I ϕ1, ◻w
I ϕ1}.

(3)
A wSTL formula is said to be in positive normal form

(PNF) if it satisfies two conditions. First, all its predicates are
of the si ≥ µ form. Second, it does not contain the negation
operator. Any wSTL formula can be represented using an
abstract syntax tree (AST) in which intermediate nodes
correspond to logical and temporal operators, and leaves
to predicates [Hopcroft et al.(2001)Hopcroft, Motwani, and
Ullman], weights p and w are weights assigned to the edges
of the tree. We use ϕ′ ⊏ ϕ to denote that ϕ′ is a proper
subformula of ϕ, and ϕ′ ⊑ ϕ when they can also be equal.

III. PROBLEM FORMULATION

This section introduces the control synthesis problem
subject to a mission specification imposing temporal and
logical constraints. We focus on cases where not all parts of
the mission can be satisfied due to control input limitations or
conflicting (competing) specifications, and then a customized
partial satisfaction of the mission is desired. We introduce a
new language specification called wSTL+, an extension of
wSTL that captures hard and soft constraints in the form
of exclusive satisfaction and preferences and importance
over partial satisfaction of specifications, respectively. In the
case of fully satisfiable specifications, wSTL+ modulates the

robustness degree based on specification weights. When only
partial satisfaction can be achieved, wSTL+ provides finer
specification control over which parts of the specification
should be prioritized and how to break ties. We define two
different types of preferences. First, inclusive preferences
(all operators in standard wSTL) that indicate the preferable
subformulae to be accounted into satisfaction if possible.
Second, exclusive preferences indicates that the subformula
needs to be entirely satisfied or not considered at all in the
case of “conjunction” and “always” operators. For “disjunc-
tion” and “eventually” operators, just one and not any other
subformulae (mutually exclusive).

Finally, we define the partial satisfaction (PS) problem
that requires synthesizing control inputs such that as much
of the formula is satisfied while capturing user-inclusive and
exclusive preferences.

A. Weighted Signal Temporal Logic (wSTL+)

In this section, we introduce an extension of wSTL re-
ferred to as Weighted Signal Temporal Logic (wSTL+) that
allows specifications to capture preferences, priorities, and
importance inclusively and exclusively through the Boolean
and temporal operators.

Definition 3 (Weighted Signal Temporal Logic (wSTL+)).
The syntax of wSTL+ in Backus-Naur form over linear
predicates is

ϕ ∶∶=⊺ ∣ µ ∣ ¬ϕ ∣ ⋀
i∈[1..N]

p
ϕi ∣ 	

i∈[1..N]

p
ϕi ∣ ⋁

i∈[1..N]

p
ϕi ∣

�
i∈[1..N]

p
ϕi ∣ ◊

w
I ϕ ∣◊⋅ wI ϕ ∣ ◻wI ϕ ∣ ⊡wI ϕ,

(4)

where the weights p, w, predicates µ, Boolean true ⊺, inclu-
sive conjunction ∧pi , and inclusive disjunction ∨pi , inclusive
eventually ◊wI , and inclusive always ◻wI are semantically
identical to wSTL semantics (1). Note that we call these
inclusive preferences since the weights pi and wi capture
the preferences over the subformulae of the mission spec-
ification. Higher weight values of pi will imply a higher
preference over the i-th subformula, while wi describes
importance at time steps within interval I .

Example 2 (Continuation of Example (1)). Thus, example
(1) can now be expressed as ϕ1 = ◻w

[2,4](∧
p(A,B)) as the

desired solution in Fig. 1(a) (purple) can be accomplished
by defining appropriate weights. For instance, w = [1,1,1]
since no specific timestep has a higher importance, and p =
[p1, p2] with p1 > p2 which will imply the preference for
going to region A.

On the other hand, let us consider a signal s at time
k as s(k) and, for simplification, p and w equal to one
for all operators. Then .piϕi with i ∈ [1..N] is the exclu-
sive conjunction, meaning that a signal s(k) has to satisfy
every subformula ϕi or not at all. Formally, s(k) ⊧ ϕ ≡
(s(k) ⊧ ϕi,∀i ∈ [1..N])∨(s(k) ⊭ ϕi, ∀i ∈ [1..N]). /pi with
i ∈ [1..N] is the exclusive disjunction, meaning that a signal
s(k) has to satisfy one subformula ϕi and not any other sub-
formulae (mutually exclusive satisfaction). Formally, s(k) ⊧
ϕ ≡ s(k) ⊧ ϕi ∧ s(k) ⊭ ϕj , i ≠ j. ⊡wI ϕ is the exclusive



always capturing that formula ϕ has to be satisfied during
the whole interval or not at all. Formally s(k) ⊧ ϕ ≡
(s(k′) ⊧ ϕ,∀k′ ∈ I)∨ (s(k′) ⊭ ϕ, ∀k′ ∈ I). Finally, ◊⋅ wI ϕ is
the exclusive eventually that captures that a formula ϕ has
to be satisfied at only one-time step and not anymore during
the time interval I , formally, s(k) ⊧ ϕ ≡ s(k′) ⊧ ϕ∧s(k′′) ⊭
ϕ, k′ ≠ k′′, ∀k′, k′′ ∈ I .

Example 3. Consider a quadrotor in a planar convex
environment M with different regions of interest R =
{A, B, C,D} ⊂ M that can be disjoint Ri ∩ Rj = ∅ or
containing overlapping region Ri ∩ Rj ≠ ∅ with Ri ≠
Rj ∈ R. The solutions in Fig. 1(b) can be obtained by
the following specifications using the exclusive operators.
ϕ1 = ◻

w(/p(A,B)) with p = [p1, p2], p1 > p2 and arbitrary
w (purple dashed trajectory). ϕ2 = ◻w(.p(A,B)) with
p = [p1, p2], p1 = p2 and arbitrary w (red dashed trajectory).
Lastly, the (green dashed trajectory) could be obtained with
ϕ2 = ◻w(/p1(.p2(A,B),D)) with p1 = [p11, p12], p11 <
p12.

B. System dynamics

The system dynamics are captured using linear difference
equations as follows

s(k + 1) = As(k) +Bu(k) +D, s(0) = s○, (5)

where s(k) ∈ S ⊆ Rn is the state variable at time k ∈ Z≥0, S
is the state space of the signals, u(k) ∈U ⊆ Rm is the control
input, A and B are the state transition and input matrices of
appropriate sizes, and D is the exogenous inputs or additive
disturbances.

C. Customized partial satisfaction control synthesis problem

Our previous work [Cardona and Vasile(2023)] introduced
the partial satisfaction problem over STL specifications. For
this, we introduced a partial order considering the depth1

in the AST, capturing the STL specification. Giving higher
priority to the satisfaction of subformulae of minimal depth
(i.e., closer to the root) guarantees maximal partial satisfac-
tion. Although it was enough for synthesizing control inputs
that satisfied as much as possible the mission specification
when handling conflicting subformulae, it did not always
lead to the best decision-making. The decision on what to
satisfy was globally computed without providing preferences
on what can or cannot be violated. However, this is not
always desirable since there is no control over what matters
the most for satisfaction (e.g., in case of conflict between a
safety constraint and the system’s behavior, safety constraints
should be preferred over the desired behavior). Hence, in
this work, we deal with the partial satisfaction problem over
wSTL+ specifications where the weights p and w serve as
a descriptor of preferences that guide and modulate the tie-
breaking rules over satisfaction.

1The depth of a formula ϕ′ with respect to a formula ϕ is the path
distance between the root of ϕ’s AST and the node associated with ϕ′. If
the ϕ′ is not a subformula of ϕ, the depth is by convention ∞.

Lastly, we define the partial satisfaction robustness [Car-
dona and Vasile(2023)],

%(s,ϕ) = min
(ϕi,k)∈Fϕ(s)

ρ̃(s,ϕi, k), (6)

where Fϕ(s) = {(ϕi, k) ∣ ∄(ϕ′i, k
′) s.t. ϕi ⊏ ϕ′i, (s, k) ⊧

ϕi, (s, k
′) ⊧ ϕ′i} is the set of lowest-depth subformulae

satisfied by s.

Problem 1. Given a discrete linear system dynamics (5), and
a wSTL+ specification ϕ, find input signal u(k) such that the
generated state trajectory s(k) satisfies ϕ as much as pos-
sible while considering the user preferences and maximizing
the partial satisfaction robustness (6) over all time-horizon
∥ϕ∥ (3). Formally, we have a bi-level optimization problem

max
u

%(s,ϕ)

s. t. u induces s
s ∈ max

u′
ϕ{s′} s. t. u′ induces s′

(7)

where maxϕ{s′} denotes the trajectory s′ that maximizes the
satisfaction of ϕ (i.e., formula with minimal depth that can
be satisfied while capturing user preferences).

Problem 1, takes a mission specification ϕ and synthesizes
a signal control u that generates a state trajectory s that satis-
fies subformulae of lowest depth modulated by the weights p
and w, and has the largest minimum robustness among them.
The inner level finds the customized satisfaction of the lowest
depth, while the outer level accounts for their robustness.

Remark 1. Note that in case of conflicting subformulae,
standard robustness for STL [Donzé and Maler(2010)],
[Fainekos and Pappas(2009)] and wSTL [Mehdipour
et al.(2020)Mehdipour, Vasile, and Belta] produces minimal
violating solutions and partially deviated violation depend-
ing on the preference specified, respectively. However, none
of the subformulae is chosen to be satisfied. In contrast,
wSTL+ guarantees partial satisfaction by choosing subfor-
mulae based on user preferences captured by the weights.

IV. CONTROL SYNTHESIS ENCODING WITH PARTIAL
SATISFACTION

In this section, we propose to solve Problem 1 in two
steps that decouple the bi-level optimization problem. First,
we propose a Mixed Integer Linear Programming (MILP)
formulation to find the maximum satisfaction considering
inclusive and exclusive preferences. The MILP corresponds
to the inner optimization in (7). Second, we introduce a
Linear Program (LP) that approximates the solution to the
outer level of (7) using the solution of the inner level.
The two-step approach trades off optimality with runtime
performance.

A. MILP encoding of wSTL+ satisfaction fractions

In this section, we formulate Problem 1 as an optimization
problem and introduce a Mixed Integer Linear Program
(MILP) encoding for wSTL+. We consider the following
assumptions throughout the rest of the paper.



Assumption 1. wSTL+ specifications are over linear pred-
icates.

While wSTL+ formulae can be defined over general, non-
linear predicates lµ(s(k)) ≥ π for some function l ∶ Rn → R,
we limit them to simple linear functions si(k) ≥ π ( or
si(k) ≤ π, see below). Our MILP encoding can still be
employed by introducing output variables yµ = lµ(s(k))
for all non-linear predicates µ, and using piecewise-linear
approximations of the output functions lµ.

Assumption 2. wSTL+ specifications are in positive normal
form [Sadraddini and Belta(2015)].

The assumption is not limiting because any STL, and
by extension, the wSTL+ formula, can be put in positive
normal form, where the negation operators are only in front
of predicates. In the following, we eliminate negations by
considering predicates defined with either ≥ or ≤ comparison
operators.

The foundation of our encoding of wSTL+ formulae is
based on the fraction of subformulae-time pairs that signals
satisfy. Instead of encoding margins that are propagated
towards a formula’s root to compute robustness [Sadraddini
and Belta(2015)], [Raman et al.(2014)Raman, Donzé, Maa-
soumy, Murray, Sangiovanni-Vincentelli, and Seshia],

Let ϕ be a wSTL+ formula specification. Let us consider
that every weight p and w are normalized such that

pi =
p′i

maxNj=1 p
′

j

, wi =
w′

i

max
∣Ī ∣
j=1w

′

j

.

The MILP encoding is defined recursively over the nodes
of the AST of wSTL+ formula ϕ starting from the leaves,
the predicates.

Let µ ∶= s(k) ≥ π be a predicate. We define the variable
zµk ∈ B that take value one if predicate µ is considered in
the satisfaction of formula ϕ at time k ∈ [0..∥ϕ∥], where
∥ϕ∥ is the time horizon of ϕ computed based on (3). Let
M be a large enough number (e.g., larger than the largest
upper bound of signals used in wSTL+ specification ϕ). The
following constraints capture the satisfaction of predicates

ϕ = µ⇒ {
s(k) − π +M(1 − zµk ) ≥ 0

s(k) − π −Mzµk ≤ 0
. (8)

Inclusive preferences constraints: For all-inclusive opera-
tors in wSTL+, let us define zϕk = [0,1] capturing the fraction
of preferences satisfaction depending on the operator.

For inclusive conjunction operator zϕk takes value one if
all subformulae ϕi with i ∈ [1..N] are satisfied. Let us
define zϕi

k ∈ [0,1] capturing the fraction of satisfaction
of subformula ϕi. The constraint capturing the inclusive
conjunction semantics is

ϕ =⋀
i

p
ϕi ⇒ zϕk =

∑
N
i piz

ϕi

k

∑
N
i pi

. (9)

Note that as weights are normalized, the constraint of the
inclusive conjunction takes the form of a weighted arithmetic
mean. Taking value one only if all zϕi

k are one, in case of

conflicting subformulae, the one with the highest weight p
is chosen.

For inclusive disjunction zϕk takes value one if at least one
subformula φi is satisfied and the weight pi is equal to one.
Which captures the preference of choosing the subformula
with the highest weight. The fraction of satisfaction of
each subformula ϕi captured by zϕi

k ∈ [0,1] The following
constraint captures the inclusive disjunction semantics

ϕ =⋁
i

p
ϕi ⇒ zϕk = max

i=1∶N
{zϕi

k ⋅ pi}. (10)

However, in contrast, as in [Cardona and Vasile(2023)] zϕk
can be lower than one without implying violation; instead,
it captures that the subformula chosen was not the most
preferred one.

For the inclusive always operator, we consider the same
logic as for inclusive conjunction but with weight and
variables over time rather than over subformulae zψk′ ∈ [0,1].
Then we have

ϕ = ◻wI ψ⇒ zϕk =
∑k′∈k+I z

ψ
k′wk′

∑k′∈k+I wk′
. (11)

The inclusive eventually operator follows the same as
the inclusive disjunction operator but again considers time
instead of subformulae for the weights and variables zψk′ ∈
[0,1]. Encoded as follows

ϕ = ◊wI ψ⇒ zϕk = max
k′∈k+I

{zψk′wk′}. (12)

Exclusive preferences constraints: For the exclusive con-
junction is the same constraint as for inclusive disjunction
zϕi

k ∈ [0,1], but instead of zϕk ∈ [0,1] we consider zϕk ∈ B
notice that this capture that either all subformulae ϕi are
satisfied, or not at all.

ϕ =	
i

p
ϕi ⇒ zϕk =

∑
N
i piz

ϕi

k

∑
N
i pi

. (13)

For exclusive disjunction, we use the same constraint used
for the inclusive conjunction, also considering zϕk = [0,1]
and zϕi

k ∈ [0,1]. Let us define an auxiliary variable bi ∈ B
taking value one if zϕi

k is greater than zero. The following set
of constraints captures the semantics of exclusive disjunction

ϕ =�
i

p
ϕi ⇒

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

zϕk = maxi=1∶N{zϕi

k ⋅ pi}

zϕi

k ≤ bi

∑
N
i=1 bi ≤ 1

. (14)

Note that the first constraint captures that at least one
subformula has to be satisfied, preferably the one with the
maximum weight. Furthermore, the last two capture that only
one subformula has to be satisfied and not the rest, generating
the desired mutual exclusivity between subformulae.

The exclusive always is captured in a similar way to exclu-
sive conjunction but considering time weights and variables
instead as subformulae zψk′ ∈ [0,1]. Also, with zϕk = {0,1}
capturing that subformula ψ ⊑ ϕ is either fully satisfied or
not considered at all in the satisfaction.

ϕ = ⊡wI ψ⇒ zϕk =
∑k′∈k+I z

ψ
k′wk′

∑k′∈k+I wk′
. (15)



Fig. 2. Partial satisfaction modulation with weights values.

The exclusive eventually, is captured similarly as exclusive
disjunction but considering time weights and variables zψk′ ∈
[0,1] and zϕk ∈ [0,1], we also consider an auxiliary variable
bi ∈ B with i ∈ [I..Ī]

ϕ =◊⋅ wI ψ⇒

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

zϕk = maxk′∈k+I{z
ψ
k′wk′}

zϕk′ ≤ bi

∑
Ī
i=1 bi ≤ 1

. (16)

Capturing that subformula, ψ ⊏ ϕ is satisfied at only one-time
step and not at any other time step within the time interval.
Making a mutual exclusivity at every time step within the
time interval.

Finally, the inner level of the optimization problem is
formulated as follows

max
s,u,z

zϕ0

s.t. (5) (linear dynamics)
(8) − (16) (mission satisfaction)

where zϕ0 is the root node in the AST of the wSTL+
specification ϕ.

Remark 2. Any wSTL+ formula can be represented using
an Abstract Syntax Tree (AST) in which intermediate nodes
correspond to logical and temporal operators and leaves
to predicates [Hopcroft et al.(2001)Hopcroft, Motwani, and
Ullman]. Our MILP encoding relies on a recursion defini-
tion that uses the AST to compute the overall fractions of
satisfaction of the specification formula.

B. Partial satisfaction robustness LP

In this section, we propose to approximate the robust
solution of Problem 1 using an LP based on solutions of
the MILP (inner optimization level). Let {zϕ

′

k }ϕ′⊑ϕ,k∈[0..∥ϕ∥]
be the set of solution decision variables for satisfaction of ϕ
from (IV-A). The following LP,

max
s,u

ρ̃(ϕ, s, k)

s.t. (5), ρ̃(ϕ, s, k) ≤ si(k) − µ,∀µ with zµk = 1
, (17)

computes the signal s and control u that maximize the
robustness of all predicates µ at all times k that are satisfied
in the reference solution encoded by zϕk .

C. Partial satisfaction encoding Analysis

In this section, we remark on the properties of the MILP
encoding of wSTL+. First, if a wSTL+ specification ϕ and
all its subformulae ϕi ⊑ ϕ are not satisfied by a trajectory

s = s(0), s(1), . . . , s(∥ϕ∥), therefore zϕ0 = 0 (root node in
the AST). The property follows by structural induction over
the entire AST as s ⊭ ϕi for every ϕi ∈ ϕ. Then every leave
and intermediate node variables zϕi

k = 0 in the AST with
k = [0..∥ϕ∥], thus zϕ0 = 0.

Second, in our previous work [Cardona and Vasile(2023)],
we introduced the encoding as fractions of satisfaction, then
the value obtained after the optimization of zϕ0 indicates
the fraction of satisfaction of the wSTL+ specification ϕ.
The same applies for any subformula ϕ ⊑ ϕ, the value of
zϕi

k indicates the fraction of satisfaction of ϕ depending on
every subformula ϕ′ with greater depth in the AST such
that ϕ′ ⊏ ϕi. This property of the fraction of satisfaction no
longer holds in our MILP encoding for wSTL+. In contrast,
the value of zϕ0 indicates how close the induced trajectory s
satisfying ϕ to capture all the user preferences indicated in
the specification. This is given by the fact that in the case of
disjunctions and eventually inclusive and exclusive operators,
if the subformula ϕi counted for satisfaction is not the one
or one with the maximum weight p or w then the resulting
variable zϕk < 1 which propagates back to the root making
zϕ0 < 1. Note that this does not indicate a violation of the
specification. It only captures that the trajectory chosen is
not the most preferred one.

Thirdly, as a consequence of the previous properties, it
trivially follows by contradiction that zϕ0 = 1 iff the trajectory
induced s is in the set of the most preferred solutions that
capture all preferences and priorities indicated in the wSTL+
specification ϕ. Therefore the trajectory fully satisfies the
specification s ⊧ ϕ.

Next, we want to remark that the weights directly modulate
the satisfaction of the wSTL+ specification capturing user
preferences and priorities. Let us consider the following
mission specification ϕ = ∧p(◻w1(µ1), ◻

w2(µ2), µ3), we
consider µ1, µ2, andµ3 conflicting predicates. The AST that
captures the specification is shown in Fig. 2 consider w1 =
1k′ and w2 = 1k′′ , therefore we can modulate which predicate
to satisfy. For instance, p1 = p2 and p3 > p1 make µ3 to be
accounted into satisfaction and not the other two. On the
other hand, if p3 < p1, µ1 is added to the satisfaction, and
the other two are ignored.

Finally, the solution of LP (17) has maximum PS robust-
ness %(s,ϕ) over all trajectories that satisfy the same set of
subformulae (ϕ′, k) as s∗. Note that an optimal solution to
Problem III might satisfy other subformulae than s∗ even if
both achieve the same number at each depth. As such, the
LP (17) may lead to suboptimal solutions.

V. CASE STUDIES

In this section, we showcase and test the functionality
of the wSTL+ MILP encoding under partial satisfaction
conditions (PS-wSTL+). First, we show the versatility of the
exclusive operators added to the wSTL+ language specifica-
tion. Then, we show the control synthesis for an agent sat-
isfying a specification of navigating in a planar environment
with temporal and logic constraints, modulating the partial
satisfaction solution through the weights. Lastly, we show
the time performance and complexity comparison between



Fig. 3. Exclusive operators functionality.

STL, PS-STL, and PS-wSTL+ under partial satisfaction
MILP solutions. All computations in the case studies were
performed on a PC with 20 cores at 3.7 GHz with 64 GB of
RAM. We used Gurobi [Gurobi Optimization, LLC(2021)]
as the MILP solver.

A. Exclusive operators functionality
Let us consider a single robot navigating in a planar envi-

ronment M ⊂ R2 shown in Fig. 3. Regions of interest R =
{A,B,C,D}, with A = [−4,−9]×[−9,9], B = [−9,4]×[9,9],
C = [4,−9] × [9,9], and , D = [−9,−4] × [9,−9]. Note that
some regions are not disjoint, e.g., A∩B ≠ ∅, or disjoint e.g.,
A∩C = ∅. We arbitrarily choose A = B = I2×2, for the robot
dynamics as in (5). Thus, s(k) = [sx(k), sy(k)]

⊺ ∈ R2. We
consider initial position as s(0) = (sx(0), sy(0)) = (0,0).
We consider the following wSTL+ specifications

ϕ1 = .p1 (⊡w
I1(.

p1(A,B)),⊡w
I2(.

p1(B,C)),⊡w
I3(.

p1(C,D))) ,
ϕ2 = .w (⊡w

I1(/
p(A,B,D)),⊡w

I2(/
p(B,C,A)),

⊡w
I2(/

p(C,D,A))) ,

where I1 = [5..9], I2 = [14..18], I3 = [24..26], p1 = [1,1] all
weights w are defined to be one of appropriate size, and p =
[1,0.5,0.5]. For simplicity, with a slight abuse of notation,
we define the formulae directly over the regions instead of
defining predicates over all four boundaries of each region.

In Fig. 3. we show the solution of both specifications.
Note that ϕ1 (red trajectory) uses exclusive conjunctions
for specifying the regions that must be visited within the
intervals. As this operator impose that all subformulae have
to be satisfied or not at all, the only solution possible is
given when the robot visits the overlapping regions between
areas of interest requested. On the other hand, ϕ2 (blue
trajectory) uses exclusive disjunction, and the weight p
assigns a larger preference to the first region specified the
robot visits that region without crossing the other regions.
Since exclusive disjunction imposes one subformula and
not any other subformulae. Lastly, we show the importance
of declaring exclusive operators correctly. We modify ϕ1,
defining exclusive conjunctions between disjoints regions,
and therefore the solution is set to not visit any region (green
start) since visiting both regions simultaneously is physically
impossible.

B. Control synthesis

Let us consider the same robot defined in the previous
section, with the initial position as s(0) = (sx(0), sy(0)) =
(−9,−9). We define disjoint regions of interest A =

[−9.5,−5.5]2, B = [5.5,9.5] × [−9.5,−5.5], C = [5.5,9.5]2,
D = [−9.5,−5.5] × [5.5,9.5] in M, and region E =
[−2.5,2.5]2 ⊆ M that robot s(k) needs to avoid. We
consider the STL φ and wSTL ϕ specifications

φ = (◻[0,1]A) ∧ (◻[10,15]C) ∧ (◻[25,30]D) ∧ (◻[0,30]E
c),

(18)

ϕ = ∧p ((◻w
[0,1]A), (◻w

[10,15]C), (◻
w
[25,30]D), (◻w

[0,30]E
c)) ,

(19)

Going to regions of interest can be specified in STL and
wSTL+ form by constraining sx and sy inside the region
boundaries. Note that we use Ec, which indicates that the
robot is free to move in any location out of this area.

In Fig. 4(a), we set all weights w and p to one. It
can be seen that the wSTL+ (green dashed line) and PS-
STL [Cardona and Vasile(2023)] (blue dashed line) have
similar trajectories for satisfying the specification, and all
three encodings including STL [Sadraddini and Belta(2015)]
(solid red line) can satisfy the mission.

In Fig.4(b), we show how the solution for the wSTL+
(green dashed line) can change by using exclusive tem-
poral and logical operators instead of standard operators
specifically for avoiding region E the trajectory is carefully
synthesized never to cross it.

In Fig.4(c), we show a case where there is a conflict
between subformulae to visit two regions simultaneously
which are physically impossible, specified in STL and
wSTL+ as φ = ◻[5,6](B ∧D), ϕ = ◻w

[5,6](∧
p(B,D)), where

w = [1,1] and p = [0.5,1]. As expected, standard STL
encoding [Sadraddini and Belta(2015)] minimally violates
both subformulae. By using the hierarchical method in PS-
STL [Cardona and Vasile(2023)] the solution computed is
going to region B. However, this solution is obtained because
it is the first specified. It might not be the most preferred
option. In contrast, we specify a preference to visit region
D by defining a larger weight, and the solution captures the
user preference, and the robot visits the desired region.

Lastly, let us consider the initial position of the agent
as sx(0) = −5, sy(0) = −1, and the following wSTL
specification ϕ = ∧pi ((◻w

[0,7]E
c), (◻w

[8,18]C)) , see Fig. 4(d).
We generate different trajectories, and the first four are
constrained by control inputs bounds of two units. Some
of them are getting closer or farther to E according to the
weights. However, for the last case, the control bounds are
three units, and the solution is to go around the bottom
boundary of E , keep distance to the obstacle, and reach
maximum robustness. Thus, varying weights may produce
topologically similar trajectories or different from the STL
one.

C. Time performance and complexity comparison

We show the run time performance comparison between
STL [Sadraddini and Belta(2015)], partial satisfaction for
STL (PS-STL) [Cardona and Vasile(2023)], and our partial
satisfaction with wSTL (PS-wSTL) encodings with random
weights by gradually increasing the size of the mission
specification. Let us consider six variables x, y, z, u, v, and



(a) Feasible symmetric specifica-
tion for PS-STL and PS-wSTL+
(unit weights and inclusive opera-
tors).

(b) Feasible symmetric specifica-
tion for PS-STL and PS-wSTL+
(unit weights and exclusive oper-
ators).

(c) Partial satisfaction choosing the
most preferred subformula.

(d) Trajectories around an obstacle
changing the weights in the wSTL
specification

Fig. 4. Trajectories for wSTL ϕ and STL φ specifications in a two-
dimensional environment.

w, all with a lower-bound of −9 and upper-bound of 9. The
STL φ and wSTL ϕ specification are the following

φ =
n

⋀
1

TI ((s1 ⊗1 Ξ1)L (s2 ⊗2 Ξ2)) ,

ϕ =
n

⋀
1

p

T̃ wI (L̃p ((s1 ⊗1 Ξ1), (s2 ⊗2 Ξ2))) ,

where T ∈ {◻,◊}, T̃ ∈ {◻,◊,⊡,◊⋅ }, L ∈ {∧,∨}, L ∈
{∧,∨,/,.}, s1 and s2 ∈ {x, y, z, u, v,w}, ⊗ ∈ {<,≤,>,≥},
Ξ1 and Ξ2 = rand(−8,8) are variables randomly chosen,
n is an iterator that grows from 1 to 200, and the time
interval of the temporal operator is defined randomly as
I = [n + 4, . . . , n + 4 + rand(1,5)], and the weights for
Boolean p and temporal w operators are randomly chosen in
an interval (0,1]. In Fig. 5, we compare time performance
for STL, PS-STL, and PS-wSTL+ growing formulae with
random weights. Note that the STL performance grows
linearly and is faster than the other two. However, there is
a slight difference between STL and PS-wSTL+, which is
expected since more constraints are required in the encoding
to capture the importance or preferences in the specification.
Moreover, no partial satisfaction is imposed by the STL
solution. The performance of PS-wSTL+ is better than PS-
STL. Both capture partial satisfiability, but only PS-wSTL+
captures preferences and importance. We hypothesize that
weights act as tie-breakers, allowing the MILP solver to
prune sub-optimal infeasible solutions.

VI. CONCLUSIONS

We extended wSTL with exclusive logical and exclusive
temporal operators denoted as wSTL+. We presented a

Fig. 5. Time performance between random generated specification in
STL [Sadraddini and Belta(2015)], PS-STL [Cardona and Vasile(2023)],
PS-wSTL+.

Mixed Integer Linear Programming formulation for wSTL+
that accepts partial satisfaction solutions in case of conflict-
ing or infeasible subformulae. Partial satisfaction is achieved
by a bilevel optimization problem where the inner level
maximizes partial satisfaction via fractions of satisfaction
with weights modulated by user preferences. The outer level
maximizes the robustness of satisfiable subformulae obtained
in the inner level. Finally, the time performance of the MILP
encoding is shown compared with standard STL and partial
satisfaction encoding of STL. Showing there is a small cost
to pay at the expense of being able to specify preferences
and importance compared to STL, but there is a performance
improvement with respect to PS-STL.
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