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Abstract: In this work, we propose a method for integration of temporal logic
formulas into a neural network. Our main contribution is a new logic optimization
layer that uses differentiable optimization on the formulas’ robustness function.
This allows incorporating traffic rules into deep learning based trajectory predic-
tion approaches. In the forward pass, an initial prediction from a base predictor
is used to initialize and guide the robustness optimization process. Backpropa-
gation through the logic layer allows for simultaneously adjusting the parameters
of the rules and the initial prediction network. The integration of a logic layer
affords both improved predictions, as well as quantification rule satisfaction and
violation during predictor execution. As such, it can serve as a parametric safety-
envelope for black box behavior models. We demonstrate how integrating traffic
rules improves the predictor performance using real traffic data from the NuScenes
dataset.
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1 Introduction

Prediction is a key component in the autonomous driving stack that connects perception and plan-
ning. It is made difficult because a human driver’s behavior is influenced by a number of factors in-
cluding the semantics of the road, interactions with other road agents and personal preferences, and
because the space of all possible future trajectories is prohibitively large even for modest prediction
horizons. Recent methods in prediction mostly adopt a deep learning approach where much effort
has been made in the design of network architectures and input features. While such approaches
have seen significant progress, challenges such as encoding complex constraints and learning inter-
pretable structures remain. The aim of this paper is to develop a predictor that incorporates rules as
a set of logic formulas and is compatible with existing deep architectures.

The effective dimensionality of human behavior is significantly reduced by the set of rules that
people tend to adhere to as they act and interact on the road. This makes the prediction problem more
constrained, limiting the number of examples needed to train the prediction, as well as affording
efficient reasoning about the system behavior both on- and off- line. These properties are important
for efficiency, explainability, and safety. It is difficult to incorporate rules and regulations as priors
to the predictor, and existing approaches tend to either use latent factors [1] or explicit modes to
capture maneuver types [2], but fail to cater to the discrete constraint nature of rules in behavior.
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Left turn lane
must turn left

Slow down and yield
to pedstrians at
pedestrian crossing

Figure 1 : Descriptive example of using rules for prediction. The agent to be predicted (vehicle in green box)
is traveling on the left-turning lane approaching a pedestrian crossing. Applicable rules include “left turn lane
must turn left” and “slow down at pedestrian crossing”.

In the context of self-driving, symbolic information in the form of rules widely exists in traffic
laws, regional regulations and driving heuristics. Consider the scenario shown in Figure 1 . Here
the behavior of the car is governed by the fact that it is traveling in the left turning lane and is
approaching a pedestrian walkway, therefore with high probability it will turn left while yielding
to the pedestrian. Being able to explicitly integrate this information in prediction can considerably
improve its performance. In addition, since rules and regulations vary across different regions [3],
having a systematic means of maintaining the rules and explicitly integrating them with the predictor
can be helpful in nationwide and global deployment of autonomous fleets.

In this paper, we propose to encode priors as a set of temporal logic formulas and integrate them
into a differentiable logic control layer that can be used standalone or in conjunction with other
predictors (Algorithm 1). Specifically, our contributions include:

e Utilizing techniques in formal control synthesis to incorporate rules and priors as a set of temporal
logic formulas into trajectory predictors and maximize their degree of satisfaction;

e Using ideas in soft logic evaluation [4, 5] and differentiable optimal control [6, 7] to enable
automatic tuning of logic parameters from data;

e Demonstrating on a real world dataset that incorporating our logic layer into existing deep pre-
diction models improves sample efficiency and accuracy at long prediction horizons.

2 Related Work

Recent methods for trajectory prediction in autonomous driving have largely adopted a data-driven
approach utilizing advances in deep learning. Advanced features include prediction of multi-modal
trajectories [8], modeling of road agent interactions using graphs and graph neural networks [9, 10,
11], and incorporating both agent interactions and dynamic models [12, 13]. Generative adversarial
networks have also seen increased usage as components of the predictor architectures [14, 15, 16],
[17]. Mozaffari, et al [18] provide up-to-date surveys in this domain.

In addition to agent interactions, the semantics and rules of the road are also critical factors that
influence driving behaviors. In recent literature, the semantics of the road are incorporated into
trajectory predictors commonly as state features [19, 20]. Hong, et al [21] encode the current scene,
road network and dynamic contexts as separate image inputs to the predictor network. Similarity,
Bansal, et al[1] encode semantic information such as the roadmap, traffic lights and speed limits as
image inputs to their proposed ChauffeurNet. A different approach taken by Ding, et al [2] encodes
the road semantics as multi-layer costmaps that are used for trajectory optimization. More generally,
many recent works in prediction highlight the mixed discrete-continuous nature of human behavior



on the road implicitly, either as GMM models [22, 23], or by conditioning on discrete modes and
variables [24, 25, 12].

In comparison, we encode the semantics and rules of the road as a set of parameterized temporal
logic formulas. Similar to the idea of rulebooks used by Censi, et al [26] for trajectory planning,
having a repository of rules to govern the predictor’s behaviour is helpful in promoting its inter-
pretability and performance guarantees. In addition, we allow the parameters of the rules and their
level of enforcement to be tuned using data. This alleviates the burden of having to hand design the
details of the rules and only require the user to provide rule templates. The rules are ultimately incor-
porated into a differentiable trajectory generation layer that can be used to enhance the performance
of other models.

Finally, our approach interacts with a large research effort aimed at taking programmatic concepts
and algorithms and translating them into learned approaches. This has been shown to improve
performance in optimization algorithms [27, 6], language constructs [28], data association [29], and
object-based reasoning [30], as well other other topics.

3 Background - Signal Temporal Logic (STL)

STL offers a formalism for expressing and reasoning among a rich set of rules defined over predi-
cates (inequalities of real-valued functions, e.g., the state-trajectories of cars) [31]. In this paper, the
rules are encoded as a set of STL formulas with the following syntax

¢:=p(s) <e|=d|dNP|OV S| Flap@ | Glap®s )

where a,b € IR>¢, a < b, represent finite time bounds; ¢ is an STL formula; p(s) < eis a predicate;
s € S CIR"isastate; p(-) : IR" — IR is the predicate function, ¢ € TR is a constant. — (not), A
(and) and V (or) are Boolean operators. F' (eventually) and GG (always) are temporal operators.

Let st4:¢;, = {Sty,---, St, } denote the state trajectory from time to to t1. S¢,:t; = ¢ denotes that tra-
jectory s+, satisfies ¢. The Boolean semantics of STL is provided in the supplementary material.

An example STL formula is Fi,, -1(|s| < 2) A G|, ,)(s > 3) which means that “|s;| < 2 is true
for at least one t € |19, 71) and s; > 3 is true for all ¢ € [y, 72)”.

STL is equipped with a robustness degree (or robustness for short) that quantifies the level of sat-
isfaction of a trajectory with respective to a formula. A robustness function takes in a trajectory
and a STL formula and outputs a real-valued number. A robustness greater than zero signifies that
the trajectory satisfies the given formula, i.e. (s, ¢,,¢) > 0 = 54,4, = ¢. Negative robustness
implies violation of the formula.The formal definition is given in the supplementary material.

Taking inspiration from parameterized STL (pSTL) [32], we allow the predicate function to be
parameterized (i.e. p*» (s) denotes a predicate function parameterized by &,). Let ¢¢ denote an STL

formula parameterized by £ = | 11,7 €1y ey év ,€n] where N is the number of predicates in ¢. For

example, the pSTL formula ¢ = G|, - (12 + f1y < €1) A Fir, o) (a2 > €3) have parameters
& ={(a1, B1), €1, a2, €e2}. We will demonstrate how & can be tuned using data in later sections.

4 Differentiable STL Robustness Layer

In this section, we introduce a differentiable logic layer that is able to integrate a set of parametric
temporal logic rules into a trajectory predictor. The idea of the differentiable STL robustness layer
is that in the forward pass we find trajectories that maximize the robustness degree. In the backward
pass, we differentiate the robustness with respect to STL parameters to find the parameters that
allow the formula to best describe the agent behaviors in the dataset. In general, the max and
min functions in the robustness definition cannot be differentiated with respect to their arguments.
Hence, soft approximation such as the log-sum-exponential [33] or the soft-max [4] can be used (we
use the latter in our experiments). A schematic is provided in Figure 2 .

The STL robustness layer can serve different purposes. It can be trained in conjunction with the
base model which effectively “distills” the information contained in the rules into the base model’s
weights. It can also be used as a tuneable modification layer to a pre-trained base prediction model
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Figure 2 : Architectural schematic of differentiable STL robustness layer. The white trajectory represents
the base predictor’s output prediction. The red trajectory represents the output trajectory of the STL robustness
layers.

whereby modifying the behavior of the base model using rules, dynamics and other priors without
having to re-collect data or re-train the base model.

Recall that s¢,.t, = {St,, .., S¢, } is the state trajectory from time ¢( to ¢1. Let ay,.+, be the set of
actions from time ¢ to ¢1. Given a base predictor that provides trajectory prediction, let sfo:tl be the
trajectory output of the base predictor. s7, ., is the corrected state trajectory output of the logic layer.
sf{f:tl is the ground truth trajectory (the target). We distinguish the trajectory output from the state
feature inputs to the base predictor. In our case, the former is a time sequence of (z, y) coordinates,
and the latter can be any state representation (images, sequences, graphs, etc). Let ¢¢ be the pSTL
formula that encodes the rules to be satisfied.

4.1 Without Dynamics

In the forward pass, we wish to solve the optimization problem in Equation (2)-/eft.

R e
—1 to:t1?

S?o:tl = argmax T(Sto:tl ) ¢§)7 Szgitl = Szo:tl + Y 880i—11 : (2)
Stgity toity

Given the base prediction S?O:t , and the STL formula, Equation (2)-left tries to find a trajectory that
maximizes the robustness (best satisfies the formula). To do so, we roll out N gradient ascent steps.
Let i € [1, N], Equation (2)-right shows the gradient ascent step taken at each rollout step. s ., is

the output of the (i — 1) rollout step, s ., = sV ., , s, =8¢, .
In the backward pass, we tune £ to minimize the loss L = [|s7 ;,, — sf(f:tl ||2 where || - ||2 denotes
the L2-norm (other losses, such as minimum of N loss [34] can be used in place of L, e.g. to

address multi-modal predictions). Similar to backpropagation through time commonly used to train
recurrent neural networks, the gradient for the parameters of the STL formula can be calculated by

L L X 9s5., Osi,
0€ ~ 0sfyy, = Osiyy, 05

ie{0,N—1}. 3

The above gradient can be used to update the STL parameters using data. Equation (3) can be
combined with the gradients of the base predictor to train it with the STL layer simultaneously.

4.2 Dynamics-Aware Prediction

To incorporate dynamics in the above formulation, we augment our forward and backward passes
with a differentiable dynamics model s;1+1 = f(s¢, a¢). In our forward pass, we update the control



action rather than state; hence Equation (2)-right becomes

) . 8T(3i_1 ¢£) ) . )
—1 to:t1? —1
a‘;o:tl = azzfg:tl + Y 8C;)i_11 ) S%g:tl = f(sg():tl i a%o:tl) (4)
to:t1

where f is the vector operation that applies f (-, -) to (sffo_il , aio:tl) at every time-step. The backward
pass is modified to be
N-1 ; -
oL oL 08§, .4, 0844, 00t 4,

aig B asgo:tl i=0 as;{gftl 861’%0::‘,1 85

(&)

Having even a simple model (such as a unicyle model) can considerably enhance the predicted tra-
jectory in terms of dynamic feasibility. This is especially important when differentiating through
the robustness degree as it is possible to find a trajectory with a high robustness value but not
achievable by a vehicle. Algorithm 1 summarizes the differentiable STL robustness layer. There,
the computation of the formulas’ robustness function (ComputeRobustness) and their gradients
(ComputeRobustnessGradient) is implemented in a differentiable way. Thus, we can backprop-
agate through the entire optimization process.

Algorithm 1 STL Robustness Layer

1: Inputs: pSTL formula ¢; formula parameters &; initial temporal sequence sifit.; step size 7;

number of iterations N
sng. — slom’;"
fori=1...Ndo _
Ji—1 ComputeRobustnessGradient(sfﬁ}, b, )
; i—1
SZI:T A 571:T + Y Gi—-1
end for
v ¢ ComputeRobustness(s)p, ¢,¢)

return v, s,

I AN

S Experiments

We train and evaluate our method on the NuScenes dataset. NuScenes [35] is a dataset for au-
tonomous driving based in Boston and Singapore. It contains 1000 scenes each 20s long, containing
23 object classes and HD semantic maps with 11 annotated layers. We chose this particular dataset
for the rich semantics it provides which is well suited for rule definitions. Our goal is to show that
given an off-the-shelf base predictor, incorporating the STL robustness layer provides valuable priors
and constraints that improve the performance of the overall predictor in terms of accuracy, sample
efficiency and prediction horizon. Details in experiment setup, implementation and hyperparameters
used are provided in the supplementary material.

5.1 System Model

Most trajectory predictors in the literature directly output trajectories using fully connected or re-
current layers (e.g. LSTM). While such approaches have yielded satisfactory results, incorporating
kinematics models of the vehicle often improves the predicted trajectories [12], and is easily sup-
ported in our method in a differentiable way (Section 4.2). In this set of experiments, we use the

following unicycle model [i#, 4, ¥/]T = [vcos(1)), vsin(t), w] ' where state s = (z, y, 1) contains
the planar coordinates and heading of the predicted vehicle. The control ¢ = (v,w) contains the
forward velocity and steering rate.

5.2 Rules Used

¢ =(Go,r) Stay close to the center lane) A
(Go,1) Stay close to the base prediction) A (6)
(Go,) No stop areas within 30 meters ahead =- Stay close to the observed speed),



where T is the prediction horizon. ¢ takes the form of a conjunction of a set of sub-rules. Each sub-
rule is a predicate that is enforced at all timesteps within the prediction horizon (hence the always
operator). Detailed descriptions are as follows:

e “Stay close to the center lane”: denoted dist(s, lane;) as the distance between the prediction and
its closest lane at time ¢. This predicate is then defined as dist(s$,lane;) < €jane Where €qpe is
a tune-able parameter for this predicate.

e “Stay close to the base prediction”: we do not wish to deviate too much from the base prediction.
Because we incorporate the system model, instead of encouraging the sy ., to be close to si’o:tl ,

we encourage their corresponding actions to be close. Given the base prediction s?o:t , and the
sample frequency, the corresponding controls of dynamic system can be estimated using finite
differences of adjacent states. Let a® and a be the corresponding action sequences, this predicate
is defined as ||a§ — al||2 < €pase Where €pqsc is the tune-able parameter.

e “No stop areas within €4,, meters ahead = Stay close to the observed speed”: this “if-else”
statement is used to enforce the assumption that if there is no reason to slow down, the vehicle
should travel close to its current observed speed (for the prediction horizon). In NuScenes, areas
where a stop sign, traffic light or pedestrian crossing exist are marked as stop areas (shown as red
patches in Figure 1 ). We detect stop areas up to €,4,p meters in front of the vehicle where €,:0p

is a tune-able parameter. Let vffs and vi be the observed and predicted vehicle speed at time g

and t respectively. Let also sft"p be the position of closest stop area at time ¢. This predicate is

t . .
defined as ||s§ — 57°P |2 < €stop = (V§ — v4,)? < €, Where €, is another predicate parameter.

5.3 Method of Evaluation

Using the notation from Section 4, we denote s§ , as the prediction output (for multi-modal out-

put, this is the trajectory with highest probability) and sf(f,tl as the ground truth. We use the av-
erage displacement error (ADE) - average L2-norm between prediction and ground truth trajecto-
ries; final displacement error (FDE) - L2-norm between the final prediction and ground truth poses;
max distance (MaxDist) - max L2-norm between prediction and ground truth as performance met-
rics. All metrics are in meters. We use a training set of around 25000 trajectories and a validation
set of around 3000 trajectories. We use the multi-modal trajectory predictor (MTP) [36] with the
MobileNet-V2 backbone [37] (implemented in [35]) as the base predictor. The STL layer we use
here contains 15 rollout steps and 4 rule parameters.

In our experiments, we first train the base predictor on the dataset and fix its weights. Subsequently,
the logic layer is trained using the output of the base predictor as its input. We evaluate the effect
of adding the logic layer on the prediction performance in terms of accuracy, prediction horizon and
sample efficiency.

5.4 Results And Discussion

We study the performance of the STL robustness layer by connecting it to the output layer of MTP.
We refer to results produced with the STL layer as MTP-STL. Figure 3 (top) shows the training
curves with and without the STL layer. It can be observed that incorporating the STL layer reduces
both the mean and variance of the performance metrics. Figure 3 (bottom) shows a histogram of
the metric distributions for the trained predictor. As highlighted by the dashed red circle, the STL
layer is effective in reducing the long tail of the distribution (eliminating edge cases). We are able
to achieve 5.3%, 6% and 6.2% decrease in average ADE, FDE, and MaxDist respectively. And 11
%, 27% and 26.8% decrease in max ADE, FDE and MaxDist respectively. However, this can come
at slight cost of over-correction in situations where the base prediction is accurate but doesn’t fully
comply with the rules. This can be observed in the histogram where the mass of the distribution
for MTP-STL shifts slightly to the right at low metric values. This can be alleviated by either
adding more rules (if there is systematic bias) or make the rules less constrained. Our method does
not assume that rules are never broken and tries to strike a balance between rule satisfaction and
accuracy with respect to the dataset.

Figure 4 shows two example scenarios in birds-eye view and their positions on the ADE histogram
with and without using the STL layer. In the figures, black denotes ground truth trajectory, white
denotes base prediction and red denotes corrected trajectory. The dot-dash line denotes the closest
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Figure 3 : Prediction performance comparison. (top): Training curves with and without the STL layer. Our
approach results in consistently lower errors. (bottom): Histogram of the performance metric distribution over
the validation set with 1 standard deviation (for the trained predictor). The dashed red circle highlights how the
STL layer prevents outlier predictions that often appear in neural-network predictions, and reduced the long tail
of prediction errors.
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Figure 4 : Example birds-eye view of base and corrected predictions in sample scenarios. Black denotes
ground truth trajectory, white denotes base prediction and red denotes corrected prediction. The dot-dash
lines illustrate the closest center lane. (A): A scenario that shows preservation of accurate base prediction.
(B): Corresponding ADE histogram (curve peaks represent the modes). (C): A scenario that show a larger
modification to an inaccurate base prediction.

lane center. We can observe from the figures that when the base prediction is accurate (Figure 4
(A)), the STL layer can preserve this accuracy without making much corrections. When the base
prediction is inaccurate (Figure 4 (B)), the STL layer is able to significantly correct the erroneous
base prediction.

Figure 5 illustrates how a rule parameter is trained to adapt the rule to ground truth data. In Figure 5
(A), the agent is driving on the right-most lane about to make a lane change to the right. The
base predictor predicted this lane change but its prediction is delayed and overshot to the right.
Applying the forward pass of the STL layer to the base prediction results in over-correction towards
the current center lane. In this small experiment, we took 20 backward passes using the ground
truth to train the rule parameters. As shown in Figure 5 (B), the parameter €4, that controls how
close the prediction should be with respective to the center lane increases from 0.1 to 1.32 meter and
thus imposes less constraint on the correct trajectory. As a result, applying the STL layer with the
updated €4, corrects for the overshooting but is not too constrained to the current lane center.

To analyze the performance gains in using the STL layer, we train comparison models at 3 different
prediction horizons and 3 different training dataset sizes. All the results are reported on the valida-
tion set of the same size. Figure 6 shows that in general, given our setting and the rules we have
chosen, the STL layer the effective in reducing the prediction errors especially in the edge cases.
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Figure 5 : Rule parameter training to adjust to the ground truth data. (A)
: Trajectory correction before parameter learning. (B): Parameter learning curve. (C): Trajectory
correction after parameter learning.
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Figure 6 : Sample efficiency and prediction horizon study. Metric statistic comparison for models trained
and evaluated at (top) 6, 9, 12 seconds prediction horizons and (bottom): 30%, 50% and 70% training data.
The validation set is kept fixed. The STL layer improves the prediction results, with emphasis on long horizons
and limited training data cases.

This can be observed by the lowered outlier values. The performance improvement is more evident
as the base predictor’s performance deteriorates (at longer prediction horizon and less training data).
Therefore, it is reasonable to expect a well-designed set of rules can be used to compensate for data
and base model deficiency. In addition, given that the robustness measures how much the base pre-
diction violates the rules, a large violation can indicate potentially hazardous behavior and serve as
an alert to the downstream planner.

6 Conclusion

In this paper, we propose to use a differentiable logic layer as a learnable correction layer for vehicle
trajectory prediction. We show that the logic layer is capable of incorporating symbolic priors as
parametric temporal logic formulas into the predictor. We show in experiments that using the logic
layer we are able to considerably improve the performance of the base predictor without having to
collect more data or re-train the base predictor. Our formulation easily integrates a system model,
allowing us to predict the controls of the vehicles of interest. We can thus effectively turn trajectory
predictors into trajectory generators that can be use in planning for the ego-vehicle. This is a future
direction that we are highly interested in. We will also explore the scalability of the proposed
approach in terms of the rule complexity it is able to handle, and the tradeoff with data prevalence.
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Differentiable Logic Layer for Rule Guided
Trajectory Prediction
Supplementary Material

1 Signal Temporal Logic — Boolean and Quantitative Semantics

Let s¢,:t, = {Sty,---, St; ; denote the state trajectory from time to to t1. Sy, = ¢ denotes that
trajectory sg,., satisfies ¢. The Boolean semantics of STL is defined recursively in Equation (1a).
STL also admits quantitative semantics in the form of a robustness degree (s, +,,¢) given in
Equation 1b that quantifies satisfaction and violation of specification ¢ by signal s, ¢, .

Storts = (D(8) <€) S p(sy,) <e
Sto:ty = (P(s) <€) & (st0:, F (p(s) <€)
Sto:ty = O1 N P2 & Spoity 1A Stg:ty [ 02

Sto:ty = O1V P2 S Stoity 7 1V Sty [ D2 (1a)
Sto:ty = Gla,p)® S sy E oVt € lab)
Stoity = Flap@ < 3 € la,b)s.t. sy, E O
T(Stoitss (P(s) <€)  =e—p(sy,)
r(stgzt17_‘¢) = _T(Sto:t17¢)
T (Storts> $1 A 92) = min(r(Stg:ty , $1)s 7(Sto:t15 P2))
T (Sto:itr, 01V p2) = max(r(set,, 01): 1 (Ste:ty > D2)) (1b)
7 (Stoits» Gla,p @) = t,él[g’b)T (8141, 0)
7 (Sto:ts» Flan @) = sup 7 (Sty:t,, )
t’'€[to,t1)

The robustness degree is sound [1, 2], meaning that positive values of r imply satisfaction, while
negative values imply violation.

An STL formula ¢ is said to be time-bounded if there exists a finite duration d, the formula’s horizon,
such that the all signals of duration at least d can be checked for satisfaction or violation of the
formula. The horizon of the an STL formula can be computed recursively based on the time bounds
of the temporal operators [3].

In the definition of semantics, we assume that the lengths of the time intervals [tg, t1] associated with
a signals are always greater than the horizon of the considered STL formulas. Thus, satisfaction and
robustness degrees can be computed.

Example 1. Assume a robot is navigating in the 2D plane with its coordinates as states i.e. s =
(z,y). Let A and B be two circular regions with ca,r 4 and cg,rp be the center and radius of A
and B respectively. Define predicates w4 = ||s — calla < ra and ¥ = ||s — cgl|2 < rp where
|| - ||2 is the L2-norm. 14 and g tracks whether the robot has entered A and B. We can define a
task using STL as

¢ = Flo,n¥a NG —¥s, )

where T' is the horizon of the task. ¢ describes a navigation task that requires the robot to “even-
tually visit region A and always avoid region B for all times between 0 and T”. Given a trajectory
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of the robot sy.T, we can evaluate the robustness of the trajectory with respective to ¢ by applying
Equation (1b) recursive which gives us

)

r(so.r, ¢) = min [tg[lgga)(m —[ls¢e — CA‘|2)’tg[lgf%)(||st —cgll2 —rB)]. 3)
r(so.T, ) > 0 implies that the robot has completed the task.

2 Learning Approach — Algorithmic Details

We first describe the learning approach used in our paper. The approach utilizes Algorithm 1 from
the paper as a building block within either optimization of the STL parameters &, or a joint opti-
mization w.r.t £, 6. The prediction correction, and the learning step for this approach are described
in Algorithm 1 and Algorithm 2 respectively.

Algorithm 1 Prediction with the STL Robustness Layer

1: Inputs: The base predictor B¢ parameterized by 6; the pSTL formula ¢¢ parameterized by &;
Input representations Z and target trajectories S9%; number of robustness rollout steps NV ;
s(t)oltl = BG(I)
fori=1to N do _
gi_1 — ComputeRobustnessGradient(sfﬁ}, b, )
sir < st +7 g1
end for
return s;\

A A

Algorithm 2 Learning with the STL Robustness Layer

1: Inputs: The base predictor B¢ parameterized by 6; the pSTL formula ¢¢ parameterized by &;
mode (can be “learn” or “predict”); dataset with input representations Z and target trajectories
S9t: number of robustness rollout steps IV; loss function L; learning rate

2: Initialize 6 < 6y and & < &g

3: if mode is “learn” then

4 for j = 0 to number of training steps do

5: s?oztl = BY(T) > Start of forward pass, cf. Alg 1 in the paper.

6 fori =1to N do ‘

7 Gi—1 ComputeRobustnessGradient(slo:_%, 0, )

8: Sl < Sip +7 gin1

9: end for

10 L=|sf.; — sf{itng > Start of backward pass
11 oL, ?TE = CalculateGradient(L, sy ) > Using Equations (2) or (4) in the paper.
12: 0; = UpdateParameter(%—g, v)
13: & = UpdateParameter(%—é7 v)

14: end for
15: return 6, ¢
16: end if

3 Experimental Details

We use the NuScenes [4] dataset for experimentation and validation. Two off-the-shelf predictors -
the Multi-modal trajectory predictor - MTP [5] (implementation available at [6]) and Trajectron++
[7] (implementation available at [8]) are used as base predictors. We present the results for MTP
in the paper and Trajectron++ in Section 4.1 below. For MTP, we trained with 3 modes (3 output
trajectories each with a probability). The trajectory with the highest probability is passed on to the
STL layer. We use a batch size of 16 for training. Gradients are accumulated for 6 batches before
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Figure 1 : Trajectron++ - STL results. (top): Histogram of the performance metric distribution over the val-
idation set. (bottom): Comparison of validation results with and without the STL layer for different prediction
horizons.

performing an update. A learning rate of 3 x 10~% is used. We set the regression loss weight equal to
0.8 and trained for a total of 100 epoches in all our experiments. For Trajectron++, we use the default
hyperparameters provided in the provided implementation. Training is performed on a cluster using
4 NVidia Tesla V100 GPUs.

In our implementation of the STL-layer, we use the STL Computation graph (STL-CG) [9] to con-
struct and calculate the robustness. Gradient ascent is used in the forward rollout steps (Equations
(2) and (4) in the paper) with a learning rate of 0.005 (number of rollout steps is set to 10). As is
included in the STL-CG framework, a soft version of robustness is used (with the softmax approxi-
mation). In our experiments, we use a softmax scale of 0.3. Finite difference is used to calculate the
gradient of the robustness with respective to the input trajectory (in the forward pass). Backpropa-
gation is performed using Pytorch’s autograd engine.

4 Additional Results

4.1 Results With Trajectron++ As The Base Predictor

In this section, we provide additional results with Trajectron++ [7] as the base predictor. We show
the comparison histogram as well as the prediction horizon study in Figure 1 . In the top figure, we
compare the performance metric histograms before and after applying the STL layer corrections. In
regions with high base prediction errors, the STL layer is able to correct for the deviations using
the defined rules. However, in regions with low base prediction errors, the STL layer suffers from
over-correction which increases the prediction error. We will discuss failure cases in more detail
in the next section. Figure 1 (bottom) shows the level of STL correction at 3 different prediction
horizons (6, 9, 12 seconds). The STL layer is able to improve the base prediction results in all three
cases.

4.2 Example Scenes

In this section, we show example scenes (both successes and failures) of predictions pre and post
correction. In all the scenes, the dot-dash lines represent the closest lanes to the vehicle (green)
with brown indicating the incoming lane, yellow indicating the current lane and white indicating
outgoing lanes. The green vehicle is the vehicle to be predicted. The dots represent positions on the
predicted trajectories with black indicating ground truth, white indicating the base prediction and
red indicating the corrected prediction.
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Figure 2 : Example scenes for successful correction. Dot-dash lines represent closest lanes to the vehicle to
be predicted with brown indicating the incoming lane, yellow indicating the current lane and white indicating
outgoing lanes. The green vehicle is the vehicle to be predicted. The dots represent positions on the predicted
trajectories with black indicating ground truth, white indicating the base prediction and red indicating the
corrected prediction.
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Figure 3 : Failure cases. (A): Failure due to in accurate map data. (B): Failure due to lane representation
insufficiency. (C): Failure due to over-correction.

Recall that the rules we defined encourages the vehicle to (1) stay close to the base prediction, (2)
stay close to the current center lane, (3) if there are no stop areas 30 meters ahead, stay close to
the current observed speed. Figure 2 shows sample scenes of successful cases where the corrected
prediction (red) has higher accuracy than the base prediction (white). Overall, rule (2) played the
most important role in the success of the correction. Rule (3) helps in cases where the base predictor
falls short in predicting the speed of the vehicle. In the bottom left scene, the base predictor provided
atrajectory that is moving slower than what the vehicle is actually moving at (white trajectory travels
a shorter distance than black). The corrected trajectory compensated for this shortage using rule (3).
Rule (1) is necessary in cases where the base predictor captures information that the rules don’t, it
also gives the STL layer a reasonable starting point.

Figure 3 shows three representative failure modes. In all three cases, the prediction after correction
performs worse than the base prediction. In Figure 3 (A), the failure is due to the map not providing
the correct center lane. NuScenes provides a function that for each input position on the map outputs
the closest center lane as a set of discretized poses. In this case, the agent is trying to make a right
turn at the intersection, however, the lane resulted from the query is a left turning lane. This results in
the corrected trajectory to lean towards the wrong lane. This failure mode can be partially addressed
by comparing the queried center lane with the base prediction, if a large discrepancy is found then
relax rule (2) at that time-step.

Figure 3 (B) shows a failure mode due to our lane representation. We calculate the distance between
the vehicle and the lane by first fitting a line through the discrete representation of lane and then
compute the point to line distance (this method is chosen for simplicity). A first order line fitting
does not work well when the lane has a high curvature. This failure mode can be addressed by
fitting the lane with higher order polynomials and calculating the approximate point to polynomial
distance.

Figure 3 (C) shows a failure mode due to over correction. In this case, the vehicle is simply not
driving on the center lane and the base predictor captured this behavior. However, applying the
STL correction results in a trajectory that’s closer to the center lane but with increased error (over-
correction accounts for the behavior in Figure 1(top) at low base prediction error regions). This is
a common problem when multiple constraints are active and the correct balance is to be achieved.
A potential solution is to make the rule parameters conditioned on environmental information such
that each rule is enforced with different strength in different scenarios (which are learned from data).
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