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Abstract— This paper presents a novel framework for infer-
ring timed temporal logic properties from data. The dataset
comprises pairs of finite-time system traces and corresponding
labels, denoting whether the traces demonstrate specific desired
behaviors, e.g. whether the ship follows a safe route or not.
Our proposed approach leverages decision-tree-based methods
to infer Signal Temporal Logic classifiers using primitive
formulae. We formulate the inference process as a mixed
integer linear programming optimization problem, recursively
generating constraints to determine both data classification, i.e.,
decision criteria and the tree structure. Applying a max-flow
algorithm on the resultant tree transforms the problem into a
global optimization challenge, leading to improved classification
rates compared to prior methodologies. Moreover, we introduce
a technique to reduce the number of constraints by exploiting
the symmetry inherent in STL primitives, which enhances the
algorithm’s time performance and interpretability. We conduct
three case studies involving two-class, multi-class, and complex
formula classification scenarios to assess our algorithm’s effec-
tiveness and classification performance.

I. INTRODUCTION

The ever-increasing complexity of modern systems has
resulted in the need for sophisticated techniques that can
help understand and classify temporal behaviors from time-
series data. Machine learning (ML) [1] approaches have
emerged as effective tools for this task, particularly in two-
class classification, where the objective is to differentiate
between desired and undesired system behaviors. However,
the opaque nature of traditional ML algorithms often hin-
ders interpretability and insight into system dynamics [2],
[3]. To address this limitation, formal methods such as
Signal Temporal Logic (STL) [4], [5] have been gaining
traction to specify temporal properties of real-valued signals.
STL provides a structured language for expressing complex
temporal and logical behaviors, offering both readability
and interoperability. By formulating temporal properties as
logical formulae, STL facilitates the inference of system
behaviors from labeled time-series data [6].

While early methods in this domain focused on manual
parameter synthesis from predefined template formulae [7]–
[10], recent advancements have sought to automate this
process by inferring both the structure and parameters of
STL formulae directly from data [11]. The authors of [12]
introduced a fragment of STL called inference parametric
signal temporal logic (iPSTL), which enables the classifica-
tion problem to be formulated as an optimization problem.
However, this approach faces challenges such as high compu-
tational cost due to nonlinear parameter optimization routines
and constructing a directed acyclic graph (DAG) based on
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the ordering of PSTL formulae, which may not necessarily
improve classification performance. Other recent works, such
as [13], [14], have addressed the two-class classification
problem by building generative models for each class and
deriving a discriminative formula that maximizes the prob-
ability of satisfaction for one model while minimizing it
for the other. Despite their potential, these methods require
building models of the system under analysis, which entails
domain expertise and substantial data. On the other hand,
decision tree-based frameworks have emerged as promising
approaches for efficiently learning STL formulae, where
each node encapsulates simple formulae optimized from a
predefined set of primitives [15], [16]. Lastly, the authors
in [17] use the different layers of neural networks to learn
different aspects of STL formulae that allow a compact and
efficient binary interpretable classification for level-one STL
formulae, and multi-class inference [18], [19].

Despite recent advances, the formulae generated by ex-
isting algorithms often suffer from verbosity and complex-
ity, limiting their interpretability and practicality in real-
world scenarios. In response to these challenges, this paper
introduces an innovative approach: optimal max-flow tree
data classification using Signal Temporal Logic (STL) in-
ference. Our method builds upon the concept of tree-based
structures [15], [16], to encode STL primitives recursively
and facilitate the classification of labeled datasets. However,
unlike previous approaches, we leverage this tree structure to
formulate a max-flow optimization problem [20], enabling us
to determine the tree structure and the inferred STL specifica-
tion simultaneously. At each node of the tree, we encapsulate
STL primitives and make branching decisions based on
the classification of the input data. Our approach offers
several advantages over previous methods by formulating the
classification task as a mixed integer linear programming
(MILP) problem. Unlike [15], [16], ours enables global
optimization and can be adapted for multi-class classification
scenarios. Moreover, we reduce primitive redundancy, result-
ing in fewer constraints, which improves time performance
and reduces complexity. In contrast to [17], our method
considers a broader set of STL primitives and avoids the
pitfalls associated with nonlinear optimization, such as get-
ting trapped in local minima. Our approach ensures optimal
performance with enhanced interpretability by maximizing
classification accuracy and minimizing formula complexity.
We validate the efficacy of our method using two-class and
multi-class classification scenarios. The results demonstrate
significantly improved classification performance and inter-
pretability compared to existing approaches, thereby paving
the way for more effective temporal behavior classification
and analysis. The main contributions of this work are,
1) Proposing a novel decision tree-based STL inference



algorithm that runs a global optimization and results in
an improved classification rate compared to the existing
related approaches. 2) Formulating a MILP encoding that
classifies data and generates the rules for growing the tree
structure based on STL primitives, followed by a global max-
flow optimization approach that guarantees high-performance
classification. 3) Constraint reduction based on the symmetry
of STL primitives, resulting in more efficient and improved
time performance. 4) Demonstrating three case studies to
show the algorithm’s capability to handle two-class, multi-
class, and complex formulae classification and compare its
performance with other approaches.

II. PRELIMINARIES AND NOTATION

Let R denote the set of all real numbers, Z the set of
integers, B the binary set, and Z≥0 the set of non-negative
integers. For a set S, 2S and ∣S∣ represent its power set
and cardinality. We have α + S = {α + x ∣ x ∈ S}. The
integer interval (range) from a to b is [a..b]. We use I = a
and Ī = b. A discrete-time signal s, with time horizon H ∈
Z≥0, is defined as a function s ∶ [0..H] → Rd mapping each
time-step to an d-dimensional vector of real values. The j-th
component of x is given by xj , j ∈ [1..d].

Signal Temporal Logic: Consider a discrete-time signal
s ∶ [0..H] → M with values in the compact space M ⊆ Rd.
Signal Temporal Logic (STL) [4] is a specification language
that expresses real-time properties with the following syntax.

ϕ ∶∶= ⊺ ∣ h(s) ≥ π ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 ∨ ϕ2 ∣ ◊Iϕ ∣ ◻Iϕ, (1)

where ϕ, ϕ1, and ϕ2 are STL formulae, ⊺ is the logical
True value, h(s) ≥ π is a predicate with h ∶ Rd → R
and threshold value π ∈ R, ¬, ∧, and ∨ are the Boolean
negation, conjunction, and disjunction operators. Discrete-
time temporal operators eventually ◊I , and always ◻I with
I = [I..Ī] a discrete-time interval, Ī ≥ I ≥ 0. Linear
predicates of the form s ∼ π, ∼ ∈ {>,≤,<}, follow via
negation and sign change. The qualitative semantics are
defined as in [4]. The quantitative semantics (robustness)
ρ(s, ϕ, k) indicate how much a signal satisfies or violates
a specification [21] it is recursively defined as

ρ(s, h(s) ≥ π, k) = h(s(k)) − π,
ρ(s, ϕ1 ∧ ϕ2, k) =min(ρ(s, ϕ1, k), ρ(s, ϕ2, k)),
ρ(s, ϕ1 ∨ ϕ2, k) =max(ρ(s, ϕ1, k), ρ(s, ϕ2, k)),

ρ(s,◻Iϕ, k) = min
k′∈k+I

ρ(s, ϕ, k′),

ρ(s,◊Iϕ, k) = max
k′∈k+I

ρ(s, ϕ, k′),

(2)

where ρ⊺ = sups,π{∣h(s) − π∣} is the maximum robustness.

Theorem 1 (Soundness [22]). Let s be a signal and ϕ an STL
formula. It holds ρ(s, ϕ, k) > 0⇒ (s, k) ⊧ ϕ for satisfaction
and ρ(s, ϕ, k) < 0⇒ (s, k) ⊭ ϕ for violation.

The time horizon of an STL formula is captured as in [23].

III. PROBLEM FORMULATION

This section introduces the data classification problem by
inferring STL specifications. Consider a labeled dataset S ∶=
{(si, ℓi)}i∈I , where si and ℓi represent the i-th signal and
its corresponding label. We denote the set of all possible
classification classes as C = [1..∣C∣], where ℓi = c signifies

that the i-th sample is labeled with class c ∈ C. Our aim is to
infer STL formulae ϕc that encapsulate properties inherent
to each data class c ∈ C. Formally,

Problem 1 (Multi-class classification). Given a labeled
data set S, find a set of mutually-exclusive STL formulae
Φ = {ϕc}c∈C that maximizes the correct classification rate
CCR(Φ) where

CCR(Φ)∶ = ∑c∈C
∣{si ∣ si ⊧ ϕc ∧ ℓi = c}∣

∣I∣ . (3)

such that ϕc ∧ ϕc′ ≡ � for all c, c′ ∈ C with c ≠ c′.

IV. SOLUTION

We propose an approach to learning STL formulae using
decision trees. The tree branches from the root to the leaves
correspond to the classification process, where leaves are
associated with classes and intermediate nodes with decisions
in primitive STL formulae. We infer the structure of the
decision tree, the primitives to use for each decision node
and their spatial and temporal parameters, and the classes
associated with the leaf nodes such that the correct classifi-
cation rate is maximized and the number of decision nodes
is minimized. We cast the temporal inference problem as a
MILP problem using a max flow encoding [20].

Our classification method employs a tree-based struc-
ture [20], akin to a binary decision tree but with a unique
feature: it incorporates a source node s and a sink node t,
as illustrated in Fig. 1. Furthermore, each node is connected
to the sink node. We refer to this configuration as a classi-
fication tree, defined as follows.

Definition 1 (Classification Tree). A classification tree T =
(N ,L,E , s, t) is a Directed Acyclic Graph (DAG) with single
source s and single sink t. Nodes in the final layer of the
tree are referred to as leaf nodes, denoted by L, while nodes
situated between the source and the leaf nodes are internal
nodes, denoted by N and E ⊆ (N ∪ {s}) × (N ∪L ∪ {t})
captures relation between nodes. We define the sets pa(n) =
{n′ ∣ (n′, n) ∈ E} and ch(n) = {n′ ∣ (n,n′) ∈ E} to represent
the parent and children nodes of a given node n, respectively.

Note that in Fig. 1, pa(s) = ∅, since sink has no parent
node and pa(1) = s1. On the other hand, ch(t) = ∅ and for
all n ∈ L we have ch(n) = {t}. An internal node n ∈ N
has three children, a left child, a right child, and the sink t.
In the classification process using T , data samples that are
correctly classified traverse from the source node through
the tree to reach the sink. Conversely, misclassified samples
are blocked from progressing beyond the source node. The
binary decision tree (BDT) with STL primitive nodes is
extracted from the classification tree T . The root of the STL
BDT is the node connected to the source s, i.e., node 1 in
Fig. 1. Not all nodes N ∪ L of T are part of the inferred
STL BDT. The final structure follows from the optimization
result. Note that a pre-determined depth value limits the size
of the classification tree.

To partition the data at each node n ∈ N , a finite list of
possible splitting rules is considered [24]. We use simple

1We abuse notation and write pa(n) = n′ instead of pa(n) = {n′} for
readability since a node has at most one parent.



Fig. 1: Max flow classification tree.

Parametric Signal Temporal Logic (PSTL) formulae [7],
called primitives [16], defined as follows.

Definition 2 (PSTL primitives). The primitive in the set Ψ
consists of a temporal operator, a relational operator, and
a predicate function. Formally, Ψ = {Γ(h(s) ∼ π) ∣ Γ ∈
{◻I1 ,◊I1 ,◻I1◊I2 ,⋯},∼∈ {≥,<}, h ∈ H}, where π ∈ R is the
threshold, Ij are integer ranges of temporal operators, and
H is a finite set of predicate functions h ∶ [0..H] →M. The
set of all possible time intervals of temporal operators is
Θ = {θ = (I1, . . . , Iq) ∣ Ip = [Ip..Īp] ∣ Ip ≤ Īp, with I, Ī ∈
[0..H],∀p ∈ [1..q], q ∈ Z≥1}, where q is the number of
temporal operators in a primitive.

In Def. 2, π is the spatial parameter, while the time
bounds of temporal operators Ip are the time parameters.

When classifying using tree T , we assign a primitive
ψ ∈ Ψ or a class c ∈ C to each node n in N and L.
Note that a class c ∈ C can be assigned at internal or leaf
nodes, whereas primitives can only be assigned to internal
nodes. For internal nodes n ∈ N , we also compute the
spatial and time parameters of primitive ψ, denoted as πn
and θn = (I1, . . . , Iqψ), where qψ is the number of temporal
operators in ψ.

For each data sample si in the dataset S, the following
encoding captures the classification of si as a flow from the
source s to the sink t. At the starting node s, si flows down to
the top node 1, see Fig. 1. If the node n is a decision node
associated with the STL formula ϕn = ψn(πn, θψn), then
the check si ⊧ ϕn is performed. If signal si satisfies ϕn, the
signal flows to the left child l(n) ∈ ch(n). Otherwise, it flows
to the right child r(n) ∈ ch(n). The link to the sink node t is
not used for decision nodes. The procedure continues from
the node reached by si. If the node n is a classification node
associated with class cn, the check cn = ℓi is performed. If
the label ℓi matches the class cn, then the signal si flows to
the sink t and is correctly classified and counted towards the
objective. If a signal cannot be correctly classified, it does not
enter the classification tree and, thus, does not count toward
the objective as explained later in Sec. IV. In either case,
the classification of si ends when it reaches the sink t. For
classification nodes, the links to the right and left nodes are
unused. Moreover, leaves L can only be classification nodes
since they have edges only to the sink t.

Hence, to achieve accurate data classification, we aim to
construct a classification tree T that maximizes the Correct
Classification Rate (CCR(Φ)). Consequently, the flow-based

optimization problem solving Pb. 1 is:

max CCR(Φ)
s.t. Flow constraints,Node function constraints,

STL satisfaction constraints.

(4)

The objective is to maximize the Correct Classification
Rate (CCR) while adhering to flow constraints that ensure the
conservation of data flow within the tree. Constraints related
to node functions define primitive predicates, child allocation,
and classification. The final soundness constraint ensures that
the predicted class satisfies the signal. The following sections
provide a detailed description of these constraints.

Flow constraints: Here, we establish the conservation of
data flow within the classification tree T . Let zin ∈ B denote a
binary variable representing whether data point (si, ℓi) ∈ S
traverses node n ∈ N ∪ L. It takes a value of one if data
point (si, ℓi) flows through node n and zero otherwise. We
designate the entry of a data point into the source node as
zis ∈ B. Since all internal nodes are connected to a common
sink node t, we introduce zit,n ∈ B which also identifies the
node through which data point (si, ℓi) enters the sink node t.
Specifically, zit,n = 1 indicates that data (si, ℓi) reaches the
sink node via node n, and zero otherwise. Then, the flow
constraints are defined as follows

zis = zi1, ∀i ∈ I, (5a)

zin = zit,n + zil(n) + zir(n), ∀n ∈ N ,∀i ∈ I, (5b)

zin = zit,n, ∀n ∈ L,∀i ∈ I. (5c)

The constraint (5a) enforces a flow from the source node s
to enter node n = 1 corresponding to the root of the inferred
BDT that eventually reaches sink t and is correctly classified.
In this case, zis = zi1 = 1. Otherwise, we have zis = zi1 = 0,
and there is no flow for si, and it is thus misclassified. Next,
(5b) ensures that data si leaving internal node n ∈ N ∪ L
must enter one of its children nodes or the sink node t. The
last equation (5c) enforces the flow for si from leaves L to
the sink t, which is their only child. These constraints imply
that data is either correctly classified, i.e., zit,n = 1 for a node
n ∈ N ∪ L via a deterministic tree flow, or it does not enter
the tree, i.e., zis = 0.

Node function constraints: In this section, we capture the
functionality of the nodes in T . Internal nodes N are either
decision or classification nodes. Each internal node n ∈ N in
T either checks a primitive STL formula and creates child
nodes or classifies data by directing the flow to the sink. Leaf
nodes n ∈ L exclusively make classifications by enforcing the
flow to the sink t. For each node n ∈ N , we introduce the
binary decision variables bψn ∈ B to capture whether n is a
decision node associated with primitive STL function ψ ∈ Ψ.
Conversely, binary decision variables wcn ∈ B indicate that
node n is a classification node for class c ∈ C.

The constraints governing the node functionality are:

∑
ψ∈Ψ

bψn +∑
c∈C

wcn = 1, ∀n ∈ N , (6a)

∑
c∈C

wcn = 1, ∀n ∈ L. (6b)

For internal nodes n ∈ N , (6a) guarantees that n either
performs a decision using a primitive ψ or classifies the data
into a class c. For leaves n ∈ L, (6b) enforces classification,
i.e., assignment of a class c.



When imposing a decision using a primitive, time intervals
and thresholds are required to complete the STL formula.
The time parameters variable ξnθ ∈ B, ∀θ ∈ Θ, encompasses
all possible valuations of the time parameters within horizon
H . The constraint capturing the primitive variable is

∑
ψ∈Ψ

bψn = ∑
θ∈Θ

ξnθ , ∀n ∈ N . (7)

If a primitive is selected, i.e., ∑ψ∈Ψ bψn = 1, then (7) ensures
that exactly one set of time parameters θ is selected for the
primitive ψ. Otherwise, no θ is selected.

For classification nodes responsible, data flows to the
sink node t if the predicted class is correct. The following
constraint enforces this behavior. The inequality constraint is
enforced since multiple classification nodes can predict the
same class and the data can only flow into one of the nodes.

zit,n ≤ wcn, ∀i ∶ ℓi = c ∈ C, n ∈ N ∪ L. (8)

STL satisfaction constraints: In this section, we connect
the decision variables for decision nodes with the satisfaction
of primitive formulas. Additionally, the constraints capture
the robustness of signals with respect to the STL formula
obtained from a PSTL primitive and computed spatial and
time parameters.

1) Robustness calculation: To capture the robustness of
signals with respect to primitives, we use the following result.

Proposition 1. Let s be a signal and ψ ∈ Ψ be a PSTL
primitive. For any valuations π and θ of the spatial and time
parameters of ψ, we have ρ(s,ψ(π, θ)) = ρ(s,ψ(0, θ)) − π
Proof. The proof follows trivially from the structure of
primitive formulae in Φ, and is omitted for brevity.

Using Prop. 1, we can precompute the robustness values
for all signals si, primitives ψ and time parameters θ,
which we denote as τ i,ψθ . For example, the robustness of
signal s1 with respect to ψ1 = ◊[1..5]h(s) ≥ 0 is τ1,ψ1

[1..5] =
maxk∈[1..5] h(s1(k)).

The robustness ρi,nψ ∈ R of data si with respect to the
formula ψ with an arbitrary πn ∈ R is captured by

∑
θ∈Θ

ξnθ τ
i,ψ
θ + πn = ρi,nψ , ∀i ∈ I, ψ ∈ Ψ, n ∈ N . (9)

We enforce constraint (9) for all internal nodes n ∈ N to
compute the robustness of every signal with respect to the
predicted formula at node n.

2) Soundness constraints: At a decision node n ∈ N , a
signal satisfying (violating) the primitive formula is directed
to the left child node l(n) (right child node r(n)).

To represent the sign of robustness, we introduce the
binary variables yi,nψ ∈ B. The variable yi,nψ takes the value
of one if ρiϕ ≥ 0, and zero if ρiϕ ≤ 0. We employ the big-M
method to encode this relationship such that the robustness
value is not over-constrained when yiϕ = 0 as follows

ρi,nψ ≤Myi,nψ , ∀i ∈ I, ψ ∈ Ψ, n ∈ N ,
−ρi,nψ ≤M(1 − y

i,n
ψ ), ∀i ∈ I, ψ ∈ Ψ, n ∈ N .

(10)

where M = ρ⊺ ∈ R>0 is the value of the maximum robustness.
Next, we need to connect the satisfaction of primitives at

a decision node n with the flow to the left or right child.

Hence, for indicating data flowing to the left child node, we
introduce variable zil(n) ∈ B which takes the value of one if
two conditions are satisfied simultaneously (1) n is a decision
node with primitive ψ, i.e., bψn = 1, and (2) the robustness is
positive with respect to the formula yi,nψ = 1. The conditions
are enforced by

zil(n) ≤ ∑
ψ∈Ψ

κi,nψ , ∀i ∈ I,∀n ∈ N , (11)

where κi,nψ = y
i,n
ψ ⋅bψn is an auxiliary variable that captures the

condition zil(n) = 1 if and only if yi,nψ = 1 and bψn = 1. Note
that since both variables are binary, the product is equivalent
to κi,nψ = min{yi,nψ , bψn} and is encoded as mixed integer
linear constraints. Data flowing to the right zir(n) ∈ B follows
a similar process but with opposite conditions as follows:

zir(n) ≤ 1 − ∑
ψ∈Ψ

κi,nψ , ∀i ∈ I, n ∈ N .

zir(n) ≤ ∑
ψ∈Ψ

bψn .
(12)

MILP formulation: The CCR(Φ) of the data set, which
is our main objective in the optimization problem, is given
by the flow into sink t. Thus, we obtain the objective by
summing up zit,n as follows:

CCR(ϕ) = ∑i∈I ∑n∈N∪L
zit,n

∣I∣ . (13)

Moreover, the optimal flow tree structure enables specifying
a penalty for the number of decision nodes, thereby reduc-
ing the complexity of the resulting formula. However, this
approach may involve a trade-off in performance, as more
decisions can lead to better classification, i.e., larger CCR.
The trade-off is captured by a variable λ ∈ [0,1] that serves
as a regularization parameter. This parameter allows users
to adjust the emphasis between complexity reduction and
maintaining high performance. Consequently, the objective
function in (13) is modified as follows:

J = (1 − λ)∑
i∈I
∑

nN∪L
zit,n + λ ∑

ψ∈Ψ
bψn . (14)

The first in J evaluates the number of correctly classified
data, while the second term quantifies the number of decision
nodes with λ serving as the adjustment variable.

Finally, problem in (4) becomes the MILP problem:

max J
s.t. (5) (Flow constraints),

(6) − (8) (Node function constraints),
(9) − (12) (STL satisfaction constraints).

(15)

Problem simplification: In this section, we present a
simplified version of the problem in (15) when considering
first-level STL primitive formulae, i.e., formulae without
nested temporal operators [16]. Under these conditions, the
primitives ρ(s,◊θh(s) ≥ π) = −ρ(s,◻θh(s) ≤ π) and
ρ(s,◊θh(s) ≤ π) = −ρ(s,◻θh(s) ≥ π) are equivalent.

Proof. From the definition, we have ρ(◊θh(s) ≥ π) =
maxt∈θ {h(s(t)) − π} = −(−maxt∈θ {h(s(t)) − π}) =
−(mint∈θ {π − h(s(t))}) = −ρ(◻θh(s) ≤ π). The proof for
the second equivalence follows similarly.



Inferring a primitive ◻θh(s) ≤ π from data is the same
as learning ◊θh(s) ≥ π. We remove the primitives contain-
ing the always operator and, thus, reduce Ψ by half. The
simplification can be employed with any set Φ closed under
negation. For example, second level primitives of the form
◻θ1◊θ2 and ◊θ1◻θ2 .

STL formula summary: Once the optimization in (15)
is completed, we can trace all STL formulae starting from
the first layer for each data class. Beginning with the first
layer, the traversal to a left child from any node signifies the
satisfaction of the STL formula associated with that node,
whereas progressing to a right child indicates the negation
of the STL formula (¬). As we proceed through successive
layers, the STL formulae encountered along the path are
unified using the logical conjunction (∧). Upon reaching a
class prediction node, the aggregated conjunction formula
essentially defines the class for that node’s prediction. Lastly,
in cases where a class is represented in multiple nodes across
the tree, the distinct STL formulae corresponding to each
node are combined using the logical disjunction (∨).

V. CASE STUDIES

We demonstrate the effectiveness of our method in three
case studies. First, the two-class naval surveillance dataset
is first compared to other binary STL classification methods.
Second, it demonstrates applying the proposed approach to
multi-class STL inference using a four-class trace dataset.
Third, it is a designed dataset that uses second-level STL
primitives for classification. The adjustment variable λ is set
to 0 to maximize CCR.

Naval Surveillance: We use the naval surveillance
dataset [11]. The different classes represent two behaviors
of the vessel trajectories, see Fig. 2. All trajectories start
from the open sea on the right side. The blue trajectories are
normal behaviors that directly head toward the harbor. The
green and red trajectories are abnormal. The red trajectories
approach the island and return to the open sea, while the
green trajectories veer to the island before heading to the
harbor. All trajectories contain 61 time steps of x and y
positions. We use the optimal flow tree with a depth of 2 for

Fig. 2: Naval Surveillance Dataset. Blue trajectories: normal be-
havior, Green and Red trajectories: abnormal behavior

this dataset and compare other methods from [15]. All results
are computed with an average of 10 runs. The classification
tree and the resulting decision tree are shown in Fig. 3a
and Fig. 3b, respectively. The colored nodes indicate nodes
utilized for classification. A typical example of the learned
formula from our method for the normal and abnormal trajec-
tories is: node 1: ϕ1 = ◊[13,59]y ≤ 23.168; node 2: abnormal;
node 3: ϕ3 = ◊[50,59]x ≥ 25.483; node 6: abnormal; node 7:
normal; STL formula for normal behavior cp = ¬ϕ1 ∧ ¬ϕ3;

(a)

1 ∶ ϕ1

2 ∶ cn 3 ∶ ϕ3

6 ∶ cn 7 ∶ cp

(b)

Fig. 3: 3a depicts the classification tree of depth 2 wherein only
green-colored nodes are used for classification while grey nodes and
edges are redundant. Fig. 3b shows the resulting STL BDT wherein
cp denotes ”normal” and cn indicates ”abnormal” behavior.

(a) (b)

Fig. 4: Performance comparison (a) Run time (b) Correct classifi-
cation rate.

STL formula for abnormal behavior cn = ϕ1 ∨ ϕ3. The
interpretation of this formula is clear: the y coordinates of
normal vessels do not reach the island between 13 and 59
seconds, and the x coordinates of normal vessels eventually
enter the harbor between 50 and 59 seconds, while abnormal
trajectories are the opposite. We compare the results of [15]
using boosted concise decision trees (BCDTs) with respect to
the average runtime and the classification accuracy in Fig. 4
by varying the number of samples. In the BCDTs approach,
the variable k is the different number of decision trees used
for classification, and d is the depth of the tree. The results
demonstrate that our approach consistently outperforms the
BCDTs approach in obtaining optimal solutions.

Trace Dataset: The trace dataset contains four classes of
one-dimensional transient behavior from a simulated nuclear
industry process [25]. The length of the data is 275, a total
of 200 samples in the dataset, evenly distributed by classes
as shown in Fig. 5a. We used a tree with a depth of 3 for
this dataset, and the objective achieves 100 percent accuracy
and the resulting formulae for the four classes are computed
as follows: node 1: ϕ1 = ◊[173,181]s ≤ 0.74; node 2: ϕ2 =
◊[12,16]s ≥ 0; node 3: ϕ3 = ◊[115,167]s ≤ 0.59; node 4: ϕ4 =
◻[21,27]s < 0.72; node 5: ϕ5 = ◊[157,216]s ≤ 0.35; node 6:
ϕ6 = ◊[230,234]s ≥ 0.88; node 7: ϕ7 = ◻[210,210]s < 0.69;
node 8: class 2; node 9: class 1; node 10 &13 &15: class
3; node 11 &12 &14: class 4. With class 1: ϕ1 ∧ ϕ2 ∧ ϕ4;
class 2: ϕ1 ∧ϕ2 ∧¬ϕ4; class3: (ϕ1 ∧¬ϕ2 ∧ϕ5)∨(¬ϕ1 ∧ϕ3 ∧

(a) (b)

Fig. 5: (a) Trace Dataset (b) Trajectories for high-level STL.



¬ϕ6) ∨ (¬ϕ1 ∧¬ϕ3 ∧ϕ7); class4: (ϕ1 ∧¬ϕ2 ∧¬ϕ5) ∨ (¬ϕ1 ∧
ϕ3 ∧ ϕ6) ∨ (¬ϕ1 ∧ ¬ϕ3 ∧ ¬ϕ7) The results demonstrate the
capability for multi-class classification.

Classification using Second-level STL Primitives: Our
framework accommodates complex STL formulae. Fig. 5b
is an illustrative example of sample trajectories designed
to highlight the expressivity of second-level STL formula.
Current neural network-based approaches are limited to
first-level formulae, and adapting them to other primitive
sets is non-trivial [17]. Class 1 of the blue trajectory is a
triangle wave, and we complement the data with variations
of plateaued triangular waves, such as the yellow and green
trajectories with plateaus of 2 and 3, respectively. To ensure
that the inferred formula is not trivially defined by one
tree level, we have trajectories of constant values at the
lower and upper bounds drawn in purple. Next, we sample
different trajectories from each type of wave by shifting
the initiation point. We generate 300 samples with 15 time
steps, 100 of which are class 1, and we denote the rest of
the data as class 2. Lastly, we add a small random noise
between -0.01 to 0.01 to all values. We use a tree with a
depth of 2 for classification. The optimization returns 100
percent accuracy, and the results are the following: node
1: ϕ1 = ◻[2,11]◊[0,4]s ≤ 1.0086; node 2: class 2; node 3:
ϕ3 = ◻[0,10]◊[0,2]s ≤ 3.017; node 6: class 1; node 7: class
2. ϕ1 means within the time interval [2,11], there is always
a time within any subinterval of length 4 where the signal
value is less than or equal to 1.0086. Therefore, only the
lower constant trajectory satisfies ϕ1. Next, ϕ3 means that
within the time interval [0,10], there is always an event
within any subinterval of length 2 where the signal value
is less than or equal to 3.017. From the remaining data that
does not satisfy ϕ1, only the class 1 triangular wave satisfies
ϕ3. As a result, the STL formula for class 1 is ¬ϕ1 ∧ ϕ3.

VI. CONCLUSIONS

We propose a decision tree-based STL inference algorithm
that works for two-class and multi-class classification prob-
lems. Our algorithm formulates the problem as a MILP by
leveraging a max-flow approach over a synthesized tree using
STL primitives, which allows for the computation of a glob-
ally optimal solution, i.e., a high Correct Classification Rate.
Additionally, we exploit the symmetry of STL primitives to
reduce the required constraints for classification, resulting in
improved performance and reduced complexity. We evaluate
the performance through three case studies to demonstrate
the ability to interpret complex STL formulas and the pre-
cision in predictive accuracy. We show the capacity of our
approach to handling two-class and multi-class classification
problems with first-level and second-level STL primitives.

REFERENCES

[1] A. A. Soofi and A. Awan, “Classification techniques in machine
learning: applications and issues,” J. Basic Appl. Sci, vol. 13, no. 1,
pp. 459–465, 2017.

[2] M. Krishnan, “Against interpretability: a critical examination of the
interpretability problem in machine learning,” Philosophy & Technol-
ogy, vol. 33, no. 3, pp. 487–502, 2020.

[3] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal,
“Explaining explanations: An overview of interpretability of machine
learning,” in 2018 IEEE 5th International Conference on data science
and advanced analytics (DSAA), pp. 80–89, IEEE, 2018.

[4] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, pp. 152–166, Springer, 2004.
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