
Metrics for Signal Temporal Logic Formulae

Curtis Madsen∗, Prashant Vaidyanathan∗, Sadra Sadraddini∗, Cristian-Ioan Vasile∗, Nicholas A. DeLateur,
Ron Weiss, Douglas Densmore, and Calin Belta

Abstract— Signal Temporal Logic (STL) is a formal language
for describing a broad range of real-valued, temporal properties
in cyber-physical systems. While there has been extensive
research on verification and control synthesis from STL require-
ments, there is no formal framework for comparing two STL
formulae. In this paper, we show that under mild assumptions,
STL formulae admit a metric space. We propose two metrics
over this space based on i) the Pompeiu-Hausdorff distance and
ii) the symmetric difference measure, and present algorithms
to compute them. Alongside illustrative examples, we present
applications of these metrics for two fundamental problems: a)
design quality measures: to compare all the temporal behaviors
of a designed system, such as a synthetic genetic circuit, with
the “desired” specification, and b) loss functions: to quantify
errors in Temporal Logic Inference (TLI) as a first step to
establish formal performance guarantees of TLI algorithms.

I. INTRODUCTION

Temporal logics [1] are increasingly used for describing
specifications in cyber-physical systems such as robotics [2],
synthetic biology [3], and transportation [4]. Variants of
temporal logics, such as Computation Tree Logic (CTL) [5],
Linear Temporal Logic (LTL) [6], or Signal Temporal
Logic (STL) [7], can naturally describe a wide range of
temporal system properties such as safety (never visit a “bad”
state), liveness (eventually visit a “good” state), sequentiality,
and their arbitrarily elaborate combinations.

Using model checking [1] techniques, signals or traces
can be checked to determine whether or not they satisfy a
specification. For STL in particular, the degree of satisfaction
or robustness is a quantitative measure to characterize how
far a signal is from satisfaction [8]–[10] of an STL formula.
There is currently, however, no formal way to directly
compare specifications against each other. Previous related
approaches in planning and control have looked into speci-
fication relaxation, where the goal is to minimally enlarge
the specification language to include a satisfying control
policy for the system model. Various specification relaxations
have been defined including minimum violation [11]–[13]
for self-driving cars, temporal relaxation of deadlines [14],
minimum revision of Büchi automata [15], and diagnosis and
repair in reactive synthesis [16]. While language inclusion
and equivalence problems are of paramount importance in
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computer science and control theory, they are only qualitative
measures while we are interested in quantitative metrics.

This paper presents two metrics that can be used to
compute the distance between two STL specifications. Under
mild assumptions, we propose the metrics based on the lan-
guages of STL formulae. We propose two distance functions.
The first is based on the Pompeiu-Hausdorff (PH) distance
[17], which captures how much the language of one formula
must be enlarged to include the other, and the second is based
on the symmetric difference (SD) [18], which characterizes
how much overlap there is between the two formulae. The
theoretical contributions of this paper are:

1. formalization of STL formulae metrics based on the
PH and the SD distances, and

2. methods for computing the PH using mixed-integer
linear programming (MILP), and the SD using a
recursive algorithm based on the area of satisfaction.

We discuss the comparison of the two metrics in detail and
provide examples that highlight their differences.

This paper additionally presents applications of the pro-
posed metrics to a behavioral synthesis problem and to the
evaluation of temporal logic inference (TLI) [19]–[23] meth-
ods. In the first case, we are interested in generating designs
that exhibit desired behaviors specified in STL. For example,
we study synthetic genetic circuits. Possible circuit designs
are constructed and measured in laboratory experiments, and
the resulting traces are abstracted into STL specifications us-
ing TLI. These formulae are compared quantitatively against
the desired design specification using the proposed metrics.
The second setup considers the fundamental problem of
evaluating TLI methods themselves. Under the assumption
that data used for inference can be characterized by ground
truth STL formulae, we ask the question of how well the
TLI algorithms perform. As opposed to empirical evaluation
used in previous work, we propose to use our metrics as
loss functions as the first step in establishing theoretical
foundations for TLI. The related contributions are:

3. a design quality measure for evaluating proposed im-
plementations against an STL specification, and

4. a loss function to quantify errors in TLI as a first step
in establishing formal performance guarantees of TLI
algorithms.

II. PRELIMINARIES

Notation

Let R,R≥0, N denote the set of real, non-negative real,
and natural numbers, respectively. We use |r| to denote



the absolute value of r ∈ R. Given x ∈ Rn, ‖x‖∞ :=
maxi∈{1,··· ,n} |xi| - where xi is the i’th component of x
- is its infinity-norm. A scalar-valued function f : Rn → R
is rectangular if for some i ∈ {1, · · · , n}, f(x) = xi. A
metric space is an ordered pair (M, d), where M is a set
and d :M×M→ R≥0 is a distance function such that i)
d(x, y) = 0 ⇔ x = y; ii) d(x, y) = d(y, x),∀x, y ∈ M; iii)
d(x, y) ≤ d(x, y) + d(y, z),∀x, y, z ∈ M. If (M, d1) and
(M, d2) are metric spaces, then (M, λd1 + (1 − λ)d2), is
also a metric space for any 0 ≤ λ ≤ 1.

We use discrete notion of time throughout this paper. Time
intervals in the form I = [t1, t2] ⊂ N, t1, t2 ∈ N, t1 ≤ t2, are
interpreted as {t1, t1 + 1, · · · , t2}. [τ + t1, τ + t2] is denoted
by τ + I , τ ∈ N. The continuous interval {r|0 ≤ r ≤
1} is denoted by U. An n-dimensional, real, infinite-time,
discrete-time signal s is defined as a string of real values
s : s0s1s2 · · · , where st ∈ S,S ⊂ Rn, t ∈ N. The suffix of s
at t, denoted by s[t], is a signal such that s[t]τ = st+τ for all
t, τ ∈ N. We use s[t1, t2] := st1st1+1 · · · st2 to refer to a par-
ticular portion of a signal. The set of all signals with values
taken in S is denoted by S. The set of all signal prefixes with
time bound T is defined as ST := {s[0 : T ] | s ∈ S} . For the
convenience of notation, we use s ∈ ST to say s[0 : T ] ∈ ST .
The distance between two signals s, s′ ∈ ST is defined as
d(s, s′) := supt∈[0,T ] {‖st − s′t‖∞} .

Signal Temporal Logic

The syntax of STL is defined as follows [7]:

φ ::= > | π | ¬φ | φ1 ∧ φ2 | φ1UIφ2 ,

where > is the Boolean true constant; π is a predicate over
Rn in the form of f(x) ∼ µ, f : S → R, µ ∈ R, and ∼∈
{≤,≥}; ¬ and ∧ are the Boolean operators for negation and
conjunction, respectively; and UI is the temporal operator
until over bounded interval I . A predicate f(s) ∼ µ is
rectangular if f is rectangular. Other Boolean operations
are defined in the usual way. Additional temporal operators
eventually and globally are defined as ♦Iφ ≡ >UIφ and
�Iφ ≡ ¬♦I¬φ, respectively, where I is an interval. The
set of all STL formulae over signals in S is denoted by ΦS .
The STL score, also known as robustness degree is a function
ρ : S × ΦS × N→ R, which is recursively defined as [7]:

ρ(s, (f(s) ∼ µ), t) =

{
µ− f(st) ∼=≤
f(st)− µ ∼=≥

,

ρ(s,¬φ, t) = −ρ(s, φ, t),
ρ(s, φ1 ∨ φ2, t) = max(ρ(s, φ1, t), ρ(s, φ2, t)),
ρ(s, φ1 ∧ φ2, t) = min(ρ(s, φ1, t), ρ(s, φ2, t)),
ρ(s, φ1 UI φ2, t) = max

t′∈t+I

(
min(s, φ2, t

′),

min
t′′∈[t,t′]

ρ(s, φ1, t
′′))
)
,

ρ(s,♦I φ, t) = max
t′∈t+I

ρ(s, φ, t′),

ρ(s,�I φ, t) = min
t′∈t+I

ρ(s, φ, t′).

(1)

As one can inspect from (1), a signal satisfies an STL
specification at a certain time if and only if its corresponding
STL score is positive: s[t] |= φ ⇔ ρ(s, φ, t) > 0, where

|= is read as “satisfies”. The case of ρ = 0 is usually left
ambiguous - this is never a concern in practice due to issues
with numerical precision. In this paper, we consider ρ = 0
as satisfaction, but by doing so, we sacrifice the principle of
contradiction: s[t] |= φ and s[t] |= ¬φ if ρ(s, φ, t) = 0.

The horizon of an STL formula is defined as the minimum
length of the time window required to compute its score, and
it is recursively computed as [24]:

‖π‖ = 0, ‖φ‖ = ‖¬φ‖
‖φ1 ∧ φ2‖ = ‖φ1 ∨ φ2‖ = max{‖φ1‖ , ‖φ2‖}∥∥φ1U[t1,t2]φ2∥∥ = t2 + max{‖φ1‖ , ‖φ2‖}∥∥♦[t1,t2]φ

∥∥ =
∥∥�[t1,t2]φ

∥∥ = t2 + ‖φ‖

(2)

The set of all STL formulae over signals in S such that
their horizons are less than T is denoted by ΦST . Note that
computing ρ(s, φ, t) requires s[t : t + ‖φ‖], and the rest of
the values are irrelevant.

Definition 1 (Bounded-Time Language): Given φ ∈ ΦST ,
we define the bounded-time language as:

L(φ) := {s ∈ ST | ρ(s, φ, 0) ≥ 0} . (3)
Note that L(φ) ⊂ Rn(T+1). When the predicates are rectan-
gular, the bounded-time language becomes a finite union of
hyper-rectangles in Rn(T+1).

Example 1: Let S = U. Consider the following six STL
formulae in ΦS20 :

φ1 = �[0,20]θ1, φ2 = �[0,20]θ2,
φ3 = ♦[0,20]θ1, φ4 = �[0,20]θ1 ∧ ♦[0,20]θ2,

φ5 = (�[0,10]θ1) ∧ (�[12,20]θ2), φ6 = �[0,16]♦[0,4]θ1,
(4)

where θ1 = (x ≥ 0.2) ∧ (x ≤ 0.4), and θ2 = (x ≥ 0.2) ∧
(x ≤ 0.44). We have ‖φi‖ = 20, i = 1, · · · , 6. Two examples
of bounded-time languages are: L(φ2) =

⋂20
τ=0{0.2 ≤ xt ≤

0.44},L(φ3) =
⋃20
τ=0{0.2 ≤ xt ≤ 0.4}. Consider two

constant signals s1 and s2, where s1t = 0.3, s2t = t/20, t =
0, 1, · · · , 20. The STL scores are computed from (1). For
instance, ρ(s1, φ1, 0) = 0.1, ρ(s2, φ1, 0) = −0.6 (minimizer
at t = 20), and ρ(s2, φ3, 0) = 0.1 (maximizer at t = 6).

III. METRICS

In this section, we introduce two functions dSTL : ΦST ×
ΦST → R≥0 that quantify the dissimilarity between the
properties captured by the two STL formulae. However, it
is possible that different formulae may describe the same
properties. For example, φ1 and φ4 in (4) are describing
the same behavior, since any signal that satisfies φ1 already
satisfies φ4 and vice versa. The key idea is to define the
distance between two STL formulae as the distance between
their time-bounded languages.

Assumption 1: The set S ⊂ Rn is compact and bounded.
Assumption 2: All of the predicates are rectangular.

Note that bounded-time languages are constructed in finite-
dimensional Euclidean spaces. Also, since all inequalities
in the predicates are non-strict, bounded-time languages are
compact sets. Assumption 2 is theoretically restrictive, but
not in most applications - usually it is the case that all
predicates are rectangular as they describe thresholds for
state components of a system.



Definition 2: We say that the two STL formulae φ1 and
φ2 are semantically equivalent, denoted by φ1 ≡ φ2, if both
induce the same language: L(φ1) = L(φ2).
The set of equivalence classes of ΦST induced by ≡ is
denoted by ΦST / ≡. Distance functions dSTL are effectively
pseudo-metrics on ΦST , but proper metrics on ΦST / ≡,
where dSTL(〈φ1〉 , 〈φ2〉) = dSTL(φ1, φ2) is the induced
metric, 〈φ〉 is the equivalence class associated with φ, and
φ1 and φ2 are formulae in the two equivalence classes. Note
that, by definition, there is a one-to-one map between the
equivalence classes of STL formulae and their formulae.
Moreover, for any φ1, φ2 ∈ 〈φ〉, we have dSTL(φ1, φ2) = 0.

We adapt two common metrics between sets: (a) the
Pompeiu-Hausdorff (PH) distance based on the underlying
metric between signals, and (b) a measure of Symmetric
Difference (SD) between sets. As it will be clarified in the
paper, the choice of T , as long as it is larger than the
horizons of the formulae that are considered, does not affect
the fundamental properties of the defined metrics. In the case
of the PH distance, it does not have any effect at all. For the
SD metric, the computed distances are scaled with respect to
the inverse of T . These details are explained in Section III-B.

A. Pompeiu-Hausdorff Distance

Definition 3: The (undirected) PH distance is defined as:

dPH(φ1, φ2) = max
{
~dPH(φ1, φ2), ~dPH(φ2, φ1)

}
, (5)

where ~dPH denotes the directed PH distance:

~dPH(φ1, φ2) := sup
s1∈L(φ1)

{
inf

s2∈L(φ2)
d(s1, s2)

}
. (6)

Note that the directed PH distance is obviously not a metric
as it is possible to have ~dPH(φ1, φ2) 6= ~dPH(φ2, φ1). We
have ~dPH(φ1, φ2) = 0 if and only if L(φ1) ⊆ L(φ2).
Another way to interpret the PH distance is as follows [17]:

~dPH(φ1, φ2) = min{ε | L(φ1) ⊆ L(φ2) + εBST }, (7)

where BST is the unit ball in ST : {s[0 : T ] | ‖st‖∞ ≤ 1, t ∈
[0, T ]}, and addition of sets is interpreted in the Minkowski
sense. In words, ~dPH(φ1, φ2) is the radius of the minimum
ball that should be added to L(φ2) such that it contains
L(φ1).

Proposition 1: The (ΦST / ≡, dPH) is a metric space.
Proof: Note that dPH(φ1, φ2) is effectively defined as

dPH(L(φ1),L(φ2)) - remember that languages are compact
subsets of finite dimensional Euclidean space, for which it is
known that the PH distance is a metric [17]. Moreover, there
is a one to one map between an equivalency class formula
of a formula in ΦST / ≡ and its language.

It is possible to interpret (6) as the distance between an
STL formula and a signal: ~dPH(s, φ) := mins′∈L(φ) d(s, s′).
It is easy to see that we have ~dPH(s, φ) = 0 if and only if s ∈
L(φ). The following result is a reformulation of Definition 23
in [8], which establishes a connection between the STL score
and the notion of signed distance.

Proposition 2: Given any φ ∈ ΦST and s ∈ ST , the STL
score is a signed distance in the sense that:

ρ(s, φ, 0) =

{
−~dPH(s, φ) ~dPH(s, φ) > 0,
~dPH(s,¬φ) ~dPH(s, φ) = 0.

(8)

The following results are extensions of classical results for
signed distances [25].

Corollary 1: For any given two formulae φ1, φ2 ∈ ΦST

and a signal s ∈ ST , we have the following inequalities:∣∣|ρ(s, φ1, 0)| − |ρ(s, φ2, 0)|
∣∣ ≤ dPH(φ1, φ2)∣∣ρ(s, φ1, 0)− ρ(s, φ2, 0)

∣∣ ≤ dPH(φ1, φ2) + dPH(¬φ1,¬φ2)
Corollary 2: Given ε > 0, define ε-neighborhood of an

STL formula φ as {φ}ε =
{
φ′ ∈ ΦST |dPH(φ, φ′) ≤ ε

}
.

Then, ρ(s, φ, 0) ≥ ε implies that s |= φ′,∀φ′ ∈ {φ}ε.

B. Symmetric Difference

The SD is denoted by 4, and defined as X4Y = (X \
Y ) ∪ (Y \ X), where X and Y are two sets. It induces a
distance between compact sets as the measure of the SD [18].

Definition 4: The SD metric is defined as:

dSD(ϕ1, ϕ2) =
1

T + 1
|L(ϕ1)4L(ϕ2)|,

where | · | is the Lebesgue measure.
Proposition 3: The (ΦST / ≡, dSD) is a metric space.

Proof: Follows immediately from the definition. The
metric is well-defined since the formulae have time horizons
bounded by T over discrete-time signals. Their languages
are compact subsets of the Euclidean space Rn(T+1). Thus,
the Lebesgue measure is defined.

We define the coverage of signal sets in the space-time
value set. Formally, we have the map P : 2ST → S × TU
such that P(S) =

⋃
s∈S

⋃
t∈[0,T ]{(st, τ) | t ≤ τ ≤ t + 1},

where S ⊆ S. For an STL formula φ, P(φ) = P(L(φ)).
Let S = Un, and p = xi ≤ µ be a rectangular predicate

with µ ∈ U and i ∈ {1, . . . , n}. The coverage of p is P(p) =(
(Ui−1 × µU× Un−i)× U

)
∪ (Un × {1 ≤ t ≤ T}).

Theorem 1: If φ1 and φ2 are two STL formulae with the
same language, then they cover the same space. Formally,
we have L(φ1) = L(φ2) implies P(φ1) = P(φ2).

Proof: Immediately follows from the fact that P is a
projection of L(φ) onto space-time S× TU.

Note that the converse is not true in general. In particular,
it can fail for formulae containing disjunctions.

C. Comparison

While the PH distance and the SD difference are both met-
rics, they have quite different behaviors. Here, we elaborate
on these differences and show an illustrative example.

Informally, the PH distance has a stronger spatial notion,
and it is closely connected to STL score, as stated in
Corollary 1 and Corollary 2. The PH distance, captures the
worst-case spatial difference between formulae. On the other
hand, the SD is a more temporal notion, as the areas also
capture the length of temporal operators. It is possible that
two STL formulae have a large PH distance, but a small
SD distance, and vice versa. In applications, the choice is



dependent on the user. The most useful may be a convex
combination - which is a metric by itself - with a user-given
convex coefficient.

Example 2: Consider the six STL formulae in (4). We
compute the PH and the SD distances between all pairs of
formulae using the methods proposed in Section IV. The
directed PH distances are also reported.

1) Directed PH distance: The results are shown in Ta-
ble I, where the value in the i’th row and j’th column is
~dPH(φi, φj). Each maximizer (the PH distance) is bolded.

We have also included the truth constant in the distance
table. It is observed that ~dPH(φi,>) = 0,∀i ∈ {1, · · · , 6},
which implies the fact that the language of each formula is
contained within the language of >, which is the set of all
signals. The opposite direction, ~dPH(>, φ) = dPH(φ,>),
is, informally, the quantification of how restrictive φ is.

Note that dPH(φ1, φ2) = 0.04. It is observed that most
values are either 0.6 = max(1 − 0.4, 0.2 − 0) or 0.56 =
max(1 − 0.44, 0.2 − 0), which correspond to the extreme
signal that one language contains but the other does not, or
it is 0, indicating that one language is a subset of another.
For instance, φ3 is a “weak” specification in the sense that
its language is broad - any signal with some value in θ1
at some time satisfies it - so the directed distances from
other formulae to φ3 are zero. Another notable example is
the relation between φ1 and φ4. The directed PH distance
is zero in both directions - the two formulae are equivalent.
This is due to the fact that any signal that satisfies φ4, already
satisfies φ1. The other direction also trivially holds. Note that
some pairs, like φ2 and φ3, have non-zero PH distances in
both directions.

2) SD distance: The results are shown in Table II along
with the PH distances for comparison. Here, it can be seen
that in most cases, the SD distance is either a lot larger or a
lot smaller than the PH distance. This is largely due to the
fact that this metric is based on area which is particularly
highlighted when comparing any of the formulae to >. Since
each formula’s satisfaction space is very small in comparison
to the entire bounded signal space, each of these values is
quite large. In contrast, the SD distance between φ1 and φ5
is fairly small since the satisfaction regions for each of these
formulae cover a similar area. The SD distance between φ2
and φ3 is on the larger side as their areas of satisfaction are
quite different; however, these areas are still much closer to
each other than they are to the entire bounded satisfaction
area represented by >. Similar to the PH distance, the SD
distance between φ1 and φ4 is zero as they have completely
overlapping areas of satisfaction.

The results in Table II illustrate that there are different
situations when the PH distance might be favored over the
SD distance and vice versa. In cases where one cares about
the area covered by the satisfaction region of a formula, the
SD distance should be used. For instance, the SD could be
used to find a formula close to one that requires a signal to be
held at a particular value for a long time interval. However,
if one only cares about how close the signal bounds of the
formulae are to each other, the PH distance should be used.

TABLE I: Example 2: Directed PH Distances

~dPH > φ1 φ2 φ3 φ4 φ5 φ6
> 0 0.6 0.56 0.6 0.6 0.6 0.6
φ1 0 0 0 0 0 0 0
φ2 0 0.04 0 0.04 0.04 0.04 0.04
φ3 0 0.6 0.56 0 0.6 0.6 0.6
φ4 0 0 0 0 0 0 0
φ5 0 0.6 0.56 0 0.6 0 0.04
φ6 0 0.6 0.56 0 0.6 0.6 0

TABLE II: Example 2: PH and SD Distances

dPH

dSD > φ1 φ2 φ3 φ4 φ5 φ6

> 0 0.8 0.76 0.99 0.8 0.804 0.84
φ1 0.6 0 0.04 0.19 0 0.036 0.03
φ2 0.56 0.04 0 0.23 0.04 0.044 0.07
φ3 0.6 0.56 0.56 0 0.19 0.186 0.16
φ4 0.6 0 0.04 0.6 0 0.036 0.03
φ5 0.6 0.56 0.56 0.6 0.6 0 0.066
φ6 0.6 0.56 0.56 0.6 0.6 0.6 0

IV. COMPUTATION

This section presents algorithms for computing the PH and
the SD distances between STL specifications.

A. Pompeiu-Hausdorff Distance

In this section, we propose an optimization-based method
to compute the PH distance between two STL formulae.

Definition 5: Given an STL formula ϕ that contains no
negation, we define ϕε+ with the same logical structure as
ϕ with predicates replaced as follows:
• f(x) ≥ µ replaced with f(x) ≥ µ− ε;
• f(x) ≤ µ replaced with f(x) ≤ µ+ ε.

Intuitively, ϕε+ is a relaxed version of ϕ. It is easy to verify
from (1) that if ρ(s, ϕε+, 0) = ρ(s, ϕ, 0) + ε, ∀s ∈ ST .

Lemma 1: The following relation holds:

~dPH = min{ε ≥ 0 | L(ϕ1) ⊆ L(ϕε+2 )} (9)
Proof: (sketch) The result is a direct consequence of

(7) as we have L(ϕε+2 ) = L(ϕ2) + εBST .
The following statement provides the main result, and the
base for the computational method, of this section.

Theorem 2: Given ϕ1, ϕ2 ∈ ΦST , L(ϕ1) 6= ∅, define ε∗

as the following optimum:

ε∗ = max ε,
subject to s |= ϕ1, s 6|= ϕε+2 ,

ε ≥ 0, s ∈ ST .
(10)

Then the following holds:

~dPH(ϕ1, ϕ2) =

{
ε∗ (10) is feasible,
0 otherwise. (11)

Proof: First, consider the case that (10) is infeasible
or its value is 0. Then, it means that the constraints s ∈
L(ϕ1), s 6∈ L(ϕε+2 ) are infeasible for all ε > 0, which
implies that for any s ∈ L(ϕ1), we have ρ(s,L(ϕ2), 0) ≥ 0.
Thus, L(ϕ1) ⊂ L(ϕ2) and consequently ~dPH(ϕ1, ϕ2) = 0.

Now consider the case (10) is feasible and ε∗ > 0.
Then, s 6|= ϕε

∗+
2 is an active constraint, which implies



(a) φ1 (b) φ5 (c) Overlap φ1 and φ5

Fig. 1: (a) and (b) show the area of satisfaction boxes for φ1 and φ5

from Example 2, respectively. The blue regions represent the boxes
that are computed for globally (�) operators. In (c), the red regions
represent the non-overlapping area and the purple regions represent
the overlapping area between φ1 and φ5. The SD distance for this
example is the area of the red regions ((2×0.2)+(8×0.04) = 0.72)
divided by the maximum time horizon which is 0.72

20
= 0.036.

ρ(s, ϕε
∗+
2 , 0) = 0. Note that s is also optimized in (10).

Thus ρ(s, ϕ2, 0) < 0, or s 6∈ L(ϕ2). We can rewrite (9) as:

~dPH = sup{ε ≥ 0 | L(ϕ1) 6⊆ L(ϕε+2 )}. (12)

Note that we have used sup instead of max as L(ϕ1) 6⊆
L(ϕε+2 ) is a strict relation. Also note that such the supremum
exists as i) the condition is satisfied for ε = 0 and ii)
the language sets are bounded. We show that (10) captures
(12). If L(ϕ1) 6⊆ L(ϕε+2 ), then it means that ∃s |= ϕ1 but
ρ(s, ϕε

+

2 , 0) < 0. This is what is captured by the constant in
(10), with the difference that ρ(s, ϕε

+

2 , 0) < 0 is replaced by
a non-strict inequality and sup is replaced by max.
We convert (10) into a MILP problem. The procedure for
converting STL into MILP constraints is straightforward, see,
e.g., [26]. The encoding details are omitted here. By solving
two MILPs, we are able to obtain the PH distance. Two
MILPs can be aggregated into a single MILP, but that usually
more than doubles the computation time due to larger branch
and bound trees. Moreover, it is often useful to have the
knowledge of the directed PH distances.

Theorem 2 requires that formulae do not contain negation.
Negation elimination is straightforward: first, the formula is
brought into its Negation Normal Form (NNF), where all
negations appear before the predicates. Next, the predicates
are negated. For example, we replace ¬(x ≤ µ) by (x ≥
µ). We remind the reader that we do not consider strict
inequalities, hence ¬(x ≤ µ) and (x ≤ µ) are both true
if x0 = µ. Finally, observe that the choice of T does not
effect the values of PH distance, as long as it is larger
than the horizons of two formulae that are compared. Given
φ1, φ2 ∈ ΦST , the values of st for t > max{‖φ1‖ , ‖φ2‖}
do not have any associated constraints in (10).

Complexity

The complexity of (10) is exponential in the number of
integers, which grows with the number of predicates and
horizon of the formulae. However, since signal values do
not have any dynamical constraints, we found solving (10)
to be orders of magnitudes faster than comparable STL
control problems, such as those studied in [26]. All the values
obtained in Table I were evaluated almost instantaneously
using Gurobi MILP solver on a personal computer.

B. Symmetric Difference

This section presents an algorithm for computing boxes
representing the area of satisfaction of a formula as well
as a method for determining the SD between two sets of
boxes. Each set of boxes approximates the projection (P) of
the formula and represents the valid value-space that a time-
varying signal can take such that traces that are contained
entirely within the boxes satisfy the formula.

Computing the set of boxes representing the area of
satisfaction is a recursive process that takes as input an STL
formula, φ, a set of max values, Xmax, for each signal, x ∈
X (used to normalize the signal values to a unit space), and a
discretization threshold, δ. This algorithm, AoS, is presented
in Algorithm 1 Here, box(t1, t2, x1, x2, i) = P(�[t1,t2]x1 ≤
xi ≤ x2) ⊆ S × TU creates a new box with minimum and
maximum times t1 and t2, minimum and maximum values x1
and x2, and spatial dimension i ∈ {1, . . . , n}, respectively;
overlap determines the time window of the overlap between
two boxes; combine takes two boxes and produces a set of
boxes representing the intersection of the overlapping time
window region; b.lt, b.ut, b.lv ∈ S, and b.uv ∈ S return
the lower time window, upper time window, lower variable,
and upper variable values for box b, respectively; ∗ in the
definition of a box denotes that it may restrict multiple spatial
dimensions; and the ‖ operator is used to create a “choice”
set representing that either of the two sets separated by it
can be selected as the set of boxes representing the area of
satisfaction.

ALGORITHM 1: Convert to Area of Satisfaction Boxes (AoS)
input : STL formula φ, max value set Xmax, discretization threshold δ.
output: Set of boxes B for each signal in φ.

if φ := xi ≤ π then return box(0, 0, 0, π/xmax, i)
else if φ := xi > π then return box(0, 0, π/xmax, 1, i)
else if φ := φ1 ∧ φ2 then

Create a new set B
for each b1 ∈ AoS(φ1) and each b2 ∈ AoS(φ2) do

if overlap(b1, b2) then Add combine(b1, b2) to B
else Add b1 to B and b2 to B

return B
else if φ := φ1 ∨ φ2 then return AoS(φ1) ‖ AoS(φ2)
else if φ := �[t1,t2](φ1) then

Create a new set B
for each b ∈ AoS(φ1) do

b′ = box(b.lt+ t1, b.ut+ t2, b.lv, b.uv, ∗)
Add b′ to B

return B
else if φ := ♦[t1,t2](φ1) then

return AoS

(t2−t1)/δ∨
i=1

�[t1+δ(i−1),t1+δi](φ1)



To address the problem of projection of formulae contain-
ing disjunction (the converse to Theorem 1), AoS utilizes
the ‖ operator. If this algorithm instead generated boxes
representing the projection of all formula, it would be
possible for the satisfaction space represented by the boxes
to capture signals that the original formula does not allow.
The application in Section V highlights this problem and



presents a way of dealing with it for that particular example.
For operators such as globally (�), AoS is exact and

produces boxes bound by the time bounds of the operator that
represent the projection of the primitive. However, operators
such as eventually (♦) do not immediately lend themselves
to conversion into a set of boxes. In order to deal with this
operator, we approximate it by converting it into a disjunction
of globally predicates. Each globally predicate is generated
using a small threshold value (δ) for its time window width.
The new formula requires that the expression be true in at
least one of the smaller time windows essentially introducing
a mandatory δ “hold” time for eventually operators. The
tunability of δ allows for a user to give up some accuracy
for gains in performance of box computation and ultimately
distance comparison. Examples of computing the area of
satisfaction boxes for some of the formulae in Example 2
are shown in Figure 1.

The SD between two sets of boxes is computed by
calculating the area of the sum of the non-intersected area
for each box set. This value is normalized by the maximum
time horizon, T , and results in the SD computation:

dSD(Bφ1
,Bφ2

) =
1

T + 1

∣∣∣∣∣∣
 ⋃
b1∈Bφ1

b1

4
 ⋃
b2∈Bφ2

b2

∣∣∣∣∣∣
Figure 1c visually illustrates how the SD between φ1 and φ5
is computed.

Note that the SD distance is scaled by T+1
T ′+T+1 if the

maximum horizon is increased by T ′. This again shows the
temporal nature of the SD as opposed to the PH distance
which does not change.

Complexity

The complexity of Algorithm 1 depends on the complexity
of the ‖ operation which may be exponential depending
on how it is implemented. Otherwise, the algorithm is
polynomial due to the box combination operations carried
out whenever a conjunction predicate is encountered. In
practice, computing the SD distance using this method for
formulae with a few dozen predicates typically takes only a
few seconds.

V. QUANTIFICATION OF DESIGN QUALITY

In our first application, we show an example of how the
proposed metrics can be used in behavioral synthesis. Behav-
ioral synthesis is an important process in design automation
where the description of a desired behavior is interpreted and
a system is created that implements the desired behavior.
Our goal is to check if the characterized implementations
satisfy the specifications of a system. Implementations in-
clude simulations and execution traces of a system. These
implementations are characterized into formal specifications
using TLI. We show that the proposed metrics can be used
in the synthesis step to choose a design from the solution
space that can best implement the desired specification. The
specific example we have chosen to highlight this application
is the synthesis of genetic circuits in synthetic biology.

(a) Constitutive Expression (b) Induction Circuit

(c) Output of Constitutive Ex-
pression

(d) Output of Induction Circuit

Fig. 2: (a) and (b) show SBOL Visual representations of the genetic
circuits with a constitutive promoter and an inducible promoter,
respectively. Biological traces in (c) and (d) were obtained by
evaluating geometric mean fluorescence at regular intervals by flow
cytometry.

Synthetic Genetic Circuit Synthesis

In this example, we have a set of desired behaviors (each
formally represented by STL) which describe the various
behaviors expected of a genetic circuit. This set of behaviors
is referred to as a performance specification: Sφ. Sφ consists
of 2 STL formulae: φlow and φhigh which describe the
desired amount of output produced by the genetic circuit
over time:

φlow = �[0,300](x < 40) ∧�[0,300](x > 0)

φhigh = �[0,125](x < 200) ∧�[125,300](x < 320) ∧
�[0,150](x > 0) ∧�[150,200](x > 100) ∧
�[200,300](x > 150)

In this case, the output of the circuit corresponds to the
expression of a fluorescent protein. φlow specifies that the
output must consistently be below 40 units from time 0
to 300, and φhigh specifies that that output must gradually
increase over time and must end up between 150 and 320
units between time 200 and 300. Our solution space consists
of two genetic circuits. The first circuit has a constitutive
promoter as shown in Figure 2a. Constitutive expression
removes flexibility for consistency allowing constant protein
production independent of the state or inputs of the system,
which is highlighted in Figure 2c. The second circuit has
an inducible promoter: a sugar detecting transcription factor
AraC*, which will turn on the protein production if and only
if it is in the presence of a specific input molecule (arabinose)
as shown in Figure 2b. Figure 2d shows the output of the
circuit for various concentrations of arabinose. Both of these
synthetic genetic circuits were built in Escherichia coli.
The traces were obtained from biological experiments by
measuring fluorescence.

Our goal is to choose the circuit that can “satisfy as many
behaviors as possible” in Sφ. It is important to note here that
it is difficult to express the term “satisfy as many behaviors



(a) P(φlow ∨ φhigh) (b) Bφlow ∪ Bφhigh = BSφ

Fig. 3: (a) shows the union of the areas of satisfaction for φlow
and φhigh. The vertical stripe and horizontal stripe areas represent
P(φlow) and P(φhigh), respectively. (b) shows the boxes created
for Bφlow ∪ Bφhigh .

as possible” using the syntax and semantics of STL. For
instance, expressing the desired specification as a disjunction
of all the formulae in Sφ would imply that satisfying any one
specification is sufficient for the genetic circuit to satisfy the
performance specification. Similarly, expressing the desired
specification as a conjunction of all the formulae in Sφ would
imply that at any point in time, the output of a genetic
circuit must have multiple distinct values, which is physically
impossible.

This conundrum is highlighted in the current example.
The output of constitutive expression satisfies φlow but
cannot satisfy φhigh. The induction circuit produces traces
that can satisfy both φlow and φhigh. However, traditional
model checking techniques may not help a designer choose
the desired circuit. Using statistical model checking, for
example, the circuit with constitutive expression yields a
satisfaction likelihood of 1.0 and the induction circuit yields
a satisfaction likelihood of 0.83 when checked against φlow∨
φhigh. With these results, one might think that the circuit
with constitutive expression best satisfies the performance
specification.

To address the issue of satisfying as many behaviors as
possible, we treat the performance specification’s region of
satisfaction as the union of the regions of satisfaction of all
the formulae in Sφ as shown in Figure 3a. We compute this
region by taking the union of the generated boxes for each
formula that are computed using Algorithm 1. The union of
the box sets of all STL formulae in Sφ is represented as
Bφlow ∪ Bφhigh = BSφ and is shown in Figure 3b.

Using Grid TLI [22], we produce STL formulae, φcon
and φind, for each circuit using the traces shown in Fig-
ures 2c and 2d, respectively. We then use the SD metric
and get the following values: dSD(BSφ ,Bφcon) = 0.636
and dSD(BSφ ,Bφind) = 0.304. Using the PH metric, we
get: dPH(BSφ ,Bφcon) = 0.067 and dPH(BSφ ,Bφind) = 0.
These results imply that the behavior of the induction circuit
is closer to the desired specification than the circuit with
constitutive expression, and thus, it should be selected as the
desired circuit.

VI. LOSS FUNCTIONS FOR TLI

Loss functions play a fundamental role in statistical infer-
ence and learning theory. In this framework, we usually have

a pair (X ,Y) of real vector spaces corresponding to the state
and observation spaces, respectively. Three ingredients are
used in the formalization: (a) a model of the states pX(x) –
the prior distribution, (b) a model of the observations given
the state pY |X(y | x), and (c) a real-valued loss function
L : X × X → R. Let h : Y → X be a decision rule,
which can also be interpreted as a partition of the state space
X based on observations, and H be the set of all decision
rules or the hypothesis space. The frequentist and Bayesian
risks are defined based on the loss functions, and induce
optimal decision rules. This general framework is the basis
for the study and design of decision algorithms in statistical
inference and learning. For more details, see [27].

In the following, we show how we adapt this framework
for TLI, where we use the proposed metrics, PH and SD,
as loss functions. In this paper, we only focus on the loss
functions, while characterization of optimal decision rules,
their computation, and regularization are left for future work.

For TLI, the state space X = ΦST is the set of all time-
bounded STL formulae, while the observation space Y =
2ST is the set of all languages. The hypothesis space H
is composed of decision rules that map languages to STL
formulae. Lastly, the loss functions are defined as LSTL :
ΦST × ΦST → R such that LSTL(φ, h(S)) represents the
dissimilarity between the ground truth formula φ and the
STL formula obtained by the decision rule using the signal
set S ⊆ ST . We propose to use the PH and the SD metrics
as loss functions LSTL.

We assess the performance of the two decision rules from
TLI: TreeTLI [21] based on decision trees, and GridTLI [22]
based on minimum covers of signals in space-time S×[0, T ],
with respect to the two metrics as shown in Figure 4b.

The ground truth STL formula that was used to generate
the signals in Figure 4a is

φGT =�[0,1]((x1 ≤ 0.1) ∧ (x2 ≤ 0.6) ∧ (x2 ≥ 0.4))

∧�[7,10]((x1 ≥ 0.7) ∧ ((x2 ≥ 0.8) ∨ (x2 ≤ 0.2)))

where S = U2 and T = ‖φGT ‖ = 10. Note that TreeTLI
requires both positive and negative examples, while GridTLI
only needs positive ones. For brevity, we omit here the
formalization for rules that require both types of examples.

The results in Figure 4b show the distances between the
ground truth formula φGT and the iterations of TreeTLI
(lower plot) as the decision tree grows [21]. For GridTLI
(upper plot), we varied the discretization thresholds [22] from
rougher to finer grids, δs ∈ {0.5, 0.45, . . . , 0.1} and δt ∈
{5, 4.5, . . . , 1} for space and time, respectively. The upper
plot for GridTLI highlights the over-fitting phenomenon in
the PH metric (red), where reducing the discretization thresh-
olds helps reducing the error, but further reduction leads to
over-fitting. For the SD (blue), the loss has a decreasing trend
which we hypothesize is due to a better temporal fitting that
the PH distance does not capture. In the case of TreeTLI
(lower plot), the PH distance (red) is constant. This masking
behavior might be due to the compounding effect of i) the
primitives used do not match the structure of φGT , and ii) the



(a) Positive and Negative Signals (b) Results

Fig. 4: (a) shows the blue positive, and red and orange negative
example signals used by the two TLI algorithms. The positive
signals start in the gray region, and end in one of the black regions.
The red negative signals do not start in the gray region, while the
orange ones do not end in the black regions. (b) shows the PH and
the SD distances between the ground truth formula φGR and the
learned formulae using GridTLI and TreeTLI, respectively.

incremental and local nature of TreeTLI. Thus, the first step
of the decision tree is heavily penalized by the PH metric.
The SD metric (blue), which shows an increasing trend, is
consistent with this conclusion.

Thus, the statistical learning approach to TLI gives insight
into the ability of algorithms to recover temporal logic
rules assumed to underlie data. It also provides a formal
framework to study TLI methods. A detailed account of
problems GridTLI and TreeTLI are appropriate for based
on the insights provided by the proposed metrics is left for
future work.

VII. DISCUSSION AND FUTURE WORK

We presented two metrics for computing the distance
of one STL formula to another. These methods are very
useful in applications where temporal logic specifications are
mined from simulation or experimental data, and need to be
compared against a desired specification. Fields such as syn-
thetic biology and robotics, where systems are characterized
with performance specifications, can greatly benefit from our
methods. We also showed how these metrics are useful as a
first step in evaluating the performance of TLI methods.

An immediate theoretical extension is studying
continuous-time signals. By assuming Lipschitz continuity
of signals, it is possible to provide bounds between
the metrics computed in discrete-time and the ones in
continuous-time. A similar idea was used in [8] to compute
sampled-time STL scores. The second extension is relaxing
the assumption on rectangular predicates.
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