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Abstract— In this paper, we present a sampling-based algo-
rithm to synthesize control policies with temporal and uncer-
tainty constraints. We introduce a specification language called
Gaussian Distribution Temporal Logic (GDTL), an extension of
Boolean logic that allows us to incorporate temporal evolution
and noise mitigation directly into the task specifications, e.g.
“Go to region A and reduce the variance of your state estimate
below 0.1 m2.” Our algorithm generates a transition system in
the belief space and uses local feedback controllers to break the
curse of history associated with belief space planning. Further-
more, conventional automata-based methods become tractable.
Switching control policies are then computed using a product
Markov Decision Process (MDP) between the transition system
and the Rabin automaton encoding the task specification. We
present algorithms to translate a GDTL formula to a Rabin
automaton and to efficiently construct the product MDP by
leveraging recent results from incremental computing. Our
approach is evaluated in hardware experiments using a camera
network and ground robot.

I. INTRODUCTION

In this work, we use sampling-based techniques to synthe-
size switched closed-loop control policies that are guaranteed
to drive a dynamical system with observation noise while
achieving high-level tasks given as temporal logic formulae.
Significant observation and actuation noises are inherent in
many engineering applications, such as robotics or power
networks, in which control actions must be made in real
time in response to uncertain or incomplete state and model
information. Temporal logic formulae interleave Boolean logic
and temporal operators with system properties to specify rich
global behaviors. In the domain of robotics, an example of a
task that can be encoded in temporal logic is “Periodically
clean the living room and then the bathroom. Put the trash
in the bin in the kitchen or outside. Go to a charging station
after cleaning is complete. Always avoid the bedroom.” In the
absence of observation noise, tools from formal synthesis can
be used to synthesize control policies that ensure these rich
specifications are met [1]. On the other hand, modern control
techniques can be used to synthesize controllers automatically
to enforce properties such as “drive the state of the system to
a safe set while avoiding unsafe states” under observation and
dynamics noise [2]–[5]. In this work, we present an automatic,
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hierarchical control synthesis algorithm that extends tools from
formal synthesis and stochastic control to enforce temporal
logic specifications. Though our approach is quite general, we
use examples from robotic navigation throughout the paper
to motivate our approach. We evaluate our algorithm with
experiments using a wheeled robot with noisy actuators local-
ized by a noisy, static camera network performing a persistent
navigation task.

While synthesizing control policies to enforce temporal
logic properties under dynamics noise has been extensively
considered in the literature [6], observation noise has only
recently been considered [1], [7]–[10]. One of the techni-
cal challenges of incorporating observation noise into formal
synthesis is that satisfaction of temporal logic properties is
in general defined with respect to the state trajectory of the
system rather than the evolution of the belief (as measured by a
posterior probability distribution) about this state. In this paper,
we introduce the paradigm of Gaussian distribution temporal
logic (GDTL) which allows us to specify properties involving
the uncertainty in the system’s state, e.g. “Ensure that the
uncertainty (measured by variance) of the robot’s x position
is always below 0.1 m2”. GDTL formulae can be translated to
Rabin automata using off-the-shelf tools [7].

The problem of synthesizing controllers to enforce a GDTL
specification is in general a discrete time, continuous space
partially observable Markov decision process (POMDP). Our
approach approximates the optimal solution with a computa-
tionally feasible hierarchical sampling-based control synthesis
algorithm. Most existing sampling-based algorithms sample
points directly in belief space [11]–[13], which requires syn-
thesizing distribution-to-distribution controllers. Such synthe-
sis problems are computationally difficult and may require
significant modeling on the part of a control designer. To cir-
cumvent these challenges, we base the core of our algorithm on
feedback information roadmaps (FIRMs). The FIRM motion
planner extends probabilistic roadmaps (PRMs) [14], to handle
observation noise. In FIRM, points are sampled directly in the
state space (rather than in belief space) and feedback control
policies, e.g. linear quadratic Gaussian (LQG) controllers,
stabilize the system about nodes along paths in the roadmap.
The behavior of the closed-loop system is then used to predict
how the state estimate evolves. The associated trajectories of
the estimate induce a roadmap in the belief space.

If the goal of the problem were only to reach a given region
of the belief space, one could construct a switched controller
by finding a path in the roadmap from the initial distribution
to a node contained within the goal set and then applying the
corresponding sequence of controllers. During the application
of the controller, however, we do not have any guarantees about
whether or not the evolution of the system will violate the
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given specification. Therefore, we can only estimate with what
probability the given controller drives the distribution to the
next collection of nodes without violating the specification.
This allows us to construct a Markov decision process in which
the states correspond to nodes, actions correspond to controller
pairs, and transition probabilities correspond to the probability
of the closed-loop system reaching the next node without
violating the specification. Applying dynamic programming
to this system yields a policy that maps the current region of
belief states to the pair of controllers to be applied. Combining
the policy with the synthesized LQG controllers yields a state-
switched feedback controller that satisfies the system specifi-
cations with some minimum probability.

Given a Rabin automaton constructed from a GDTL for-
mula and a FIRM, we construct a graph product between the
two, called the GDTL-FIRM, to check if the state space has
been sampled sufficiently to synthesize a switched controller
satisfying the specification with positive probability. We use
techniques similar to those in sampling-based formal synthesis
work [15]–[18] to construct the GDTL-FIRM incrementally
until we find a policy with sufficiently high satisfaction proba-
bility.

II. GAUSSIAN DISTRIBUTION TEMPORAL LOGIC

In this section, we define Gaussian Distribution Temporal
Logic (GDTL), a predicate temporal logic defined over the
space of Gaussian distributions with fixed dimension.
Notation: Let Σ be a finite set. The cardinality, power set, and
ω-closures of Σ are denoted by |Σ|, 2Σ, and Σω , respectively.
A ⊆ Rn and B ⊆ Rm, n,m ≥ 0, we denote by M(A,B)
the set of functions with domain A and co-domain B, where
A has positive Lebesgue measure with respect to Rn. The set
of all positive semi-definite matrices of size n × n, n ≥ 1, is
denoted by Sn. E[·] is the expectation operator. The m × n
zero matrix and the n× n identity matrix are denoted by 0m,n
and In, respectively. The supremum and Euclidean norms are
denoted by ‖·‖∞ and ‖·‖2, respectively.

Let G = Rn × Sn denote the Gaussian belief space of
probability measures over Rn parameterized by means and
covariance matrices. Let b = b0b1 . . . ∈ Gω . We denote the
suffix sequence bibi+1 . . . by bi, i ≥ 0.

Definition 1 (GDTL). The syntax of GDTL is defined as

φ := > | f ≤ 0 | ¬φ | φ1 ∧ φ2 | φ1Uφ2,

where > is the Boolean constant “True”, f ≤ 0 is a predicate
over G, where f ∈ M(G,R), ¬ is negation (“Not”), ∧ is
conjunction (“And”), and U is “Until”. For convenience, we
define the operators: φ1 ∨φ2 ≡ ¬(¬φ1 ∧¬φ2), ♦ φ ≡ >Uφ,
and � φ ≡ ¬ ♦ ¬φ, where ≡ denotes semantic equivalence.
The semantics of GDTL is defined as

bi |= >
bi |= f ≤ 0 ⇔ f(bi) ≤ 0

bi |= ¬φ ⇔ ¬(bi |= φ)

bi |= φ1 ∧ φ2 ⇔ (bi |= φ1) ∧ (bi |= φ2)

bi |= φ1Uφ2 ⇔ ∃j ≥ i s.t. (bj |= φ2) ∧ (bk |= φ1,∀i ≤ k < j

The word b satisfies φ, denoted b |= φ, iff b0 |= φ.

By allowing the definition of the predicates used in GDTL
to be quite general, we can potentially enforce interesting and
relevant properties on the evolution of a system through belief
space, e.g., bounds on determinant and trace of the covariance
matrix P , and state mean x̂.

III. PROBLEM FORMULATION

In this section, we define the problem of controlling a system
to satisfy a given GDTL formula with maximum probability.

Consider a noisy linear time invariant (LTI) system

xk+1 = Axk +Buk + wk, (1)

where xk ∈ X is the state of the system, X ⊆ Rn is the
state space, A ∈ Rn×n is the dynamics matrix, B ∈ Rn×p
is the control matrix, uk ∈ U is a control signal, U ⊆ Rp
is the control space, and wk is a zero-mean Gaussian process
with covariance Q ∈ Rn×n. The state is observed indirectly
according to the linear observation model

yk = Cxk + vk, (2)

where yk ∈ Y is a measurement, Y ⊆ Rm is the observation
space, C ∈ Rm×n is the observation matrix and vk is a zero-
mean Gaussian process with covariance R ∈ Rm×m. We
assume the LTI system (1), (2) is controllable and observable,
i.e., (A,B) is a controllable pair and (A,C) is an observable
pair. Moreover, we assume that C is full rank. These assump-
tions apply to many systems, including nonlinear systems that
can be linearized to satisfy the assumptions.

The belief state at each time step is characterized by the a
posteriori state and error covariance estimates, x̂k and Pk, i.e.,
bk = (x̂k, Pk). The belief state is maintained via a Kalman
filter [19], which we denote compactly as

bk+1 = τ(bk, uk, yk+1), b0 = (x̂0, P0) , (3)

where b0 is the known initial belief about the system’s state
centered at x̂0 with covariance P0. For a belief state (x, P ) ∈
G we denote by Nδ(x, P ) = {b ∈ G | ‖b− (x, P )‖G ≤ δ}
the uncertainty ball of radius δ in the belief space centered at
(x, P ), where ‖·‖G over G is a suitable norm in G.

A control policy for the system is a feedback function from
the belief space G to the control space, e.g., µ : G → U . Denote
the space of all policies by M =M(G,U). We now introduce
the main problem under consideration in this work:

Problem 1 (Maximum Probability Problem, MPP). Let φ be
a given GDTL formula and let the system evolve according
to dynamics (1), with observation dynamics (2), and using a
Kalman filter defined by (3). Find a policy µ∗ such that

µ∗ = arg max
µ∈M

Pr[b |= φ] subject to (1), (2), (3). (4)

IV. SOLUTION

In our approach, we use sampling-based techniques to gen-
erate paths throughout the state space. Local controllers drive
the systems along these paths and stabilize at key points.
The closed-loop behavior of the system induces paths in the
belief space. The FIRM describes the stochastic process that
generates these paths. We build an MDP by combing the FIRM
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with a Rabin automaton which then allows us to check if
sample paths satisfy a GDTL formula. We compute transi-
tion probabilities and intersection probabilities (probability of
intersecting a good or bad set from the Rabin automaton’s
acceptance condition) for each edge in this structure. We use
dynamic programming (DP) to find the policy in this structure
that maximizes the probability of satisfying the formula. The
resulting policy can then be translated to a non-stationary
switched local controller that approximates the solution to
Pb. 1. An important property of the proposed solution is that all
operations are incremental with respect to the size of the FIRM.
Note that the proposed solution may be applied to nonlinear
systems whose linearizations around random samples in the
state space satisfy the assumptions in Sec. III. The details of
our solution are presented below.

A. Sampling-based algorithm

We propose a sampling-based algorithm to solve Pb. 1 that
overcomes the curse of dimension and history generally as-
sociated with POMDPs. In short, a sampling-based algorithm
iteratively grows a graph T in the state space, where nodes are
individual states, and edges correspond to motion primitives
that drive the system from state to state [20]. The extension
procedure is biased towards exploration of uncovered regions
of the state space. Similar to [15], we adapt sampling-based
methods to produce finite abstractions (e.g., graphs) of the
belief space. Alg. 1 incrementally constructs a transition sys-
tem (TS) T = (BT , B0,∆T , CT ), where the state space BT
is composed of belief nodes, i.e., bounded hyper-balls in G,
∆T is the set of transitions, and CT is a set of controllers
associated with edges. The center of a belief node is a belief
state b = (x, P∞), where the mean x is obtained through
random sampling of the system’s state space, and P∞ is the
stationary covariance. The initial belief node is denoted byB0.

Sampling-based algorithms are built using a set of primitive
functions: (1) sample(X ) generates random states from a
distribution over the state space X , (2) nearest(xr, T ) =
arg minxu{‖xr − xu‖2 | ∃Pu ∧ Nδ(xu, Pu) ∈ BT } returns
the mean xu of a belief node’s center in T such that xu is
closest to the state xr using the metric defined on X , (3)
near(Bn,BT , γ) returns the closest γ belief nodes in BT to
Bn with respect to the distance between their centers induced
by ‖·‖G , and (4) steer(xi, xt) returns a state obtained by
attempting to drive the system from xi towards xt. Using these
primitive functions, an extension procedure extend(X , T )
of T can be defined as: (1) generate a new sample xr ←
sample(X ), (2) find nearest state xu ← nearest(xr, T ),
and (3) drive the system towards the random sample xn ←
steer(xu, xr), see [20] for details.

Transitions are enforced using local controllers which are
stored in CT . i.e., we assign to each edge e ∈ ∆T a local
controller ece ∈ CT . Under the assumptions of our model [15],
the local controllers are guaranteed to stabilize the system to
belief nodes along a path in finite time. Thus we abstract the
roadmap to a deterministic system. In Alg. 1, local controllers
are generated using the method localController(). Node con-
trollers are presented in Sec. V.

The algorithm checks for the presence of a satisfying path
using a deterministic Rabin automaton (DRA) R that is com-
puted from the GDTL specification using an intermediate
linear temporal logic (LTL) construction [7]. We denote the
set of predicates in GDTL formula φ as Fφ.

A (deterministic) Rabin automaton is a tuple R =
(SR, s

R
0 ,Σ, δ,ΩR), where SR is a finite set of states, sR0 ∈

SR is the initial state, Σ ⊆ 2Fφ is the input alphabet, δ :
SR × Σ → SR is the transition function, and ΩR is a set
of tuples (Fi,Bi) of disjoint subsets of SR which correspond
to good (Fi) and bad (Bi) states.

A transition s′ = δ(s, σ) is also denoted by s σ→R s′. A
trajectory of the Rabin automaton s = s0s1 . . . is generated by
an infinite sequence of symbols σ = σ0σ1 . . . if s0 = sR0 is the
initial state ofR and sk

σk→R sk+1 for all k ≥ 0. Given a state
trajectory s we define ϑ∞(s) ⊆ SR as the set of states which
appear infinitely many times in s. An infinite input sequence
over Σ is said to be accepted by a Rabin automaton R if there
exists a tuple (Fi,Bi) ∈ ΩR of good and bad states such that
the state trajectory s of R generated by σ intersects the set Fi
infinitely many times and the set Bi only finitely many times.
Formally, this means that ϑ∞(s)∩Fi 6= ∅ and ϑ∞(s)∩Bi = ∅.

Algorithm 1: ConstructTS(x0, φ, ε)

Input: initial state x0, GDTL formula φ, and lower bound ε
Output: belief TS T , product MDP P , satisfying policy µ∗

1 convert φ to LTL formula ϕ over atomic propositions set Fφ
2 compute DRA R = (SR, s

R
0 , 2

AP , δ,ΩR) from ϕ
3 ec0, P∞0 ← localController(x0)
4 B0 ← Nδ(x

0, P∞0 ), e0 = (B0, B0)

5 π
SR
0 , π

ΩR
0 ← computeProb(e0, s0, ec0,R)

6 initialize T = (BT = {B0}, B0,∆T = {e0}, CT = {(e0, ec0)})
7 construct product MDP P = T ×R = (SP =

BT × SR, (B0, s0), Act = BT , δP = {πSR0 },ΩP = {πΩR
0 })

8 for index = 1 to N do
9 xn ← extend(X , T )

10 ecn, P∞n ← localController(xn)
11 Bn ← Nδ(x

n, P∞n )
12 Nn ← near(Bn,BT , γ)

13
∆n ← {(Bi, Bn)|xn = steer(xi, xn), Bi ∈ Nn}

∪ {(Bn, Bi)|xi = steer(xn, xi), Bi ∈ Nn}
14 BT ← BT ∪ {Bn}, ∆T ← ∆T ∪∆n

15 SP ← SP ∪ ({Bn} × SR)
16 foreach e = (Bu, Bv) ∈ ∆n do
17 CT ← CT ∪ {(e, ecv)}
18 foreach su ∈ SR s.t. (Bu, su) ∈ SP do
19 π

SR
e , π

ΩR
e ← computeProb(e, su, ecv ,R)

20 δP ← δP ∪ {πSRe }, ΩP ← ΩP ∪ {πΩR
e }

21 ∆n
P = {(p, p′) ∈ ∆P | (p, p′)�T ∈ ∆n}

22 foreach (Fi,Bi) ∈ ΩR do // update ECs

23
Γi = {(p, p′) ∈ ∆n

P |π
ΩR (e,Fi) = 0

∧ πΩR (e,Bi) > 0, e = (p, p′)�T }
24 ci.update(∆

n
P \ Γi)

25 if existsSatPolicy(P) then
26 solve DP (5) → policy µ∗ w/ probability of satisfaction p
27 if p ≥ ε then return (T ,P, µ∗)

28 return (T ,P, ∅)
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B. Computing transition and intersection probability
Given a transition e = (Bu, Bv) and its associated local

controller ece, Alg. 2 computes the transition distribution from
an initial DRA state su to a some random DRA state, and
a set of intersection distributions associated with each pair
(Fi,Bi) of the acceptance set of R. These distributions are
hard to compute analytically. Therefore, we estimate them
from sample trajectories of the closed-loop system enforcing
edge e. In Alg. 2, the function sampleBeliefSet(S) returns
a random sample uniformly distributed over S.

Algorithm 2: computeProb(e = (Bu, Bv), su, ece,R)

Input: transition between belief nodes e = (Bu, Bv), starting DRA
state su, controller enforcing e ece, DRA R

Output: transition (πSR ) and intersection (πΩR ) distributions
Parameter: NP – number of particles

1 t← 0|SR|,1, rai ← 03,1, ∀(Fi,Bi) ∈ ΩR
2 for p = 1 : NP do
3 bu ← sampleBeliefSet(Bu)
4 b0:T ← ece(bu)
5 for k = 0 to T − 1 do σk ← {f | f(bk) ≤ 0, ∀f ∈ Fφ}
6 s = s0:T ← (su

σ0:T−1→ sT )
7 t[sT ]← t[sT ] + 1
8 for (Fi,Bi) ∈ |ΩR| do
9 if Fi ∩ s 6= ∅ then rai[1]← rai[1] + 1

10 if Bi ∩ s 6= ∅ then rai[2]← rai[2] + 1
11 if (Fi ∪ Bi) ∩ s = ∅ then rai[3]← rai[3] + 1

12 return
(
πSR = t

NP
, πΩR =

{ rai
NP
| 1 ≤ i ≤ |ΩR|

})
The distribution πSR captures the probability that sv is the

state of R at the end of closed-loop trajectory generated by
controller ece to steer the system from belief node Bu and
DRA state su to belief node Bv: πSR = Pr[sv | e, su, ece],
where sv ∈ SR, su

σ0:T−1→ sv , b0:T = ece(bu), bu ∈ Bu, and
σk ← {f | f(bk) ≤ 0,∀f ∈ Fφ}.

Each intersection distribution represents the probability that
edge e intersects Fi, Bi or neither, where (Fi,Bi) ∈ ΩR,
and the controller ece was used to drive the system along the
edge e starting from the DRA state su: πΩR(e,X) = Pr[s ∩
Xi | e, su, ece], ∀(Fi,Bi), where Xi ∈ {Fi,Bi,Fi ∪ Bi}.
C. GDTL-FIRM Product MDP

In this section, we define a construction procedure of the
product MDP between the (belief) TS T and the DRAR.
Definition 2 (GDTL-FIRM MDP). Given a TS T =
(BT , B0,∆T , CT ), a Rabin automaton R = (SR, s

R
0 ,Σ =

2AP , δ,ΩR), and the transition and intersection probabilities
πSR , πΩR , their product MDP, denoted by P = T × R, is
a tuple P = (SP , s

P
0 , Act, δP ,ΩP) where sP0 = (B0, s

R
0 )

is the initial state; SP ⊆ BT × SR is a finite set of states
which are reachable from the initial state by run of positive
probability (see below); Act = BT is the set of actions
available at each state; δP : SP × Act × SP → [0, 1] is the
transition probability defined by δP((Bi, si), Bj , (Bj , sj)) =
πSR(sj ; eij , si, CT (eij)), eij = (Bi, Bj); and ΩP is the set of
tuples of good and bad transitions in P .

Denote the set of edges of positive probability by ∆P ={(
(Bi, si), (Bj , sj)

)
| δP((Bi, si), Bj , (Bj , sj)) > 0

}
. A trajec-

tory (run) of positive probability of P is an infinite sequence
p = p0p1 . . ., where p0 = sP0 and (pk, pk+1) ∈ ∆P , ∀k ≥ 0.

The acceptance condition for a trajectory of P is encoded
in ΩP , and is induced by R. Formally, ΩP is a set of pairs
(FPi ,BPi ), where FPi = {e ∈ ∆P |πΩR(e,Fi) > 0}, BPi =
{e ∈ ∆P |πΩR(e,Bi) > 0}, and (Fi,Bi) ∈ ΩR.

A trajectory of P = T × R is said to be accepting if and
only if there is a tuple (FPi ,BPi ) ∈ ΩP such that the trajectory
intersects the sets FPi and BPi infinitely and finitely many
times, respectively. It follows by construction that a trajectory
p = (B0, s0)(B1, s1) . . . of P is accepting if and only if the
trajectory s0

0:T0−1s
1
0:T1−1 . . . is accepting in R, where si0:Ti

is
the random trajectory ofR obtained by traversing the transition
e = (Bi, Bi+1) using the controller CT (e) and si0 = si for
all i ≥ 0. Note that siTi = si+1

0 . As a result, a trajectory
of T obtained from an accepting trajectory of P satisfies the
given specification encoded byRwith positive probability. We
denote the projection of a trajectory p = (B0, s0)(B1, s1) . . .
onto T by p�T = B0B1 . . .. A similar notation is used for
projections of finite trajectories.
D. Finding satisfying policies and DP for MPP

The existence of a satisfying policy with positive proba-
bility can be checked efficiently on the product MDP P by
maintaining end components EC for induced subgraphs of
P determined by the pairs in the acceptance condition ΩP .
For each pair FPi ,BPi , let ci denote the ECs associated with
the graphs GPi = (SP ,∆P \ Γi), where Γi = {(p, p′) ∈
∆P |πΩR(e,Fi) = 0 ∧ πΩR(e,Bi) > 0, e = (p, p′)�T }.
Given ci, checking for a satisfying trajectory in procedure
existsSatPolicy(P) becomes trivial. We test if there exists
an EC that contains a transition (p, p′) such that πΩR(e,Fi) >
0, where e = (p, p′)�T . Note that we do not need to maintain
ΩP explicitly, we only need to maintain ci.

Given a GDTL-FIRM MDP, we can compute the optimal
switching policy to maximize the probability that the given
formula φ is satisfied. In other words, we find a policy that
maximizes the probability of visiting the states in Fi infinitely
often and avoiding Bi. To find this policy, we first decom-
pose P into a set of end components and find the accepting
components. Since any sample path that satisfies φ must end
in an accepting component, maximizing the probability of
satisfying φ is equivalent to maximizing the probability of
reaching such a component. The optimal policy is thus given
by the relationship

J∞(s) =

{
1, s ∈ ci

max
a∈Act(s)

∑
s′ δ(s, a, s

′)J∞(s′) else

m(s) = arg max
a∈Act(s)

∑
s′ δ(s, a, s

′)J∞(s′)
(5)

This can be solved by a variety of methods, including approxi-
mate value iteration and linear programming [19].

E. Complexity
The overall complexity of maintaining the ECs used for

checking for satisfying runs in P is O(|ΩR| |SP |
3
2 ). The com-

plexity bound is obtained using the algorithm described in [21]
and is better by a polynomial factor |SP |

1
2 than computing the

ECs at each step using a linear algorithm. Thus, checking for
the existence of a satisfying run of positive probability can be
done in O(|ΩR|) time. The dynamic programming algorithm
is polynomial in |SP | [22].
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V. CASE STUDIES

In this section, we apply our algorithm to control a unicycle
robot moving in a bounded planar environment. To deal with
the non-linear nature of the robot model, we locally approx-
imate the robot’s dynamics using LTI systems with Gaussian
noise around samples in the workspace. This heuristic is very
common, since the non-linear and non-Gaussian cases yield
recursive filters that do not in general admit finite parametriza-
tion. Moreover, the control policy is constrained to satisfy
a rich temporal specification. The proposed sampling-based
solution overcomes these difficulties due to its randomized and
incremental nature. As the size of the GDTL-FIRM increases,
we expect the algorithm to return a policy, if one exists, with
increasing satisfaction probability. Since it is very difficult to
obtain analytical bounds on the satisfaction probability, we
demonstrate the performance of our solution in experimental
trials.

Motion model: The motion model for our system is a unicy-
cle that we discretize using Euler’s approximation:

xk+1 = f(xk, uk, wk) = xk +

[
cos(θk) 0
sin(θk) 0

0 1

]
· uk + wk (6)

where xk = [pxk p
y
k θk]

T , pxk , pyk and θk are the position and
orientation of the robot in a global reference frame, uk =[
v′k ω

′
k

]T
= ∆t [vk ωk]

T , vk and ωk are the linear and rota-
tion velocities of the robot, ∆t is the discretization step, and
wk is a zero-mean Gaussian process with covariance matrix
Q ∈ R3×3. Next, we linearize the system around a nominal
operating point (xd, ud) without noise, xk+1 = f(xd, ud, 0)+
A (xk − xd) +B (uk − ud) +wk, where A = ∂f

∂xk
(xd, ud, 0)

andB = ∂f
∂uk

(xd, ud, 0) are the process and control Jacobians,
xd =

[
px d py d θd

]T , and ud =
[
v′dk ω′dk

]T .
In our framework, we associate with each belief node Bg ∈

BT centered at (x̂g, P ) an LTI system obtained by lineariza-
tion about (x̂g, ug), where ug = [0.1, 0]T corresponds to
0.1 m/s linear velocity and 0 angular velocity.

Observation Model: We localize the robot with a multiple
camera network. This reflects the real world constraints of
sensor networks, e.g. finite coverage, finite resolution, and
improved accuracy with the addition of more sensors. The
network was implemented using four TRENDnet Internet Pro-
tocol (IP) cameras with known pose with respect to the global
coordinate frame of the experimental space. Each 640 × 400
RGB image is acquired and segmented, yielding multiple pixel
locations that correspond to a known pattern on the robot. The
estimation of the planar position and orientation of the robot
in the global frame is formulated as a least squares problem
(structure from motion) [23]. The measurement, yk ∈ Y , is
given by the discrete observation model: yk = Cxk + vk.
The measurement error covariance matrix is defined as R =
diag(rx, ry, rθ), where the value of each scalar is inversely
proportional to the number of cameras used in the estimation,
i.e. the number of camera views that identify the robot. These
values are generated from a camera coverage map (Fig. 1(b))
of the experimental space.

Specification: The specification is given over belief states
associated with the measurement y of the robot: “Visit regions

A and B infinitely many times. If region A is visited, then
only corridor D1 may be used to cross to the right side of
the environment. Similarly, if region B is visited, then only
corridor D2 may be used to cross to the left side of the
environment. The obstacle Obs in the center must always be
avoided. The uncertainty must always be less than 0.9. When
passing through the corridors D1 and D2 the uncertainty must
be at most 0.6.” The corresponding GDTL formula is:

φ1 = φavoid ∧ φreach ∧ φu,1 ∧ φu,2 ∧ φbounds (7)
φavoid = � ¬φObs, φbounds = � (box(x̂, xc, a) ≤ 1),

φreach = �
(
♦ (φA ∧ ¬φD2

UφB) ♦ (φB ∧ ¬φD1
UφA)

)
,

φu,1 = � (tr(P ) ≤ 0.9),

φu,2 = �
(
(φD1 ∨ φD2)⇒ (tr(P ) ≤ 0.6)

)
,

where (x̂, P ) is a belief state associated with y, a =[
2
l

2
w

0
]

so that x̂ must remain within a rectangular l × w
region with center xc =

[
l
2

w
2

0
]
, l = 4.13m and w =

3.54m. The 5 regions in the environment are defined by GDTL
predicate formulae φReg = (box(x̂, xReg, rReg) ≤ 1), where
xReg and rReg are the center and the dimensions of region
Reg ∈ {A,B,D1, D2, Obs}, respectively.

Local controllers: We used the following simple switching
controller to drive the robot towards belief nodes:

uk+1 =


[
kD
∥∥αT (xg − x̂k)

∥∥
2

kθ(θ
los
k − θ̂k)

]T
if
∣∣∣θlosk − θ̂k∣∣∣ < π

12[
0 kθ(θ

los
k − θ̂k)

]T
, otherwise

,

where kD > 0 and kθ > 0 are proportional scalar gains, xg

is the goal position, θlosk is the line-of-sight angle and α =

[1 1 0]T . We assume, as in [15], that the controller is able to
stabilize the system state and uncertainty around the goal belief
state (xg, P∞), where P∞ is the stationary covariance matrix.

Experiments: The algorithms were implemented in
Python2.7 using LOMAP [24]. The LTL specification was
converted into a Rabin automaton using ltl2star [25]. All
computation was performed on an Ubuntu 14.04 machine with
Intel Core i7@2.4 Ghz and 8GB RAM.

A switched feedback policy was computed for the ground
robot described by (6) operating in the environment shown in
Fig. 1(a) with mission specification (7) using Alg. 1. The over-
all computation time to generate the policy was 32.739 seconds
and generated a TS and product MDP of sizes (23, 90) and
(144, 538), respectively. The Rabin automaton obtained from
the GDTL formula has 7 states and 23 transitions operating
over a set of atomic propositions of size 8. The most compu-
tationally intensive operation in Alg. 1 is the computation of
the transition and intersection probabilities. To speed up the
execution, we generated trajectories for each transition of the
TS and reused them whenever Alg. 2 is called for a transition of
the product MDP. The mean execution time for the probability
computation was 0.389 seconds for each transition of T .

We executed the computed policy on the (physical) ground
vehicle over 9 experimental trials for a total of 24 surveillance
cycles. The specification was met in all of surveillance cycles.
A trajectory of the ground robot over 10 surveillance cycles
(continuous operation) is shown in Fig. 1(e).
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(a) Environment (b) Camera coverage

(c) Pose estimation (d) Transition system

(e) Experiment

Fig. 1. Fig. (a) shows an environment with regions A and B, corridors D1

and D2 and obstacle Obs. Fig. (b) shows the cameras’ coverage. Fig. (c)
shows the robot’s pose computed from images taken by the 4 cameras.
Fig. (d) shows the TS computed by Alg. 1. Fig. (e) shows the trajectory
of the robot over 10 surveillance cycles. At each time step, the pose of the
robot is marked by an arrow. The true trajectory of the robot is shown in
green. The trajectory obtained from the camera network is shown in yellow,
while the trajectory estimated by the EKF is shown in black.

VI. CONCLUSION

In this paper, we presented a sampling-based algorithm
that generates feedback policies for stochastic systems with
temporal and uncertainty constraints. The desired behavior
of the system is specified using Gaussian Distribution Tem-
poral Logic such that the generated policy satisfies the task
specification with maximum probability. The proposed algo-
rithm generates a transition system in the belief space of the
system. A key step towards the scalability of the automata-
based methods employed in the solution was breaking the
curse of history for POMDPs. Local feedback controllers that
drive the system within belief sets were employed to achieve
history independence for paths in the transition system. Also
contributing to the scalability of our solution is a construction
procedure for an annotated product Markov Decision Process
called GDTL-FIRM, where each transition is associated with a
“failure probability”. GDTL-FIRM captures both satisfaction
and the stochastic behavior of the system. Switching feedback
policies were computed over the product MDP. Lastly, we
showed the performance of the computed policies in experi-
mental trials with a ground robot tracked via camera network.
The case study shows that properties specifying the temporal

and stochastic behavior of systems can be expressed using
GDTL and our algorithm is able to compute control policies
that satisfy the specification with a given probability.
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