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Abstract— Modular robots are highly versatile due to their
ability to reconfigure and change their mechanical properties.
This ability make them optimal for scenarios that require
different types of tasks. However, when the number of mod-
ules increases, the task allocation and cooperation become a
challenging combinatorial problem. To tackle this problem, we
propose a high-level planner for reconfigurable robots with
heterogeneous capabilities, e.g., aerial motion and tool oper-
ation. Modules can attach and detach to create configurations
that manipulate tools satisfying temporal and logic-constrained
tasks. The mission is specified using Metric Temporal Logic
(MTL) which offers the capacity to not only account for where
and who needs to satisfy a task but also when and for how long.
We model the problem using a Mixed Integer Linear Problem
(MILP) approach, capturing cost for reconfiguration, satisfying
a task, and motion in the environment in a specific configura-
tion. Additionally, we consider that not all configurations can
satisfy every task. We find trajectories for modular robots that
guarantee mission satisfaction. Finally, we show performance
and results by performing simulations with multiple tasks and
requirements in an environment.

I. INTRODUCTION

In recent years, the development of technology and the
increase in computational capacity have made the implemen-
tation of robot swarms and multi-robot systems possible.
Multi-robot systems have been widely studied for their
capacity to handle multiple tasks simultaneously, robustness,
and resiliency in overcoming failures or dropouts while
guaranteeing task satisfaction. This type of system is a suit-
able platform for tasks ranging from perimeter surveillance,
search and rescue missions, cargo delivery, and planetary
exploration [1]–[4]. Nevertheless, for tasks that require more
capabilities, such as versatile locomotion and manipulation,
modular robots provide the ability to reconfigure and change
both force capacity in the environment and control con-
straints [5].

Modular and reconfigurable robotics offers to go from
one configuration to another, offering flexibility to address a
broader set of tasks than a single robot of similar complexity.
Here configuration is understood not only as the pose of
the robot but also the module connectivity and shape [5].
Changing their capacities and the possible redundancy in the
degree of freedom make modular robots versatile and robust
[6]. However, there is an increase in the computational cost
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Fig. 1. Planning for multiple modular robots that can reach configurations
to manipulate tools such as a gripper to grasp wood and screwdrivers to
build a wooden fence.

when coordinating the robots in both low-level and high-
level control. On one hand, low-level control is required to
guarantee the collision-free rearrangement of modular robots
to reach the desired configuration or architecture (lattices,
chains, mobile swarm) and act [7]–[10]. On the other hand,
the high-level control takes a set of real-world tasks and
generates or matches existing configurations to satisfy the
mission specification [11].

This work focuses on high-level planning coordinating
multiple robots to satisfy tasks in an environment. Multiple
works have tackled this problem of coordinating and allocat-
ing a set of robots to satisfy tasks from a deterministic and
stochastic approach [12], [13]. However, they consider agents
homogeneous and do not consider temporal logic constraints
in the specifications. Several other works have used Temporal
logic for heterogeneous multi-robot systems working with
Linear Temporal Logic (LTL) with automata theory [14],
[15] or Signal Temporal Logic [16], [17]. Nevertheless,
these papers do not consider modular robots, which adds
the problem of not only allocating some robots but finding
proper configurations that satisfy a particular task.

Our work is focused on generating an automatic controller
synthesis for planning modules trajectories that allows the
creation of modular robot configurations that satisfy task
specifications using formal languages, specifically Metric
Temporal Logic (MTL). Few other works have addressed
modular robots using Temporal Logic approaches such as
[18], [19]. Nonetheless, authors consider LTL and encode the
system into an automaton which might be computationally
expensive when dealing with scalability. Instead, we consider
MTL a rich temporal logic formalism. We propose a MILP



Fig. 2. Example of a tessellated agriculture environment (left) which can
be abstracted into a transition system (right).

approach to efficiently solve the problem while accounting
for the cost of reconfiguration, motion, and satisfying a task
in a specific configuration.

The contributions of the paper are

1) We propose and formalize a planning problem for
modular aerial robots with heterogeneous capabili-
ties and configurations tasked with performing timed
temporal logic missions. The missions involve tasks
that can be performed only by a subset of robot
configurations, and may require robots to reconfigure
during the mission.

2) We propose an efficient Mixed Integer Linear Program-
ming (MILP) approach that minimizes the total energy
consumption while satisfying the MTL mission speci-
fication, robot motion, and reconfiguration constraints.

3) We show the performance of the proposed MILP
method in two case studies.

II. PRELIMINARIES AND NOTATION

Let Z and R denote the sets of integer and real numbers,
respectively. The set of integers greater than a is denoted by
Z≥a. The set of binary values is B = {0,1}. For a set S, 2S

and ∣S∣ denote its power set and cardinality. For S ⊆ R and
t ∈ R, we have t + S = {t + x ∣ x ∈ S}. The integer interval
(range) from a to b is [a .. b]. The empty set is denoted by
∅, while missing or undefined values are marked with ∅. Let
x ∈ Rd be a d-dimensional vector. The i-th component of x
is given by xi, for i ∈ [1 .. d].

A. Metric Temporal Logic

Metric Temporal Logic (MTL), as introduced in [20], is
a specification language expressing real-time properties. The
syntax of MTL is

φ ∶∶= ⊺ ∣ ¬φ ∣ π ∣ φ1 ∧ φ2 ∣ φ1 ∨ φ2 ∣ ◻Iφ ∣ ◊I ∣ φ1 UI φ2,

where φ, φ1, and φ2 are MTL formulae, ⊺ is the logical
True value, π ∈ Π is an atomic proposition. over the i-th
component of signal s, ¬, ∨, and ∧ are the Boolean negation,
disjunction, and conjunction operators, and ◻I , ◊I UI are
the timed always, eventually, and until operator with I =
[t1 .. t2] a discrete-time interval, 0 ≤ t1 ≤ t2. The logical
False value is � = ¬⊺.

The semantics of MTL formulae φ at time t is recursively
defined over timed state sequence w = (s, t) where s =

Fig. 3. Example of module capabilities, form left to right gfly ,
gscrewdriver , ggrasping , gsawing .

s0, s1 . . . sp is a sequence of atomic prepositions by [21] as

w ⊧ π ≡ so ⊧ π,
w ⊧ ¬φ ≡ w ⊭ φ,

w ⊧ φ1 ∧ φ2 ≡ w ⊧ φ1 ∧w ⊧ φ2,

w ⊧ φ1 ∨ φ2 ≡ w ⊧ φ1 ∨w ⊧ φ2,

w ⊧ ◊Iφ ≡ ∃t ∈ I, (s, t) ⊧ φ,
w ⊧ ◻Iφ ≡ ∀t ∈ I, (s, t) ⊧ φ,

w ⊧ φ1 UI φ2 ≡ ∃t′ ∈ t + I s.t. (s, t′) ⊧ φ2

∧ ∀t′′ ∈ [t .. t′] (s, t′′) ⊧ φ1,

(1)

where ⊧ and ⊭ denote satisfaction and violation, respectively.
A timed state sequence w = (s, t) that satisfies φ is denoted
by w ⊧ φ, and it is true if (s,0) ⊧ φ.

B. Time Horizon of MTL formula

The time horizon of an MTL formula [22] is defined as

∥φ∥ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if φ = π,
∥φ1∥, if φ = ¬φ1,

max{∥φ1∥, ∥φ2∥}, if φ = φ1 ∧ φ2,

b +max{∥φ1∥, ∥φ2∥}, if φ = φ1 U [a..b] φ2.

(2)

An MTL formula is said to be in positive normal form
(PNF) if it it does not contain the negation operator.

III. PROBLEM FORMULATION

In this section, we introduce the planning problem for
teams of heterogeneous modular robots tasked with rich
temporal logic tasks that require specialized tools such
as driller, screwdriver, saw, grasping. Robots are able to
reconfigure during the mission to perform the various tasks
of the specification. Thus, the number and configurations of
modular robots active in the mission space may be time-
varying during the mission. We introduce the models for the
environment, modules, configurations, robots, and tasks that
define the planning problem for modular aerial robots.

In this work, we are motivated by construction problems
for agriculture. For instance, consider the construction of a
wooden fence as shown in Fig. 1. The task is described in
the following Example 1.

Example 1. Fence construction on crop q1:
1) Always from deployment to the end of the mission,

region q1 must be video-monitored;
2) Within 10 minutes after deployment, the wood must be

transported in q1;



Fig. 4. Examples of configurations of modules attached in different
arrangements.

3) Within 11 to 60 minutes after deployment, the wood
must be cut into smaller pieces at q1;

4) Always within 60 to 90 minutes the fence needs to be
assembled at q1.

First, we define the environment that captures the motion
of robots between locations of interest.

Definition 1 (Environment). The environment is a
weighted transition system defined by the tuple Env =
(Q,E ,W,Π,L), where Q is a finite set of locations of
interest (states), E ⊆ Q×Q is the set capturing the transitions
of robots between locations in Q, W ∶ E → Z≥1 maps each
transition in E to its travel duration, Π is a set of atomic
propositions that label the states Q, and L ∶ Q → 2Π is
the state-labeling function. A robot stationary at q ∈ Q is
modeled as a unit-weight self-transition, i.e., (q, q) ∈ E for
all q ∈ Q, and W((q, q)) = 1.

In Fig. 2, we show an agricultural environment tessellated
into different regions, which generates the abstracted envi-
ronment Env describing the states Q and edges E .

Extending from Example 1, we consider modular robot
composed of aerial motion capability carrying and manipu-
lating modular tools.

Definition 2 (Module). A module is a cuboid with a capa-
bility g interacting in the environment.

The set of all capabilities is G = {g0, g1, g2, g3, . . . gm}. At
least one capability is the ability to fly, i.e., generate thrust.
The capability of a module also defines the module’s class.

In Example 1, we have the set of module capabilities
G = {gfly, gscrewing, gdrilling, ggrasp, gsawing, gmonitoring}.
Some examples of these modules are shown in Fig. 3.

Note that we do not differentiate between modules of the
same class. Additionally, modules from the same or different
classes can attach and detach with each other to form
modular robots. Configurations describe the types, numbers
and interconnections of modules that robots are composed
of. Formally, we have the following definition.

Definition 3 (Configuration). A robot configuration c =
(Mc,→c,Capc) is a labeled graph, where the nodes Mc

are modules, the →c⊆ Mc × Mc represent the physical
connections between modules, and Capc ∶ Mc → G denotes
the capability of each module.

The number of modules with capability g in configuration
c is denoted by Λ(c, g). Formally, we have Λ(c, g) = ∣{m ∈

Fig. 5. Examples of modular robots are composed of a set of modules
with configurations that can manipulate tools such as grippers and saws.

Mc ∣ Capc(m) = g}∣.
Note that a configuration is defined not only by the

number of modules and the class of modules but also for
the arrangement. In Fig. 4, we show examples of different
configurations. Configurations c3 and c4 and configurations
c5 and c6 have the same number of modules. However, the
arrangement of modules is different. Lastly, a single module
can be regarded as a configuration, i.e., ∣Mc∣ = 1.

Creating different configurations is advantageous to
change the robot capabilities and perform different tasks.
However, considering all possible configurations given a het-
erogeneous group of modules with capabilities g ∈ G leads to
an intractable combinatorial problem even for small number
of modules. The number of all possible configurations is
in the order O(∣G∣2λ), where λ is the number of modules
available. Instead, we consider the following assumption.

Assumption 1. The set of feasible robot configuration C =
{c1, c2, c3, . . . , cn} is given beforehand, and their number n
is small.

We are now ready to define modular robot which are the
actual agents moving in and interacting with the environment
Env to accomplish specified tasks.

Definition 4 (Modular Robot). A modular robot Rk at time
k ∈ Z≥0 is defined by a configuration cRk

∈ C and a robot
state sRk

∈ Q ∪ E , where sRk
∈ Q denotes that robot Rk is

at location sRk
at time k, and sRk

∈ E denotes that Rk is
moving along edge sRk

at time k.

Examples of modular robots are shown in Fig. 5. Robots
R1 and R2 ∈ R use the same tool ggrasping ∈ G, but differ
in the number of quadrotors gfly ∈ G. The arrangement
and therefore the configurations are different. Additionally,
a robot having a saw tool gsawing ∈ G and four quadrotors
gfly is shown.

Note that robots are defined as depending on time. This
is due to their fundamental ability to self-reconfigure, i.e.,
change their configurations cRk

∈ C. Moreover, the number
of robots at each time k may be different. Modules from
multiple robots may transform into a lesser number of robots,
and vice versa. Thus, modular robots do not have a persistent
identity, and are considered a unit only while maintaining
their configuration cRk

∈ C.
For simplicity, we allow robots to reconfigure only at

states q ∈ Q. We model the reconfiguration process as
special self-loops er = (q, q)r, for all q ∈ Q. We abuse



notation and consider er ∈ E in addition to normal self-
loops (q, q) that capture stationarity1. Since we focus on
high-level planning, we consider that low-level controllers
for determining reconfiguration sequences of attaching and
detaching of modules, and their motion during the process
are available [7], [10]. Thus, we consider reconfigurations
at location q ∈ Q at time k ∈ Z≥0 feasible if the number of
modules of each class g ∈ G in all robots involved remains
unchanged. We assume that the upper bounds for the duration
of any reconfiguration process at a state q ∈ Q are known
and denoted by W (er), where er = (q, q)r.

We denote the set of modular robots at time k ∈ Z≥0 by
Rk. We assume that the maximum number of robots p ∈ Z≥1

in at any moment in the environment Env is known a priori.
Each robot Rk ∈ Rk with state sRk

= q ∈ Q must take
a control action uRk

∈ E . Specifically, it either (a) flies
along a transition (q, q′) ∈ E , q ≠ q′, (b) remains stationary
at q via self-loop transition (q, q) ∈ E , or (c) takes part
in a reconfiguration process at q via self-loop transition
er = (q, q)r ∈ E . We consider uRk

= ∅ when the robots
is in transition between locations, i.e., sRk

∈ E .

A. Specification

The primitive units of our specifications are tasks that cap-
ture the required locations, duration, and robot capabilities.

Definition 5 (Task). A task is a tuple T = (d, π,CT ), where
d ∈ Z≥0 is the duration of the task, π ∈ Π is the label of all
location where the task needs to be performed, and CT ⊆ C
is the subset of configurations that can perform the desired
action, e.g., transporting, sawing, drilling.

We define the configuration-task matrix Γ(c, T ) ∈ B such
that Γ(c, T ) = 1 if c ∈ CT , and Γ(c, T ) = 0 otherwise. We
assume that configurations are characterized with respect to
tasks in the mission specification, and, thus, Γ is available
for planning.

Note that to perform a task’s action the robot must
generate a desired wrench (forces and torques). The physical
parameters, such as volume and weight, and configuration
of a robot impacts its performance of tasks. In this paper,
we assume that all configurations CT are able to perform
task T within its duration d. We will address performance
differences between configurations in future work.

Duration of tasks may be expressed via the always oper-
ators in MTL. Formally, we have T = ◻[0,d]⋀q∈L(π)$q,T ,
where $q,T denotes that there exists a robot at location q ∈ Q
and configuration c ∈ CT that can perform T .

To capture the satisfaction of robot missions, we define the
joint output word generated by the teams of robots as o =
o0o1o2 . . ., where ok = {T = (d, π,CT ) ∣ ∀q ∈ L−1(π),∃Rk ∈
Rk s.t. sRk

= q, cRk
∈ CT } captures the tasks performed at

time k disregarding their durations.
Lastly, mission specifications expressed as MTL formulas

with tasks taking the role of atomic propositions. As noted

1Formally, Env takes the structure of a multi-graph with parallel self-
loops in our case. For brevity, we define Env as a directed graph, and
denote reconfiguration self-loops with the the superscript ()r when needed.

above, tasks are MTL formulas with additional semantics
regarding their satisfaction by robots with specific configu-
rations.

B. Objective function

The motion, actions, and reconfiguration of robots required
energy to perform. Let Sm = {(e,Rk) ∣ uRk

= e = (q, q′) ∈
R, q ≠ q′} be the set of all robot motions, Sr = {(e,Rk) ∣
uRk

= er} be the set of all robot reconfigurations, and Sa =
{(e,Rk, T ) ∣ uRk

= e = (q, q) ∈ R, q ∈ L−1(π), cRk
∈ CT } be

the set of all robot actions. We define the cost function as

J = Jm + Jr + Ja
Jm = ∑

(e,Rk)∈Sm

Ye,cRk

Jr = ∑
((q,q),Rk)∈Sr

∑
g∈G

Yq,g ⋅Λ(cRk
, g)

Ja = ∑
((q,q)r,Rk)∈Sa

Yq,T,cRk

, (3)

where Ye,c ∈ R>0 is the energy required to traverse edge e
with configuration c, Yq,g ∈ R>0 is the per module energy
cost for module class g at location q for reconfiguration,
and Yq,T,c ∈ R>0 is the energy required by a robot with
configuration c to perform actions to satisfy task T at location
q.

Again, we assume that our configurations are characterized
with respect to motion, reconfiguration, and tasks, and the
energy costs Ye,c, Yq,g , and Yq,T,c are available for planning.

C. Problem

Now that we have define all the components of our
framework we formally describe our problem as follows.

Problem 1. Given a MTL mission specification φ and a set
of modules with capabilities G deployed in environment Env
that can assemble in a maximum number p of robots at each
time k ∈ Z≥0 with configurations C, find the set of robots
Rk and control actions uRk

for all robots Rk ∈Rk at each
time k ∈ [0 .. ∥φ∥] such that o ⊧ φ and the cost J in (3) is
minimized.

IV. SOLUTION

In this section, we formulate Problem 1 as a Mixed Integer
Linear Program (MILP).

In the following, we introduce the set of virtual robots
R = {R1,R2,R3, . . . ,Rp}. Instead of keeping track of the
set of robots Rk at each time k ∈ Z≥0, we consider the
fixed set of virtual robots R, where some of the robots
are active and some robots are inactive (e.g., do not exist
physically). We want to emphasize that it is not required to
track each robot identity from when it is first assembled until
it is reconfigured. The “same” virtual robot might be created,
disappear, and then assembled again potentially in a different
configuration.

We consider time horizon based on (2) for the team of
robots R solving specification mission φ and denoted as K =
∥φ∥.



A. Robot and Module Dynamics

For tracking modular robots navigating in the environ-
ment Env, let us define the following binary variables
zq,R,c,k, ue,R,c,k ∈ B, which take value one if there is a
modular robot R with configuration c, at time k, at state q or
edge e, respectively. Initial position of modular robots and
at an initial configuration can be encoded as the following
equality constraint

zq,R,c,0 = I(q = q0,R, c), (4)

for all q ∈ Q, R ∈R, c ∈ C and I(⋅) is an indicator function.
Then, we need to constraint that every robot has to be in

a specific configuration or it does not exists as follows

∑
c∈C

zq,R,c,k ≤ 1, (5)

for all q ∈ Q, R ∈ R, and k ∈ [0 .. K], and is at single
location if it exists,

∑
q∈Q

zq,R,c,k ≤ 1, (6)

for all c ∈ C, R ∈R, and k ∈ [0 .. K].
Remark 1. Note that the number of modular robots is not
conserved in the environment since they can reconfigure
(merge or split into a configuration with different number of
robots). Nevertheless, the number of modules is conserved in
the entire mission. We can track individual modules g from
every robot R in the environment Env.

Therefore, let us define the following variables zq,g,k,
ue,g,k ∈ Z≥1 as the number of modules with capability g
at time k at state q or edge e, respectively. We can recover
the number of modules from the modular robot variables as
follows

zq,g,k = ∑
R∈R

∑
c∈C

Λ(c, g) ⋅ zq,R,c,k, (7)

ue,g,k = ∑
R∈R

∑
c∈C

Λ(c, g) ⋅ ue,R,c,k, (8)

for all q ∈ Q, e ∈ E , g ∈ G, where Λ(c, g) is the number of
modules with capability g used in configuration c.

Using this module capabilities variables we can define flow
dynamic constraints in the environment as follows

zq,g,k = ∑
(q′,q)∈E

ue,g,k, (9)

∑
(q′,q)∈E

ue,g,k = ∑
(q,q′)∈E

ue,g,k+W (e). (10)

The flow constraints are enforcing the conservation of mod-
ules of each type while robots fly, perform tasks, and recon-
figure in the environment. Note that the sums in (9) and (10)
also include the reconfiguration self-loops er = (q, q)r.

Next, we constrain the robots to not change configurations
unless a reconfiguration self-loop is used

zq,R,c,k + zq′,R,c,k+W (e) ≥ 2 ⋅ u(q,q′),R,c,k, (11)

for all e = (q, q′) ∈ E ∖ {er = (q, q)r ∣ q ∈ Q}, R ∈
R, c ∈ C, k ∈ [0 .. K − W (e)]. We do not enforce

the constraint for reconfiguration self-loops er, and let the
variables free to change robots’ configurations as required
by tasks’ satisfaction.

B. Task Satisfaction

For encoding task satisfaction, let us consider the follow-
ing binary variables zTk ∈ B, which takes value one if task T
is satisfied. Thus, we have

zTk ≤ ∑
R∈R

∑
c∈C

zq,R,c,k ⋅ Γ(c, T ), (12)

for all T = (d, π,CT ) with π ∈ AP , q ∈ L−1(π), k ∈ [0 .. K],
which ensures that modular robot R with configuration c can
perform task T at state q, and at time k.

Then, satisfaction of an MTL specification is captured via
a recursive encoding using binary variables as zϕk ∈ B for
a subformula ϕ at k. The variable zϕk takes value one if
subformula ϕ holds at time k, and is zero otherwise. The
full encoding is similar to the one in [16], [23], and we omit
it for brevity.

C. Objective Function

Finally, we define the objective functions to capture the
desired optimal behavior of the modular robots.

1) Reconfiguration cost function: We define a cost to
penalize reconfiguration of the modular robots into new
configurations. The cost becomes

Jr = ∑
k∈[0..K]

∑
q∈Q

∑
g∈G

Yq,g ⋅ uer,g,k, (13)

where Yq,g is the energy for reconfiguration per module of
type g at state q, er = (q, q)r.

2) Action cost function: We define a cost for satisfying a
task T at state q using a modular robot in a configuration c
as follows

Ja = ∑
k∈[0,..K]

∑
q∈Q

∑
c∈C

∑
R∈R

Yq,T,c ⋅ zaux ⋅ Γ(c, T ), (14)

where zaux = zTk ⋅zq,R,c,k, and Yq,T,c is the per time unit cost
of using configuration c at state q to satisfy task T . Note that
since both variables are binary the product can be reduce to
zaux = min{zTk , zq,R,c,k}, which can be encoded as mixed
integer linear constraints.

3) Motion cost function: We capture the cost for travers-
ing the edges e with configuration c

Jm = ∑
k∈[0,..K]

∑
e∈E ′

∑
c∈C

∑
R∈R

Ye,c ⋅ ue,R,c,k, (15)

where E ′ = E ∖ {(q, q), (q, q)r ∣ q ∈ Q}, and Ye,c is the per
time unit cost of using configuration c while traversing edge
e.



Fig. 6. Case study 1: Environment, transition system, atomic propositions,
head-quarters at q1, and task request.

4) Optimization problem: Then, we can formulate Prob-
lem 1 as the following MILP optimization problem

min
ue,R,c,k

Jr + Ja + Jm,

subject to
Module and robot dynamics (4) − (11),
Task satisfaction (12),

Mission satisfaction: zφ0 = 1.

V. ANALYSIS

correctness and complexity. the latter is number of binary
variables to provide an idea on how complex it is comple-
mented by run time performance in the results

Proposition 1. number of modules that enter er = (q, q)r =
number of modules that exit er = (q, q)r

VI. CASE STUDIES

In this section, we perform multiple simulations to demon-
strate the performance of the MILP formulation in terms
of scalability and correctness. We are mainly motivated by
case studies where we need to specify time and logically
constrained tasks that describe a construction mission in
agriculture environments.

All computation of the following case studies were per-
formed on a PC with 4 cores at 2.7 GHz with 32 GB of
RAM. We used Gurobi [24] as the MILP solver.

A. Case Study 1

In this case study, we describe a small construction
mission for showcasing how the MILP planning algorithm
encoded in Sec. IV works. We consider an agricultural
environment Env shown in Fig. 6 with four different
states Q = {q1, q2, q3, q4} and atomic proposition set Π =
{π1, π2, π3, π4}. The mission considers that at some time
between deployment wood must be cut at state q4 and
then wood needs to be used to assemble a fence. In MTL,
the mission specification is φ = ◊[0,3]T (1, πpurple, g3) ∧
◊[4,6](T (1, πpurple, g2)∧T (1, πpurple, g1)). We consider the
following initial conditions, module capabilities set G =
{g0, g1, g2, g3} whose meaning is shown in Fig. 3. We have
∣C∣ = 10 predefined configurations with the matrix Λ(c, g) =

Fig. 7. Case study 2: Environment, transition system, atomic propositions,
and head-quarters at q6.

{c0 ∶ {g0 = 4, g1 = 1, g2 = 1}, c1 ∶ {g0 = 8, g1 = 1, g2 =
1}, c2 ∶ {g0 = 3, g2 = 1}, c3 ∶ {g0 = 9, g2 = 1}, c4 ∶ {g0 =
4, g1 = 1}, c5 ∶ {g0 = 7, g2 = 1, g3 = 1}, c6 ∶ {g2 = 1}, c7 ∶
{g1 = 1}, c8 ∶ {g3 = 1}, c9 ∶ {g0 = 1}}.

We consider that there are twelve g0 modules with flying
capability and two of each g1, g2, g3 screwdriver, gripper,
and saw, respectively, at headquarters q1. We constraint the
maximum number of robots we can generate to be ∣R∣ = 13.
The binary matrix indicating whether or not a configuration
can manipulate a tool Γ(c, T ) has value one if c contains
gτ (capability needed in the task T) and at least three g0

and is zero otherwise. Motion, reconfiguration, and task
energy consumption for using a specific configuration are
generated so that Yq,g, Yqtc, and Ye,c ∈ [1 .. 10]. Finally, the
reconfiguration time W (er) for going from any configuration
to other feasible configuration is first considered as one. We
use these initial parameters for four different cases described
bellow.

1) Feasible Case: The generated solution shows that there
are six initial robots at time k = 0 at state q1, robots are in the
following initial configurations R0 ∶ c8, R1 ∶ c4, R2 ∶ c8, R3 ∶
c1, R4 ∶ c6. Note, that the rest of the robots do not appear
since not all the robots must exists at every time; they may
reconfigure, merging and splitting as required. Satisfaction of
the subformula ϕ1 = ◊[0,3]T (1, πpurple, g3) is achieved at
time k = 2 where the robots have reconfigured and traveled
as follows at state q1. We have robots with the following
configurations R5 ∶ c9, R6 ∶ c6, R9 ∶ c9, R10 ∶ c7, R11 ∶
c8, R12 ∶ c9, at state q4 time k = 2. There is one robot
with configuration R4 ∶ c5. The type of modules in config-
uration c5 show that the subformula ϕ1 has been satisfied.
Satisfaction of subformula ϕ2 = ◊[4,6](T (1, πpurple, g2) ∧
T (1, πpurple, g1)) is achieved at time k = 6. The robots at
state q1 are the following R0 ∶ c4, R7 ∶ c8, R11 ∶ c6, at state
q4 robots R0 ∶ c9, R1 ∶ c2, R5 ∶ c8, R12 ∶ c4. Here we can see
that robots R1 ∶ c2 and R12 ∶ c4 satisfy the subformula.

The solution for this specification generates 4050 integer
variable and 3036 binary variables in Gurobi. The compu-
tation time for solving this case study is 1.30 seconds. The
objective values are reconfiguration cost Jr = 4, action cost
Ja = 6, motion cost Jm = 45.



2) Infeasible Case: For this simulation, we consider the
same initial parameters as the one above; however, changing
the reconfiguration time W (er = (q, q′)r) = 3, the model
becomes infeasible since robots need to enter into reconfig-
uration to satisfy tasks, but time for reconfiguring causes a
violation in the deadlines of the specification.

3) Feasible case with additional modules, configuration,
and possible robots: In this simulation, we consider the same
initial parameters, but we add twelve additional quadrotors
and increase the set of configurations ∣C∣ = 20, and pos-
sible maximum number of robots to ∣R∣ = 23. Note that
initially, there are so many robots and configurations that
reconfigurations are not necessary, and the chosen robots are
the ones that reduce the motion and task cost. All changes
are at the expense of increasing the computation since every
time we increase the set of possible configurations, C, and
the set of possible robots R, we include additional binary
variables. The solution took 5.86 seconds and specification
satisfaction zφ0 = 1 is achieve while the other objective values
are reconfiguration cost Jr = 0, action cost Ja = 4, and
motion cost Jm = 29. There is an increase in the number of
variables generated in Gurobi, having 70618 integer variables
and 70042 binary variables.

4) Feasible with an increase in the number of states and
edges: Lastly, we use the same initial parameters, but aug-
ment the environment by adding six states Q and generating
edges E according to proximity. The transition system is
shown in Fig. 7. Here the computation time increase to
27.06 seconds The specification is satisfied, zφ0 = 1, with
reconfiguration cost Jr = 0, action cost Ja = 4, and motion
cost Jm = 33. Additionally, there a drastic increase of
number of generated variables; 187062 integer variables and
185542 binary variables which shows that the algorithm is
susceptible to the number of states and edges in terms of
time and number of variables. This is not surprising, since
for every state and edge in the environment Env, all the
variables for modules and robots have to be created.

B. Case Study 2

For this case study we consider the environment shown
in Fig. 7. We consider predefined configurations and number
of robots to be ∣C∣ = 20 and ∣R∣ = 20. We use the following
mission specification,

φn = ∧ni=1( ∧3
j=1 ◊[0,20]T (2, πj , gτ,j)), (16)

where πj is a randomly picked state in the environment
and gτ,j the first three capabilities added every time that n
increase. Table VI-B summarizes the information at every it-
eration on how the runtime and number of variables increase
when adding more modules and module capabilities.

Finally, we keep all other parameters constant and grad-
ually increase the number of possible robots and config-
urations. All initial parameters are the same as the one
considered for VI-A.4. In Fig. 8, we can see that at first,
increasing the number of variables does not affect the time
performance dramatically. However, after fifteen configura-

Fig. 8. Runtime performance while increasing the number of possible
configurations and robots.

tions and fifteen possible robots, the combinatorial problem
makes the runtime grow almost exponentially.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes a MILP formulation for planning for
heterogeneous modular robots that can form configurations
to manipulate tools and satisfy tasks in an environment.
We consider that not all configurations can satisfy every
task, which creates the necessity for modular robots to
reconfigure into appropriate configurations. We formulate
tasks to account for logical and timing constraints using
Metric Temporal Logic, where atomic propositions capture
the location and the tool that the task requires. We formulate
costs for motion, reconfiguration, and actions for satisfac-
tion in a specific configuration. We can conclude that the
time performance depends directly on the number of binary
variables, which depend on all the possible configurations
and robots that the system can generate, the size of the
environment, and the specification size. We consider adding
uncertainty on task satisfaction and performance differences
between configurations for future work.
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