
Research Topics in Membrane Computing:
After CMC 12, Before BWMC 10

Marian Gheorghe1, Gheorghe Păun2,3 – Editors

1 Department of Computer Science
University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK
m.gheorghe@dcs.shef.ac.uk

2 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania

3 Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es

Summary. What follows is a list of open problems and research topics compiled by the
two editors of this “mega-paper”, with the authors who contributed to this list mentioned
together with their problems and research topics. The idea of such a collection occurred
during CMC 2011, held in Fontainebleau, Paris, France (23 - 26 August 2011), and the
result is meant to be a working material for the Tenth Brainstorming Week on Membrane
Computing, Sevilla, Spain (January 30 - February 3, 2012).

Introduction

The idea of compiling a collection of open problems and research topics occurred
during the Twelfth International Conference on Membrane Computing, CMC
2011, held in Fontainebleau, Paris, France, from 23 to 26 of August, 2011 (see
http://cmc12.lacl.fr/). The invitation to contribute to such a collection was
formulated during CMC 2011 (and after that reinforced by email) and several re-
searchers answered this call. The result is the present “mega-paper” (mega because
it has much more co-authors than any other paper in membrane computing...),
meant to be a working material for the Tenth Brainstorming Week on Membrane
Computing, Sevilla, Spain, January 30 - February 3, 2012.

The texts received from the contributors appear below as they have been sub-
mitted, with minimal editorial changes, sometimes with a short comment in the
beginning. In most cases, one gives the necessary (minimal) definitions, as well as
the relevant bibliography. Of course, the reader is supposed to be familiar with

2 M. Gheorghe, Gh. Păun, eds.

basic elements of membrane computing (MC from now on) – for instance, from
the sources mentioned in the end of this introduction. The authors of each “sec-
tion” are mentioned, with affiliations and email addresses, so that the interested
reader can contact them for further details, clarifications, cooperation in solving
the problems.

The order in which the problems are given below goes, approximately, from
general to theory and then to applications. The nature of questions range from
local/technical open problems, to “strategic” issues, for instance, relating MC
with other research areas, such as computer science, biology, ecology, economics
and so on. Of course, many other precise problems or research ideas circulate
in the MC community (or can be found in recent papers; see also the previous
brainstorming volumes, where many problems are formulated, sometimes given in
explicit lists; the “fate” of some of these open problems is recalled in the paper
Gh. Păun, “Tracing Some Open Problems in Membrane Computing”, Romanian
J. of Information Science and Technology, 10, 4 (2007), 303–314). Similarly, some
of the problems presented here or variants of them were already circulated in the
MC community, which should raise the interest from them (as an indication of
both interest and difficulty). We are aware, on the one hand, that many other
authors, who have not answered our request (in time), would have other problems
to propose, and, on the other hand, that many people keep for them, for their
immediate research, the “juicy” topics... Anyway, we hope that this collection will
both raise the interest in participating (actively) in 10th BWMC, and, perhaps,
in producing a new list of open problems and research topics, either enlarging the
present one or a different one.

General MC References

1. G. Ciobanu: Membrane Computing. Biologically Inspired Process Calculi. The
Publishing House of the “Al.I. Cuza” University, Iaşi, 2010.

2. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez, eds.: Applications of Membrane
Computing. Springer-Verlag, Berlin, 2006.

3. P. Frisco: Computing with Cells. Advances in Membrane Computing. Oxford
Univ. Press, 2009.

4. A. Păun: Computability of the DNA and Cells. Splicing and Membrane Com-
puting. SBEB Publishing, Choudrant, Louisiana, USA, 2008.

5. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002
(Chinese translation in 2012).

6. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: The Oxford Handbook of Membrane
Computing. Oxford University Press, 2010.

7. The P Systems Website: www.ppage.psystems.eu.

Research Topics in Membrane Computing 3

Contents

1. Some General Issues (J. Beal)
2. The Power of Small Numbers (A. Alhazov)
3. Polymorphic P Systems (S. Ivanov, A. Alhazov, Y. Rogozhin)
4. Research Directions in the Theory of P Colonies and dP Automata (E. Csuhaj-

Varjú)
5. Speeding up P Automata (G. Vaszil)
6. Milano Open Problems (A. Leporati, G. Mauri, A.E. Porreca, C. Zandron)
7. Complexity Issues (N. Murphy)
8. Time-Free Solutions for Hard Computational Problems (M. Cavaliere)
9. Numerical P Systems (C. Vasile, A.B. Pavel, I. Dumitrache, Gh. Păun)

10. P Systems Formal Verification and Testing (F. Ipate, M. Gheorghe)
11. Iaşi Problems (O. Agrigoroaiei, B. Aman, G. Ciobanu)
12. Membrane Algorithms (G. Zhang)
13. Open Problems from Verona (V. Manca)
14. Unravelling Oscillating Structures by Means of P Systems (T. Hinze)
15. Approaching a Question of Biologically Plausible Applications of Spiking Neu-

ral P Systems for an Explanation of Brain Cognitive Functions (A. Obtulowicz)
16. Computer Vision (D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo)
17. Bridging P and R (Gh. Păun)

1 Some General Issues

Jacob Beal

BBN Technologies, Canbridge, MA, USA
jakebeal@bbn.com

Comment. Jacob Beal was one of the invited speakers in CMC 2011 (title
of talk: “Bringing Biology and Engineering Together with Spatial Computing”).
After the meetings, he was asked to express his thoughts about MC, taking into
account that he comes from outside the MC community, more importantly, from
applied computer science. What follows is part of an e-mail message he has sent
to M.Gh. in the end of August 2011.

With regards to my thoughts on directions for the membrane computing com-
munity, I think there is something very interesting and unique about the combi-
nation of chemical, compartmentalized, and tree-structured computation that P

4 M. Gheorghe, Gh. Păun, eds.

systems gives access to. But I think that it is important to try to articulate what
that is and why it is important.

In particular, the questions that I might pose would be:

• What are the most important research questions for membrane computing?
• What does membrane computing have to offer researchers who are not in the

field of membrane computing?

More specifically:

• What should other computational theorists learn from the family of P systems
computational models?

• What is the practical advantage of P systems models over their competitors in
biological modeling or other fields?

• How might P systems models be applied to improve representations or archi-
tectures for parallel computing?

• What is quantitatively advantageous about SN P systems over other spiking
models?

• How can P systems inform the theory or design of distributed algorithms?

I do not expect that any of these questions will have any one answer – in fact,
I am sure that many researchers in the field will have wildly different answers. But
every researcher should have clear and concise answers that they can make a good
case for.

For my own part, I think that the most important research questions are:

1. How can distributed systems notions like self-stabilization be applied to P
systems?

2. What consequences does the P systems model have for conventional comput-
ing?

3. What sort of complex P systems computations can be generated from high level
programming languages, and what sort of languages fit best with P systems
for various purposes (e.g. biological modeling, networking)?

Those priorities, however, are of course a consequence of my own research
interests and biases, and I expect that others would have different answers: the
important thing is the discussion of reasons.

Research Topics in Membrane Computing 5

2 The Power of Small Numbers

Artiom Alhazov

Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Chişinău, Republic of Moldova, and

Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
Milano, Italy
artiom@math.md, aartiom@yahoo.com

Comment. Artiom Alhazov was also an invited speaker in CMC 2011; his
talk, “Properties of Membrane Systems”, is cited in the references below and can
be helpful in clarifying some of the notions mentioned in the following problems.

Note: in case the underlying definitions are not clear, all bibliography items in-
clude URLs of the associated publications (freely accessible .PDF files or springer-
link references). This made it possible to formulate the problems more concisely.

2.1 Minimal Parallelism and Number of Membrane Polarizations
(2006)

It is known, [1, 2] that under minimal parallelism, P systems with active mem-
branes can solve intractable problems in a polynomial number of steps, even with-
out non-elementary membrane division and without membrane creation. However,
the best known results are 6 (six!) polarizations, or 4 polarizations if non-standard
rule types (evolution is applied sequentially and may change the polarization) are
used. Are these numbers optimal?

2.2 Membrane Systems Language Class (2010)

A fundamental family of languages is still not characterized: languages generated
by non-cooperative membrane systems. It is known, [5, 4] that the best known
lower bound for LOP (ncoo, tar) is REG · Perm(REG) (strict inclusion), while the
best known upper bound is CS ∩ SLIN ∩ P. An example of a difficult language
in this family is

{ Perm((abc)2k0)Perm((a′b′c′)2k1) · · · Perm((abc)2k2t)Perm((a′b′c′)2k2t+1)
| k0 = 1, 0 ≤ ki ≤ 2ki−1, 1 ≤ i ≤ 2t + 1, t ≥ 0}.

Open questions concerning comparison of the P systems language family with
particular language families and concerning particular closure properties are also
formulated in the above mentioned papers.

6 M. Gheorghe, Gh. Păun, eds.

2.3 Dynamic Properties (2011)

It is well-known, e.g., that catalytic P systems are computationally complete, while
deterministic catalytic P systems are not.

In [3], an overview of a number of dynamic properties of P systems is given,
the most important one being determinism. In particular, five variants are recalled
where non-determinism seems an essential source of the computational power (al-
though, as far as we know, no formal proof of power separation has been obtained),
with informal justification for the word “seems”:

1. P systems with active membranes, where except membrane separation, the
rules are non-cooperative and the membrane structure is static (solving SAT).

2. Non-cooperative P systems with promoters or inhibitors of weight not re-
stricted to one (universality).

3. Minimal combinations of alphabet size/number of membranes or cells (univer-
sality).

4. P systems without polarizations (universality).
5. Conditional uniport.

The open question is, for any of the variants above, to formally prove that deter-
minism decreases the computational power of the corresponding systems (as it is
in the case of catalytic systems).

The post-proceedings version (submitted) of [3] also proposes to study 6 new
formal properties inspired by self-stabilization concept.

2.4 Exo-Insertion/Deletion (2011)

This is the only open problem in this list that concerns P systems with string
objects. Consider P systems with string objects and operations of right or left
insertion or deletion of given strings. The problem is to find a characterization of
the power of P systems with exo-insertion of weight one and exo-deletion of weight
one without contexts.

There exist the following partial results:

• Not computationally complete if operations (even both with weight two) are
performed anywhere in the string.

• Computationally complete if insertion has weight two.
• Computationally complete if deletion has weight two.
• Computationally complete for tissue P systems.
• Computationally complete if deletion has priority over insertion (even without

deletion on the right).
• The lower bound is regular languages (even with all operations on one side).

Research Topics in Membrane Computing 7

2.5 Symport-3 in One Membrane (2005)

Reaching for universality by moving objects across a single membrane lead to
interesting combinatorial questions. While antiport roughly corresponds to rewrit-
ing, symport does not provide such an intuitive counterpart, although it remotely
resembles insertion/deletion or vector addition.

It is well known that the minimal size of symport rules for the universality in
one membrane is 3, [6]. The computational completeness is achieved there with 7
additional objects in the skin. It is not difficult to see that at least one object is
necessary, or only finite sets are generated.

Indeed, the only way to increase the number of objects is to send something out,
so that something comes back in, bringing something else. Generating any infinite
set means that such a procedure must be iterated. Hence, sending all objects out
cannot lead to halting.

Therefore, the lower bound for LOP1(sym3) is N7RE, while the upper bound
is N1RE ∪NFIN . It is an open problem to bridge (or at least decrease) the gap
by investigating what sets containing numbers smaller than 7 can be generated.

References

1. A. Alhazov: Minimal Parallelism and Number of Membrane Polarizations. The Com-
puter Science Journal of Moldova, 18, 2(53), 2010, 149–170.
http://www.math.md/publications/csjm/issues/v18-n2/10284/

2. A. Alhazov: Minimal Parallelism and Number of Membrane Polarizations. In: H.J.
Hoogeboom, Gh. Păun, G. Rozenberg, eds.: Preproceedings of the Seventh Interna-
tional Workshop on Membrane Computing, WMC7, Lorentz Center, Leiden, 2006,
74–87.
http://wmc7.liacs.nl/proceedings/WMC7Alhazov.pdf

3. A. Alhazov: Properties of Membrane Systems. In: M. Gheorghe, Gh. Păun, S. Ver-
lan, eds.: —it Preproceedings of the Twelfth International Conference on Membrane
Computing, CMC12, Fontainebleau, 2011, 3–14.
http://cmc12.lacl.fr/cmc12proceedings.pdf

4. A. Alhazov, C. Ciubotaru, S. Ivanov, Yu. Rogozhin: The Family of Languages Gen-
erated by Non-cooperative Membrane Systems. Membrane Computing. 11th Inter-
national Conference, CMC 2010, Jena, 2010. Revised Selected Papers (M. Gheorghe,
Th. Hinze, Gh. Păun, G. Rozenberg, A. Salomaa, eds.) LNCS 6501, Springer, 2011,
65–80. http://www.springerlink.com/content/gt07j477k20204l7/

5. A. Alhazov, C. Ciubotaru, S. Ivanov, Yu. Rogozhin: Membrane Systems Languages
Are Polynomial-Time Parsable. The Computer Science Journal of Moldova, 18,
2(53), 2010, 139–148.
http://www.math.md/publications/csjm/issues/v18-n2/10282/

6. A. Alhazov, R. Freund, Yu. Rogozhin: Computational Power of Symport/Antiport:
History, Advances and Open Problems. In: R. Freund, Gh. Păun, G. Rozenberg,
A. Salomaa, eds.: Membrane Computing, 6th International Workshop, WMC 2005,
Vienna, Revised Selected and Invited Papers, LNCS 3850, Springer, 2006, 1–30.
http://springerlink.metapress.com/index/f500782x34331741

8 M. Gheorghe, Gh. Păun, eds.

7. A. Alhazov, A. Krassovitskiy, Yu. Rogozhin: Circular Post Machines and P Systems
with Exo- Insertion and Deletion. In: M. Gheorghe, Gh. Păun, S. Verlan, eds.: Prepro-
ceedings of the Twelfth International Conference on Membrane Computing, CMC12,
Fontainebleau, 2011, 63–76.
http://cmc12.lacl.fr/cmc12proceedings.pdf

3 Polymorphic P Systems

Sergiu Ivanov1,2, Artiom Alhazov1,3, Yurii Rogozhin1

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Chişinău, Republic of Moldova
{artiom,rogozhin,sivanov}@math.md
2 University of Academy of Sciences of Moldova
Faculty of Real Sciences
Chişinău, Republic of Moldova
3 Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
Milano, Italy
aartiom@yahoo.com

Polymorphic P systems introduce a new feature into membrane computing.
This time the inspiration does not come from biology, but rather from conventional
computing and namely from von Neumann architecture. The point is in not fixing
the rules in the structural description of the P system, but rather storing them as
contents of membranes.

Formally, we define a polymorphic P system as a tuple

P = (O, T, µ, ws, w1L, w1R, . . . , wmL, wmR, ϕ, iout).

The set O is a finite alphabet, T ⊆ O is the set of output objects. The object µ is a
tree structure consisting of 2m+1 membranes bijectively labeled with the elements
of H = {s} ∪ {iL, iR | 1 ≤ i ≤ m}. The skin membrane is labeled with s. It is
required that the parent membrane of iL be the same as the parent membrane of
iR for all 1 ≤ i ≤ m. The string wh, h ∈ H, is the initial content of the membrane
with label h. The label iout is the region where the output of the system will be
read from. We will describe the mapping ϕ later on.

Observe that the description of the system does not include any rules. Instead,
the contents of the membranes with labels iL and iR are interpreted as the left-
hand side and right-hand side of the rule i respectively. At every step, the rules are

Research Topics in Membrane Computing 9

applied in the usual way. As a result of application of the rule i, the right-hand side
of the rule (the content of iR) is injected into ϕ(i). The latter mapping is defined
as follows: ϕ : {1, . . . , m} → Tar, Tar = {inj | j ∈ H– inner membrane of p} ∪
{out, here}, where p ∈ H is the label of the membrane containing the rule i (the
membranes iL and iR). For further information we refer the reader to [1].

Polymorphic P systems have not yet been explored sufficiently well. In the
following paragraphs we will list some open problems which we find important to
be considered.

• Solve hard problems. It has been shown that polymorphic P systems can solve
certain problems faster than any other P system model (for example, generate
n2 in O(1) and generate 22n

in O(n)). So far, only relatively simple problems
were considered, but we believe that the polymorphic model has the potential
to facilitate solving much harder problems. For example, possibilities to find
the Gröbner basis using polymorphic P systems are currently being considered.

• Characterize problems which may be solved faster. A more general question, on
the other hand, is to define the class of problems which can be solved more
efficiently using polymorphic P systems. It has been observed that, for multipli-
cation, a linear speed-up was introduced; a much more systematic research in
this direction is necessary. In particularly, it is unclear whether it is possible to
use polymorphism to construct exponential workspace for solving intractable
problems in polynomial time.

• Polymorphic P systems with active membranes. Polymorphic P systems are
a fairly simple model at the moment. This means, in particular, that certain
extensions are possible. We would like to particularly stress the perspectives of
considering polymorphic P systems with active membranes, where the mem-
brane structure itself does not stay constant. Such a combination is a very
powerful one, therefore it is important to establish some restrictions which will
define an as simple as possible, yet sufficiently powerful, construct.

• The power of the most restricted variant. Another way to explore polymorphic
P systems is characterizing the power of models with the minimal number of
additional ingredients (non-cooperative rules, no rules with empty left-hand
side, no target indications). In [1] it is shown that even this model can easily
achieve superexponential growth; it is important to know how powerful poly-
morphism on its own is.

• Self-assembly. Finally, we make the observation that rules in polymorphic P
systems may be treated as results of interaction of couples of initially indepen-
dent membranes, which have gained additional capabilities by connecting to
each other. The whole polymorphic P system may be treated as a stage in the
process of interaction of membranes in a system of membranes. This brings
about, in particular, the question of self-assembly of membrane structures.

10 M. Gheorghe, Gh. Păun, eds.

References

1. A. Alhazov, S. Ivanov, Yu. Rogozhin: Polymorphic P Systems. In: M. Gheorghe, T.
Hinze, Gh. Păun, G. Rozenberg, A. Salomaa, eds., 11th International Conference on
Membrane Computing, CMC 2010. LNCS 6501, pp. 81 – 94. Springer, Berlin (2010).

4 Research Directions in the Theory of P Colonies
and dP Automata

Erzsébet Csuhaj-Varjú

Eötvös Loránd University
Budapest, Hungary
csuhaj@inf.elte.hu

P colonies are variants of very simple tissue-like P systems, modeling a com-
munity of very simple cells living together in a shared environment (for basic
information see [8]).

In the basic model, the cells (or agents) are represented by a collection of
objects and rules for processing these objects. The agents are restricted in their
capabilities, i.e., only a limited number of objects, say, k objects, are allowed to
be inside any cell during the function of the system. Number k is said to be the
capacity of the P colony. The rules of the cells are either of the form a → b,
specifying that an internal object a is transformed into an internal object b, or
of the form c ↔ d, specifying the fact that an internal object c is sent out of the
cell, to the environment, in exchange of the object d, which was present in the
environment. After applying these rules in parallel, a cell containing the objects
a, c will contain the objects b, d. With each cell, a set of programs composed of
such rules is associated. In the case of P colonies of capacity k, each program has
k rules; the rules of the program must be applied in parallel to the objects in the
cell.

The cells of a P colony execute a computation by synchronously applying their
programs to objects inside the cells and outside in the environment. At the be-
ginning of the computation, performed by a given P colony of capacity k, the
environment contains arbitrarily many copies of a distinguished symbol e, called
the environmental symbol (and no more symbols); furthermore, each cell contains
k copies of e. When a halting configuration is reached, that is, when no more rules
can be applied, the result of the computation is read as the number of certain
types of objects present in the environment.

P colonies have been extensively examined during the years. It was shown that
these simple constructs are computationally complete computing devices even with

Research Topics in Membrane Computing 11

very restricted size parameters and with other syntactical or functioning restric-
tions. Several extensions of the model have already been investigated as well: P
colonies with dynamically varying environment (eco-P colonies) [1] or PCol au-
tomata [2], constructs where the behavior of the cells is influenced by direct im-
pulses coming from the environment step-by-step. In the case of a PCol automaton
a tape with an input string is given with the P colony, i.e., the model is augmented
with a string put on an input tape to be processed by the P colony.

Except PCol automata, P colonies have been considered as generating devices,
but the construct can also be considered as an accepting device (called accepting
P colony or P colony acceptor), possibly working in an automaton-like fashion as
well.

To define such a model, suppose that we have a P colony Π of capacity k and
initialize the environment with a given finite multiset of symbols M where each
symbol is different from the environmental symbol e. Let also consider an initial
configuration, i.e., let us dedicate an initial state to any cell and let us distinguish
a set of accepting configurations. Then, we say that M is accepted by Π, if after
performing a finite computation (in some computation mode) the environment
consists of only symbols e.

It is easy to see that we may consider several variants of this model: for example,

• we can limit the number of symbols in the environment (not necessarily with
a finite constant, but with some function of the size of the P colony) and
study the computational power of these systems with limited workspace for
the computation,

• we can consider the multisets in the environment during the computation as
permutations of words (or map them to words in some other way) being on
the input tape of an automata and study the relation of these constructs and
classical automata;

• we can map the sequences of multisets of objects entering each cell during the
computation to words being on the input tape of a multitape or multihead
automata and describe the correspondence between these constructs and the
classical multitape or multihead automata variants.

Furthermore, by introducing double alphabets as in the case of dP automata
for describing two-way multihead finite automata ([3]), automata with two-way
motion of heads can also be interpreted in the framework of accepting P colonies.

In addition to demonstrate how classical automata can be represented as P
colony acceptors and reversely, there are problems which would be of particular
interest. These are computational complexity, communication complexity, and size
complexity questions. For example, since finite automata can be represented in a
natural manner in the frame of accepting P colonies, a comparative study between
descriptional complexity of finite automata and P colony acceptors would certainly
be useful.

The concept of accepting P colonies can be extended in some other manners as
well. For example, we may not fix the number of cells in the P colony in advance

12 M. Gheorghe, Gh. Păun, eds.

but it may be determined by the number of non-environmental symbols in the
environment at the beginning. We also may define spatial P colonies where spatial
parameters are added to the cells which define a neighborhood relation among the
components; any cell can import only such symbols from the environment which
were issued by its neighbors (is in its own environment).

Accepting P colonies can be related to cellular automata as well. One natural
idea is to define P colonies corresponding to one-way cellular automata, which
are linear arrays of identical copies of deterministic finite automata, called cells,
working synchronously at discrete time steps. Each cell is connected to its imme-
diate neighbors to the right. The cells are identified by positive integers. The state
transition depends on the current state of a cell itself and the current state of its
neighbor. An input word is accepted by a one-way cellular automata if at some
step in the course of the computation the leftmost cell enters an accepting state.

A particular variant of one-way cellular automaton is the one where only a fixed
number, say k, cells are given. This works similarly to the unrestricted case, but
the input is processed in a different manner, namely, the input is not given at the
beginning, but it is processed by the rightmost cell, symbol by symbol. Since the
neighborhood can be defined in P colonies with emitting special symbols (signals)
in the environment, and any cell in the P colony may have only a finite number of
configurations (states), the reader may easily observe that the two computational
models, the accepting P colony and the k-cell one-way cellular automaton are
strongly related.

Obviously, more general cellular automata models can also be described by P
colony acceptors. For example, the above extension of the concept of P colonies
where the number of cells is determined by the number of initial non-environmental
symbols can correspond to the unrestricted case. We can also model d-dimensional
cellular automata (d ≥ 1) by defining the neighborhood relation between cells of
P colonies in an appropriate manner. Cellular automata theory has been a highly
elaborated field of nature-motivated, parallel computing (see, for example, [5],
[6], [7]), thus by building bridges between P colony theory and cellular automata
theory, many interesting problems can also be studied.

In addition to compare accepting P colonies to variants of classical automata,
we may explore the differences and similarities between these constructs and (fi-
nite) dP automata as well. A detailed study in this direction would also help in
better understanding the nature of these two constructs.

P automata are variants of antiport P systems accepting strings in an
automaton-like fashion (for a summary on P automata, see Chapter 6, [8]). The
notion of a distributed P automaton (dP automaton in short) was introduced in
[9]. Such a system consists of a finite number of component P automata which have
their separate inputs and which also may communicate with each other by means
of special antiport-like rules. A string accepted by a dP automaton is obtained
in [9] as the concatenation of the strings accepted by the individual components
during a computation performed by the system.

Research Topics in Membrane Computing 13

A dP automaton is called finite if it has only a finite number of different
configurations.

The computational power of dP automata was studied in [9], [4], [10], and [11].
Among other things, it was shown that dP automata (with representing multisets
as all permutations of strings) are strictly more powerful than P automata, but
the language family accepted by them is strictly included in the family of context-
sensitive languages.

In [3] a connection between finite dP automata (distributed P automata) and
non-deterministic multi-head finite automata was explored; it was shown that the
language of a non-deterministic one-way multi-head finite automaton and the lan-
guage of a non-deterministic two-way multi-head finite automaton can be obtained
as so-called weak agreement language or strong agreement language of a one-way,
i.e., a usual finite dP automaton, and a two-way finite dP automaton.

The reader may easily observe that finite dP automata, P colony acceptors and
cellular automata are closely related concepts. Their comparative study would be
a promising and very useful area in P systems theory.

References

1. L. Cienciala, L. Ciencialová: Eco-P colonies. In Păun et al., eds, WMC 2009, LNCS
5957, Springer, 201-209.

2. L. Ciencala, L. Ciencialová, E. Csuhaj-Varj, Gy. Vaszil, PCol Automata: Recognizing
strings with P colonies. In: Proc. BWMC 2010, Sevilla, 2010, M.A. Martnez-del-Amor
et al., eds., Fénix Editora, Sevilla, 2010, 65-76.

3. E. Csuhaj-Varj, Gy. Vaszil: A Connection Between Finite dP Automata and Multi-
head Finite Automata. In Proc. Twelfth International Conference on Membrane
Computing, Fontainebleau, 23-26 August, 2011. M. Gheorghe, Gh. Păun, S. Verlan,
eds., University of Paris Est, Crteil Val de Marne, 2011, 109-126.

4. R. Freund, M. Kogler, G. Păun, M.J. Pérez-Jiménez: On the power of P and dP au-
tomata. Annals of Bucharest University. Mathematics-Informatics Series, 63, 2009,
5–22.

5. M. Kutrib, Nature-Based Problems in Cellular Automata, CiE 2011, LNCS 6735,
Springer, 2011, 171-180.

6. M. Kutrib, J. Lefevre, A. Malcher: The Size of One-Way Cellular Automata. Au-
tomata 2010: Discrete Mathematics and Theoretical Computer Science Proceedings,
DMTCS, 2010, 71-90.

7. M. Holzer, M. Kutrib: Cellular Automata and the Quest for Nontrivial Artificial
Self-Reproduction. Int. Conf. on Membrane Computing, CMC 2010, LNCS 6501,
Springer, 2010, 19-36.

8. G. Păun, G. Rozenberg, A. Salomaa, eds.: The Oxford Handbook of Membrane Com-
puting, Oxford University Press, 2010.

9. G. Păun, M.J. Pérez-Jiménez, Solving Problems in a Distributed Way in Membrane
Computing: dP Systems, International Journal of Computers, Communication &
Control, V(2), 2010, 238–250.

10. G. Păun, M.J. Pérez-Jiménez: P and dP automata: A survey. In: C.S. Calude,
G. Rozenberg, A. Salomaa, eds., Rainbow of Computer Science, LNCS, 6570, pages
102–115, Springer, Berlin, 2011.

14 M. Gheorghe, Gh. Păun, eds.

11. G. Păun, M.J. Pérez-Jiménez, An Infinite Hierarchy of Languages Defined by dP
Systems. Submitted, 2010.

5 Speeding up P Automata

György Vaszil

Department of Computer Science
Faculty of Informatics
University of Debrecen, Hungary
vaszil.gyorgy@inf.unideb.hu

First we state the problem, then recall the needed definitions and discuss the
necessary steps to a possible solution.

Problem 1 Are there languages (over some finite alphabet T) accepted by P au-
tomata with object alphabet V which are (k, l, m)-efficiently parallelizable for some
k,m > 1, l ≥ 1, with respect to some input mapping f : V ∗ → 2T , such that
f 6= fperm?

To see what this problem is about, we start with the definitions of the following:
P automaton, accepted multiset sequence, input mapping, accepted language.

A P automaton, introduced in [2], is a system Π = (V, µ, P1, . . . , Pn, c0,F)
where V is an object alphabet, µ is a membrane structure, Pi, 1 ≤ i ≤ n are
sets of antiport rules, c0 = (w1, . . . , wn) is the initial configuration with wi ∈ V ∗,
1 ≤ i ≤ n being the initial contents of the ith region, and F is a set of accepting
configurations of the form (v1, . . . , vn), vi ∈ V ∗, 1 ≤ i ≤ n, where F is given as
E1 × . . .× En, Ei ⊆ V ∗, such that Ei is either finite, or Ei = V ∗, 1 ≤ i ≤ n.

The configurations of the P automaton are changed by applying the rules in the
maximal parallel manner. This means that a (locally) maximal collection w ∈ V ∗

of objects is moved according to the rules, that is, there is no rule r ∈ ⋃n
i=1 Pi,

such that r could be applied to objects which are not in w.
For two configurations c, c′ ∈ (V ∗)n, we say that c′ ∈ δΠ(u, c) if Π enters

configuration c′ from configuration c by applying its rules while reading the input
u ∈ V ∗, that is, if u is the multiset that enters the system through the skin
membrane from the environment while the configuration c changes to c′.

The sequence of configurations obtained this way is called a computation. If it
ends in a final configuration from F , then the sequence of multisets entering the
system from the environment in each step of the computation is called an accepted
multiset sequence. Thus, v1, . . . , vs, vi ∈ V ∗, 1 ≤ i ≤ s, is an accepted multiset
sequence of Π if there are c0, c1, . . . , cs ∈ (V ∗)n, such that ci ∈ δΠ(vi, ci−1), 1 ≤
i ≤ s, and cs ∈ F .

Research Topics in Membrane Computing 15

Now we establish the correspondence between the accepted multiset sequences
and the accepted languages of P automata.

Let Π be a P automaton over the object alphabet V , and let f be a mapping
f : V ∗ → 2T∗ for some finite alphabet T . We call f the input mapping of Π.
Let us assume that f is nonerasing, that is, f(u) = {ε} for some u ∈ V ∗, if and
only if u = ∅. The language over T accepted by Π with respect to f is defined as
L(Π, f) = {f(v1) . . . f(vs) | v1, . . . , vs is an accepted multiset sequence of Π}.

It is obvious, that the choice of f in the definition above has a great influence on
the accepting power of the P automaton, so we take a closer look at the mappings
we can use. We define the mapping fperm, the class of mappings TRANS, and
discuss a little the power of the corresponding systems.

Let f : V ∗ → 2T∗ , for some alphabets V and T , and let
(1) f = fperm if and only if V = T and for all v ∈ V ∗, we have f(v) =

{a1a2 . . . as | |v| = s, and a1a2 . . . as is a permutation of the elements of v}; or
(2) f ∈ TRANS if and only if for any v ∈ V ∗, we have f(v) = {w} for

some w ∈ T ∗ which is obtained by applying a finite transducer to the string
representation of the multiset v (as w is unique, the transducer must be constructed
in such a way that all string representations of the multiset v as input result in the
same w ∈ T ∗ as output, and moreover, as f should be nonerasing, the transducer
produces a result with w 6= ε for any nonempty input).

To give a feeling about the influence of the type of the input mapping, we
recall from [6] that there are simple linear languages which cannot be accepted by
P automata with fperm, for example L = {(ab)n(ac)n | n ≥ 1} is such a language.
On the other hand, the class of languages accepted with fperm also contains non-
context-free context-sensitive languages ({anbncn | n ≥ 1} for example), which
means that it is incomparable with the class of linear and of context-free languages.
(Although it contains all regular languages, see [3].)

In contrast to these results, systems with input mappings from the class
TRANS characterize exactly the class of context-sensitive languages (see [1] for
details).

The notion of distributed P automaton (dP automaton) was introduced in [5]
to incorporate a “different kind of parallelism” into P systems: the components
of a dP automaton process different parts of the input in parallel. A language is
efficiently parallelizable if it can be accepted by a dP automaton in “less” (see
below) computational steps then by any non-distributed P automaton.

A distributed P automaton is a construct dΠ = (V, Π1, . . . , Πk, R) where V
is a finite set of objects, Πi, 1 ≤ i ≤ k, are the components of the system with
Πi = (V, µi, Pi,1, . . . , Pi,mi , ci,0,Fi), 1 ≤ mi, being P automata as defined above
having the skin membranes labeled by (i, 1), and R is a finite set of inter-component
communication rules of the form ((i, 1), u/v, (j, 1)) with u, v ∈ V ∗, 1 ≤ i, j ≤
k, i 6= j. The initial configuration of the dP automaton is c0 = (c1,0, . . . , ck,0).

The language L ⊆ T ∗ accepted by a dP automaton consists of words of the form
w1w2 . . . wk where wi ∈ T ∗ are strings accepted by the component Πi, 1 ≤ i ≤ k,
during a successful computation, that is, one that starts in ci,0 and ends in one

16 M. Gheorghe, Gh. Păun, eds.

of the final configurations of Fi from F = (F1, . . . ,Fk). Let f = (f1, . . . , fk) be
a mapping f : (V ∗)k → (2T∗)k with fi : V ∗ → 2T∗ , 1 ≤ i ≤ k, being non-
erasing, and let L(dΠ, f) = {w1 . . . wk ∈ T ∗ | wi ∈ fi(vi,1) . . . fi(vi,si), 1 ≤ i ≤
k, where vi,1, . . . , vi,si

is an accepted multiset sequence of the component Πi}.
A language L is (k, l,m)-efficiently parallelizable with respect to a class of map-

pings F , for some k, m > 1, l ≥ 1, if L can be accepted with a dP automaton dΠ
with k components, such that L = L(dΠ, f) for some f ∈ F with Com(dΠ) ≤ l,
and moreover, for all P automata Π and f ′ ∈ F such that L = L(Π, f ′),

limx∈L,|x|→∞
timeΠ(x)
timedΠ(x)

≥ m

where timeX(x) denotes the number of computational steps that a device X needs
to accept the string x, and where Com(dΠ) denotes the maximal amount of com-
munication (measured in some reasonable way, see [5]) between the components
of the dP automaton dΠ during an accepting computation.

By looking at the quotient in the definition above, we might see that a language
cannot satisfy the requirement of efficient parallelizability if the dividend (that is,
the time that a non-distributed P automaton needs to accept the language) can
be made arbitrarily small. This leads us to the problem of the possible speedup of
P automata computations.

Considering the computations of Turing machines, a linear speedup is always
possible by appropriately encoding the contents of the worktapes, but as the input
usually has to remain in its original form on the input tape, the resulting time
complexity cannot be less than the length of the input word (see for example [4]).
Such a lower bound does not necessarily exist in the case of P automata, while
the input itself is also “encoded” by the input mapping, so it might be possible to
“read” the same word in different numbers of steps.

To demonstrate this possibility, let us recall from [8] that for any regu-
lar language L and constant c > 0, there exists a P automaton Π such that
L = L(Π, f) for some f ∈ TRANS, and for any w ∈ L with |w| = n it holds that
timeΠ(w) ≤ c · n. This, as we outlined above, implies that there are no efficiently
parallelizable languages with respect to the class of input mappings TRANS.

The situation is different, however, if instead of an input mapping from the
class TRANS, we consider fperm. There are regular languages (called “frozen” in
[7]) where the order of no two adjacent symbols can be exchanged, thus, each
of them has to be read in different computational steps, which means that the
computation of the P automaton cannot be shorter then length of the input.

After this, it is not surprising that there are efficiently parallelizable regular
languages with respect to fperm, as shown in [5].

So far all cases of efficient parallelizability were demonstrated with respect to
the input mapping fperm, thus, to state our problem at the end of these consid-
erations one more time, it would be interesting to discover a language which is
efficiently parallelizable with respect to an input mapping of some different kind.

Research Topics in Membrane Computing 17

On the other hand, it would also be interesting to prove the impossibility
of efficient parallelization of not just the regular, but also of some more general
language classes with respect to a class of input mappings different from fperm

(with respect to TRANS for example). To this aim, it would be sufficient to find a
general method which (similarly to the case of Turing machines) would enable us
to show that with a certain type of input mappings (TRANS for example, as it is
the case for regular languages) a linear speedup of P automata is always possible.

References

1. E. Csuhaj-Varjú, M. Oswald, Gy. Vaszil: P automata. In: Gh. Păun, G. Rozenberg,
A. Salomaa, eds., The Oxford Handbook of Membrane Computing, chapter 6, pages
144–167. Oxford University Press, 2010.

2. E. Csuhaj-Varjú, Gy. Vaszil: P automata or purely communicating accepting P sys-
tems. In: Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds., Membrane Comput-
ing, International Workshop, WMC-CdeA, Curtea de Arges, Romania, August 19-23,
2002, Revised Papers, LNCS 2597, pages 219–233. Springer, Berlin, 2003.

3. R. Freund, M. Kogler, Gh. Păun, M.J. Pérez-Jiménez: On the power of P and dP au-
tomata. Annals of Bucharest University Mathematical-Informatics Series, LVIII:5–22,
2009.

4. J.E. Hopcroft, J.D. Ullman: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading, MA, 1979.

5. Gh. Păun, M.J. Pérez-Jiménez: Solving problems in a distributed way in membrane
computing: dP systems. International Journal of Computing, Communication and
Control, V(2):238–250, 2010.

6. Gh. Păun, M.J. Pérez-Jiménez: P and dP automata: A survey. In: C. Calude,
G. Rozenberg, A. Salomaa, eds., Rainbow of Computer Science, LNCS 6570, pages
102–115. Springer, Berlin, 2011.

7. Gh. Păun, M.J. Pérez-Jiménez: An infinite hierarchy of languages defined by dP sys-
tems. Theoretical Computer Science, to appear.

8. Gy. Vaszil: On the parallelizability of languages accepted by P automata. In J. Kele-
men and A. Kelemenová, editors, Computation, Cooperation, and Life. Essays Ded-
icated to Gheorghe Păun on the Occasion of His 60th Birthday, LNCS 6610, pages
170–178. Springer, Berlin Heidelberg, 2011.

18 M. Gheorghe, Gh. Păun, eds.

6 Milano Open Problems

Alberto Leporati, Giancarlo Mauri,
Antonio E. Porreca, Claudio Zandron

Dipartimento din Informatica, Sistemistica e Comunicazione
Università di Milano-Bicocca, Italy
{leporati, mauri, porreca, zandron}@disco.unimib.it

Comment. We have chosen the previous title for this section, on the one hand,
because the problems we have received from Milano falls in two categories, (state)
complexity and power of energy-based P systems, and because Milano is one of the
strongest research groups in MC (in particular, very active in complexity matters)
– this is just an invitation to stay in contact with them...

Problem 1 (P systems with elementary active membranes). P systems
with active membranes [12] are known to be able to solve computationally hard
problems in polynomial time by creating exponentially many membranes via divi-
sion. The most recent result in this area [10] shows that polynomial-time Turing
machines having access to an oracle for a PP [2] problem (whose computing power
includes the polynomial hierarchy [14]) can be simulated by uniform families [8]
of P systems with active membranes where the only membranes subject to divi-
sion are elementary (i.e., not containing further membranes), and no dissolution
rules are needed. This result is stated, in symbols, as PPP ⊆ PMCAM(−d,−n). On
the other hand, this kind of P system cannot solve in polynomial time any prob-
lem outside PSPACE [13], in symbols PMCAM(−d,−n) ⊆ PSPACE. Neither
inclusion is known to be proper.

Is PMCAM(−d,−n) = PSPACE or, more generally, is there a precise charac-
terization of PMCAM(−d,−n) in terms of complexity classes for Turing machines?

Problem 2 (Space complexity of P systems with active membranes). A
measure of space complexity for P systems has been recently introduced [9] in
order to supplement the already rich literature about computational complexity
issues in membrane computing [7]. We say that the space required by a P system is
the maximal size it can reach during any computation, measured as the sum of the
number of membranes and the number of objects. A uniform family Π of recognizer
P systems [8] is said to solve a problem in space f : N→ N if no P systems in Π
associated to an input string of length n requires more than f(n) space. Under this
notion of space complexity, the class of problems solvable in polynomial space by
P systems with active membranes [12], denoted by PMCSPACEAM, coincides
with PSPACE [11].

The techniques used to prove this result do not seem to apply when the space
bound is strictly less, i.e., exponential or even super-exponential. Do these kinds
of P systems with active membranes also exhibit the same computing power as
Turing machines working under the same space constraints?

Research Topics in Membrane Computing 19

It might also be interesting to analyze the behavior of families of P systems
with active membranes working in logarithmic space. In this case, there are two
complications. First of all, we must slightly change the notion of space complexity,
in order to allow for a “read-only” input multiset that is not counted when the
space required by the P system is measured (similarly to the input tape of a
logspace Turing machine). Furthermore, the notion of uniformity used to define
the families of P systems will probably need to be weakened, since polynomial-
time Turing machines constructing the family might be able to solve the problems
altogether by themselves. More general forms of uniformity have already been
investigated [6], and that work is going to be useful when attacking this problem.

Problem 3 (The computational power of Energy-based P systems).
Energy-based P systems have been defined in [4] as a model of membrane sys-
tems that take into account the energy manipulated during computations. Each
object has an associated amount of energy, and instances of a special symbol e
are used to denote free energy units occurring inside the regions of the system.
The rules transform one object into another by acquiring or releasing an appropri-
ate number of free energy units in the region in which the rule is applied. These
transformations satisfy the principle of energy conservation.

In [3], the following results concerning their computational power have been
obtained, assuming that rules are applied in the sequential way. If the number of
free energy units is bounded in each region then only a finite number of distinct
configurations can be obtained, and thus these systems can be simulated by finite
state automata. On the other hand, assuming the presence of an unbounded num-
ber of free energy units does not suffice to obtain universality, since in this case
energy-based P systems can be simulated by vector addition systems. However this
is just an upper bound, and so the exact computational power of energy-based P
systems has not yet been determined; it would be extremely interesting if they
were strictly less powerful than vector addition systems. On the other hand, in
[3] it has also been proved that by assigning simple local priorities to the rules
we obtain universality. This behavior is similar in some respects (but different for
others) to what happens with UREM P systems [1], where energy is associated to
membranes rather than with the objects.

The problem of characterizing the computational power of energy-based P
systems can be posed also when the rules are applied in the maximally parallel
way. In such a case, can universality be reached without using priorities? Up to
now, the only known result concerning maximally parallel energy-based P systems
is the ability to simulate n-input/n-output circuits composed of Fredkin gates [5],
that compute conservative and reversible functions.

References

1. A. Alhazov, R. Freund, A. Leporati, M. Oswald, C. Zandron: (Tissue) P systems with
unit rules and energy assigned to membranes. Fundamenta Informaticae, 74:391–408,
2006.

20 M. Gheorghe, Gh. Păun, eds.

2. J.T. Gill: Computational complexity of probabilistic Turing machines. In Proceedings
of the Sixth Annual ACM Symposium on Theory of Computing, STOC ’74, pages 91–
95, 1974.

3. A. Leporati, D. Besozzi, P. Cazzaniga, D. Pescini, C. Ferretti: Computing with
energy and chemical reactions. Natural Computing, 9:493–512, 2010.

4. A. Leporati, C. Zandron, G. Mauri: Simulating the Fredkin gate with energy-based
P systems. Journal of Universal Computer Science, 10(5):600–619, 2004.

5. Alberto Leporati, Claudio Zandron, Giancarlo Mauri. Reversible P systems to sim-
ulate fredkin circuits. Fundamenta Informaticae, 74:529–548, 2006.

6. N. Murphy, D. Woods: The computational power of membrane systems under tight
uniformity conditions. Natural Computing, 10(1):613–632, 2011.

7. M.J. Pérez-Jiménez: A computational complexity theory in membrane computing.
In Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez, G. Rozenberg, A. Salomaa, eds.,
Membrane Computing, 10th International Workshop, WMC 2009, LNCS 5957, 125–
148. Springer, 2010.

8. M.J. Pérez-Jiménez, Á. Romero-Jiménez, F. Sancho-Caparrini: Complexity classes
in models of cellular computing with membranes. Natural Computing, 2(3):265–284,
2003.

9. A.E. Porreca, A. Leporati, G. Mauri, C. Zandron: Introducing a space complexity
measure for P systems. International Journal of Computers, Communications &
Control, 4(3):301–310, 2009.

10. A.E. Porreca, A. Leporati, G. Mauri, C. Zandron: P systems simulating oracle com-
putations. In M. Gheorghe, Gh. Păun, S. Verlan, eds., Pre-Proceedings of the Twelfth
International Conference on Membrane Computing 2011 (CMC12), pages 433–445,
2011.

11. A.E. Porreca, A. Leporati, G. Mauri, C. Zandron: P systems with active membranes
working in polynomial space. International Journal of Foundations of Computer
Science, 22(1):65–73, 2011.

12. Gh. Păun: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics, 6(1):75–90, 2001.

13. P. Sośık, A. Rodŕıguez-Patón: Membrane computing and complexity theory: A char-
acterization of PSPACE. Journal of Computer and System Sciences, 73(1):137–152,
2007.

14. S. Toda: PP is as hard as the polynomial-time hierarchy. SIAM Journal on Com-
puting, 20(5):865–877, 1991.

Research Topics in Membrane Computing 21

7 Complexity Issues

Nial Murphy

Department of Computer Science
National University of Ireland Maynooth, Ireland
nmurphy@cs.nuim.ie

7.1 Required Definitions

• Active membrane systems, including non-elementary division triggered by ob-
jects (sometimes called weak non-elementary division).

• Recognizer P systems.
• Uniform families.

7.2 Problem: Hierarchies

Characterizations, using P systems, of each level of the NC and Polynomial hier-
archies [6] may shed new light on the inherent parallelism and non-determinism of
P systems.

• The NC hierarchy represent a spectrum of problems ranging from constant
time, to parallel logarithmic time, up to and (it is conjectured) not including
the seemingly inherently sequential P) [2]. To learn more about the factors that
limit and permit parallelism in P systems, a characterization of the NC ?= P
problem (the so called “frontier of parallelism”), might be a good place to start.

• The Polynomial Hierarchy starts at P, a deterministic class. The complete
problems of each successive level of the hierarchy require increasing interleav-
ing of nondeterminism and co-nondeterminism. The whole hierarchy is finally
contained in PSPACE. Almost all complexity results about membrane sys-
tems to date place them in the 0th level (P), the 1st level (NP∪ coNP) or in
PSPACE. Characterizing each level with a single model might give us clues
to the role and use of of non-determinism in P systems.

Conjecture 1. Uniform families of active membrane systems using weak non-
elementary division, without charges, and with a membrane structure of depth
d + 1 can solve exactly those problems complete for the dth level of the Polyno-
mial Hierarchy.

7.3 P-conjecture

The original statement of the P-Conjecture [7] asked if all active membrane systems
without charges can be simulated in polynomial time. The original conjecture was
disproved [1] however, the case considering only elementary division has proved
much more of a challenge.

22 M. Gheorghe, Gh. Păun, eds.

Conjecture 2 (The P-conjecture). The class of all decision problems solvable in
polynomial time by active membranes without charges using evolution, commu-
nication, dissolution and division rules for elementary membranes is equal to the
class P.

To solve restricted versions of the P-conjecture have necessitated the devel-
opment of some of the most powerful and useful techniques in the complexity of
membrane computing, such as dependency graphs [3, 5, 4, 8].

References

1. A. Alhazov, M.J. Pérez-Jiménez: Uniform Solution to QSAT Using Polarizationless
Active Membranes. In Machines, Computations and Universality (MCU), J. Durand-
Lose and M. Margenstern, eds., LNCS 4664, Springer, 2007, 122–133.

2. R. Greenlaw, H. James Hoover, W.L. Ruzzo: Limits to parallel computation:P-
completeness Theory. Oxford University Press, 1995.

3. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-
Campero: Computational Efficiency of Dissolution Rules in Membrane Systems. In-
ternational Journal of Computer Mathematics, 83 (2006), 593–611.

4. N. Murphy, D. Woods: The Computational Power of Membrane Systems Under Tight
Uniformity Conditions. Natural Computing, 10 (2011), 613–??.

5. N. Murphy, D. Woods: Active Membrane Systems Without Charges and Using Only
Symmetric Elementary Division Characterise P.In Membrane Computing, 8th Inter-
national Workshop, WMC 2007, LNCS 4869, Springer, 2007, 367–384.

6. C.H. Papadimitriou: Computational Complexity. Addison Wesley, 1993.
7. Gh. Păun: Further Twenty Six Open Problems in Membrane Computing. In Pro-

ceedings of the Third Brainstorming Week on Membrane Computing, Sevilla (Spain),
2005, 249–262.

8. D. Woods, N. Murphy, M.J. Pérez-Jiménez, A. Riscos-Núñez: Membrane Dissolution
and Division in P. In Unconventional Computation, 5715 (2009), 262–276.

Research Topics in Membrane Computing 23

8 Time-Free Solutions for Hard Computational Problems

Matteo Cavaliere

National Center for Biotechnology
CNB - CSIC, Madrid, Spain
mcavaliere@cnb.csic.es

8.1 Motivations

Programming living things cannot assume neither general restrictions on execution
times nor the presence of global clocks synchronizing the execution of different
parallel processes. Moreover the time of execution of certain biological processes
could vary because of external uncontrollable conditions.

Therefore, in the context of membrane systems, it seems crucial to investigate
the power of cellular division when such timing assumptions are not used. Can
we provide “time-free” solutions to complex decision problems (i.e., where the
correctness of the solution does not depend on the precise timing of the involved
processes)?

Here we suggest a possible application of the notion of time-freenes ([3]) to
semi-uniform solutions of computational problems ([4]). The proposed approach
could be extended to more general solutions (e.g., uniform, etc.).

8.2 Decision Problems

A decision problem X is a pair (IX , ΘX) where IX is a countable language over a
finite alphabet (the elements are called instances), and ΘX is a predicate (a total
boolean function) over IX . It is well-known that there exists a natural correspon-
dence between languages and decision problems (e.g., [4]).

8.3 Timed Recognizer P Systems

From [3] we recall the notion of timed P system.
A timed P system Π(e) can be constructed by adding to a (standard) P system

Π a time-mapping e : R −→ N, where R is the set of rules of Π. The time-mapping
specifies the execution times for the rules.

A timed P system Π(e) works in the following way. We suppose to have an
external clock that marks time-units of equal length (called steps), starting from
step 0, when the system is present in its initial configuration.

At each step, all the rules that can be started, in each region, and for each
membrane have to be be started (maximal parallel and non-deterministic way).
When a rule r is started at step j, then its execution terminates (the rule is com-
pleted) at step j + e(r), that means the rule lasts e(r) steps. The objects and the

24 M. Gheorghe, Gh. Păun, eds.

membranes produced by the rule are available - can be subject of other rules - only
starting from the step j+e(r)+1). When a rule r is started, then the occurrences of
symbol-objects and the membrane subject by this rule cannot be anymore subject
of other rules.

A computation halts when no rule can be started in any region and there are
no rules in execution (such configuration is called halting configuration). We say
that the computation halts in k steps, if the external clock marks step k when the
last rules of the computations are completed.

From [4] we recall recognizer P systems.
A recognizer P system is a P system such that: (i) the working alphabet contains

two distinguished elements yes and no; (ii) all computations halt; and (iii) if C is
a computation of the system, then either object yes or object no (but not both)
must have been released into the environment, and only when the last rules of the
computation have been completed.

We extend recognizer P systems to their timed variant.
A recognizer timed P system is a timed P system such that: (i) the working

alphabet contains two distinguished elements yes and no; (ii) all computations
halt; and (iii) if C is a computation of the system, then either object yes or object
no (but not both) must have been released into the environment, and only when
the last rules of the computation have been completed.

In recognizer timed P systems, we say that a computation is an accepting com-
putation (respectively, rejecting computation) if the object yes (respectively, no)
appears in the environment associated with the corresponding halting configura-
tion.

8.4 Time-Free Solutions to Decision Problems

Let X = (IX , ΘX) a decision problem. Let Π = Πu, u ∈ IX a (countable) family
of recognizer P systems.

We say that the family Π is sound (with respect to X) if for each instance of
the problem u ∈ IX such that there exists an accepting computation of Πu, we
have ΘX(u) = 1.

We say that the family Π is complete (with respect to X) if for each instance of
the problem u ∈ IX such that ΘX(u) = 1, every computation of Πu is an accepting
computation.

We say that the family Π is polynomially bounded if there exists a polynomial
function p(n) such that, for each u ∈ IX , all computations in Πu halts in, at most,
p(|u|) steps.

We can now formalize the intuition briefly discussed in the Introduction: a
solution to a problem is time-free if its soundness, its completeness and its poly-
nomial bound do not depend on the time of execution associated to the rules of
the constructed systems.

Research Topics in Membrane Computing 25

We say that the family Π is time-free sound (with respect to X) if, for any
time-mapping e, the family Πe = Πu(e), u ∈ IX , is sound with respect to X.

We say that the family Π is time-free complete (with respect to X) if, for any
time-mapping e, the family Πe = Πu(e), u ∈ IX , is complete with respect to X.

We say that the family Π is time-free polynomially bounded if, for any time-
mapping e, the family Πe = Πu(e), u ∈ IX , is polynomially bounded.

We can now adapt the definition of semi-uniform solutions, as given in [4], to
consider time-free semi-uniform solutions.

8.5 Time-Free Semi-Uniform Solutions

Let X = (IX , ΘX) a decision problem. We say that X is solvable in a time-free
polynomial time by a family of recognizer P systems Π = Πu, u ∈ IX and we
denote it by X ∈ tfPMC if the following are true:

• the family Π is polynomially uniform by a Turing machines; that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Πu from the instance u ∈ IX .

• the family Π is time-free polynomially bounded.
• the family Π is time-free sound and time-free complete (with respect to X).

We say that the family Π is a time-free semi-uniform solution to the decision
problem X.

The intuition of the above definition is the following one: to provide a time-free
solution one must construct the family of systems Π in polynomial time (sequential
time by deterministic Turing machines). However the constructed family must be
“fast” (polynomially bounded), sound and complete with respect the considered
problem X and these properties must not depend on the time of execution of the
rules (i.e., they must be fulfilled independently of the time-mapping considered).

8.6 Questions

Find a class of P systems for which is possible to construct time-free semi-uniform
solutions of hard computational problems. E.g., can the solution given in [1] be-
come a time-free solution ?

For which solution is possible to (algorithmically) check their time-freeness?
Clearly, if the solutions are obtained by using universal systems (e.g., active mem-
branes) this is generally not possible. Therefore, interesting sub-classes should be
found: powerful enough to solve complex problems, simple enough to allow check-
ing of time-freeness.

For which class of P systems is always possible to transform a non time-free
solution into an equivalent time-free one ?

26 M. Gheorghe, Gh. Păun, eds.

References

1. Gh. Păun: P Systems with Active Membranes: Attacking NP Complete Problems.
CDMTCS Technical Report 102-1999.

2. M. Cavaliere, V. Deufemia: Further Results on Time-Free P Systems. Int. Journal
of Foundations of Computer Science, 17,1, 2006, pp. 69 – 89.

3. M. Cavaliere, D. Sburlan: Time-Independent P Systems. Membrane Computing. Int.
Workshop WMC 2004, Milan, Italy, 2004 (G. Mauri, Gh. Păun, M.J. Pérez-Jiménez,
G. Rozenberg, A. Salomaa, Eds.), LNCS 3365, Springer, 2005, pp. 239 – 258.

4. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-
Campero: Computational Efficiency of Dissolution Rules in Membrane Systems. Int.
J. Computer Mathematics, 83 (2006), 593–611.

9 Numerical P Systems

Cristian Vasile1, Ana Brânduşa Pavel1,
Ioan Dumitrache1, Gheorghe Păun2

1Department of Automatic Control and Systems Engineering
Politehnica University of Bucharest, Romania
{cvasile, apavel, idumitrache}@ics.pub.ro
2Institute of Mathematics of the Romanian Academy
Bucharest, Romania, and

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, Spain
gpaun@us.es

Numerical P systems are a class of computing models inspired both from the cell
structure and economics: numerical variables evolve in the compartments of a cell-
like structure by means of so-called production–repartition programs. The variables
have a given initial value and the production function is usually a polynomial,
whose value for the current values of variables is distributed among variables in
the neighboring compartments according to the “repartition protocol”. In this way,
the values of variables evolve; all positive values taken by a specified variable are
said to be computed by the P system.

These computing devices were introduced in [9], where their computational
completeness was proven. The results in [9], as well as further connections between
membrane computing and economics, are recalled in Chapter 23.6 of [10].

Research Topics in Membrane Computing 27

In [9] and [10] one uses the numerical P systems only in the generating mode.
However, numerical P systems were recently used in a series of papers (see refer-
ences in [3]) for implementing controllers for mobile robots, and in this framework
the P systems work in the computing mode: an input is introduced in the form
of the values of some variables and an output is produced, as the value of other
variables.

Furthermore, in the robot control context, the so-called enzymatic numerical P
systems were introduced and used, [6], [7], [8]. Such systems correspond to catalytic
P systems in the “general” membrane computing: a reaction takes place only in
the presence of a catalyst. Here, the catalyst (enzyme) is a variable attached to
an evolution program; the program is used only if the value of the enzyme is
strictly greater than the smallest value of any variable involved in the production
polynomial.

Using enzymes introduces a checking possibility in our systems (we compare
the value of the enzyme with the values of variables from the associated pro-
gram), and this suggests the possibility of choosing the positive values of the
output variable “inside the system”. Indeed, the following result holds true (for
the non-deterministic case; enz indicates the use of enzymes). Tissue-like numeri-
cal P systems are also considered in [12], with parallel use of programs. If in each
membrane, at each step, we use a maximal set of programs (programs are selected
non-deterministically, and a set of programs is applied only if it is maximal, no
further program can be added to it in such a way that the new set is still appli-
cable. Two possibilities appear: (i) a variable can appear only in one production
function, and this is the only restriction in choosing (non-deterministically) the
programs to apply in a step, and (ii) if two or more programs which are enabled
at a computation step, i.e., they satisfy the condition imposed by the associated
enzymes, share variables in their production functions, then they will all use the
current values of those variables (we denote this with allP).

A large variety of classes of numerical P systems appears in this way: (1)
enzymatic or non-enzymatic, (2) deterministic or non-deterministic, (3) sequential,
all-parallel, one-parallel. Still, we can add: (4) generating, computing, accepting (a
number is introduced in the system, as the value of a variable, and it is accepted
if a certain condition is met, e.g., a specified variable gets the value 0), and (5)
selecting as results only the positive values of the output variable or accepting
all values, but making sure that the output variable assumes only positive values.
This is a subtle difference: in the first case, we just intersect the set of values of
a variable with N, the set of natural numbers, zero excluded, in the second case
we have a property of the system. The former case reminds the extended Chomsky
grammars and Lindenmayer systems, where a terminal alphabet is used in order
to squeeze the generated language from the language of sequential forms, but an
important difference is that here “the terminal” sets of numbers, N, is fixed, is
not at out choice, as in Chomsky grammars and L systems.

A plethora of classes of numerical P systems appear in this framework, waiting
for research efforts. A few cases were settled in [12], where two main new ideas are

28 M. Gheorghe, Gh. Păun, eds.

introduced: (i) working in the deterministic mode even in the generative case (and
this is possible, because we do not define successful computations by halting),
and (ii) using register machines, [4], as the starting characterization of Turing
computable sets of numbers (instead of their characterization as the sets of positive
solutions of Diophantine equations).

We do not recall here the definition of numerical P systems, with or without
enzyme control, but we refer the reader to the papers mentioned above.

We only mention that the family of sets of numbers N+(Π) computed by
numerical P systems with at most m membranes, production functions which
are polynomials of degree at most n, with integer coefficients, with at most r
variables in each polynomial, is denoted by N+Pm(polyn(r), seq), m ≥ 1, n ≥
0, r ≥ 0, where the fact that we work in the sequential mode (in each step, only
one program is applied), is indicated by seq. If one of the parameters m,n, r is not
bounded, then it is replaced by ∗. (Both in N+(Π) and in N+Pm(polyn(r), seq),
the superscript + indicates the fact that as the result of a computation we only
consider positive natural numbers, zero excluded. If any value of xj0,i0 is accepted,
then we remove the superscript +.) When tissue-like systems are used, we write
NtPm(polyn(r), α, β).

Here are a few results from [9] and [12].

Theorem 2. NRE = N+P8(poly5(5), seq) = N+P7(poly5(6), seq).

Theorem 3. NRE = NP7(poly5(5), enz, seq).

Theorem 4. NRE = NtP∗(poly1(11), enz, oneP).

Theorem 5. NRE = NP254(poly2(253), enz, allP, det).

Whether or not the parameters appearing in these results are optimal or not
is an open problem.

Only a few of the many cases mentioned above were so far investigated, the
other ones wait for research efforts.

In particular, we have seen that enzymes improve the universality results in
terms of the complexity of used polynomials, both in the cell-like case and the
tissue-like case, provided that the evolution programs are used in a parallel manner.
However, two different types of parallelism were used in the two cases; can the one-
parallel mode used for tissue-like P systems be used also in the cell-like case?

Similar extensions of “general” notions in membrane computing to numerical P
systems remain to examined, and this is a rich research topic. For instance, other
ways of using the programs can be considered: minimally parallel, with bounded
parallelism, asynchronously. Then, we can also consider rules for handling mem-
branes, such as membrane division and membrane creation. These operations are
the basic tools by which polynomial solutions to computationally hard problems,
typically, NP-complete problems, are obtained in the framework of P systems
with symbol objects. Is this possible also for numerical P systems? In the previous
investigations of numerical P systems, the computations were not halting, as usual

Research Topics in Membrane Computing 29

in membrane computing; does the halting condition makes any difference? (Note
that in the enzymatic case the halting is possible: no evolution program can be
applied if their associated enzymes forbid it.) What about numerical P systems
used in the accepting mode?

A current issue in membrane computing is to find classes of P systems which
are not universal. This extends also to numerical P systems.

Of course, an important research topic is to further explore the use of numerical
P systems in controlling robots.

And so on and so forth, a wealth of research ideas, which supports our belief
that numerical P systems deserve further research efforts.

References

1. O. Arsene, C. Buiu, N. Popescu: SNUPS – A simulator for numerical membrane
computing. Intern. J. of Innovative Computing, Information and Control, 7, 6 (2011),
3509–3522.

2. C. Buiu, O. Arsene, C. Cipu, M. Pătraşcu: A software tool for modeling and simula-
tion of numerical P systems. BioSystems, 103, 3 (2011), 442–447.

3. C. Buiu, C. Vasile, O. Arsene: Development of membrane controllers for mobile
robots. Information Science, accepted.

4. M. Minsky: Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
5. A.B. Pavel: Membrane controllers for cognitive robots. Master Thesis, Department

of Automatic Control and System Engineering, Politehnica University of Bucharest,
Febr. 2011.

6. A.B. Pavel, O. Arsene, C. Buiu: Enzymatic numerical P systems – a new class of
membrane computing systems. The IEEE Fifth Intern. Conf. on Bio-Inspired Com-
puting. Theory and applications. BIC-TA 2010, Liverpool, Sept. 2010, 1331–1336.

7. A.B. Pavel, C. Buiu: Using enzymatic numerical P systems for modeling mobile robot
controllers. Natural Computing, doi: 10.1007/s11047-011-9286-5, in press.

8. A.B. Pavel, C. Vasile, C. Buiu: Robot controllers implemented with enzymatic nu-
merical P systems. submitted.

9. Gh. Păun, R. Păun: Membrane computing and economics: Numerical P systems.
Fundamenta Informaticae, 73 (2006), 213–227.

10. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: The Oxford Handbook of Membrane
Computing. Oxford Univ. Press, 2010.

11. The P Systems Web Page: http://ppage.psystems.eu.
12. C. Vasile, A.B. Pavel, I. Dumitrache, Gh. Păun: On the power of enzymatic numerical

P systems. Submitted, 2011.

30 M. Gheorghe, Gh. Păun, eds.

10 P Systems Formal Verification and Testing

Florentin Ipate1, Marian Gheorghe1,2

1University of Piteşti, Department of Computer Science
Piteşti, Romania
florentin.ipate@ifsoft.ro

2University of Sheffield, Department of Computer Science
Sheffield, UK
m.gheorghe@dcs.shef.ac.uk

Formal verification of P systems through model checking. Formal ver-
ification of P systems using model-checking has attracted a significant amount of
research in recent years, using tools such as Maude [1], PRISM [2], NuSMV [5],
Spin [6] or ProB [4]. Most research has focussed on cell-like P systems with static
structure, but more recently, P systems with active membranes, in particular with
division rules, have also been investigated [7]. This is a significant advance from a
practical point of view since P systems with division rules are commonly used to
devise efficient solutions to computationally hard problems. A new line of research
is envisaged to start here by combining methods to identify various invariants using
Daikon, a tool which dynamically detects program invariants based on execution
traces, with the formal verification of such elements. Future work is expected to
focus on developing an integrated environment for specifying and formally verify-
ing P systems using P-lingua, Daikon and one or more model checking tools and
on extending the existing approaches to other classes of P systems (e.g. tissue P
systems).

Model-based testing of P systems. Testing is an essential part of software
development and all software applications, irrespective of their use and purpose,
are tested before being released. As in the last years there have been significant
developments in using the P systems paradigm to model, simulate and formally
verify various systems (biology, economics, linguistics, graphics, computer science,
etc.), methods for testing systems modeled as P systems must also exist. In the
last years, a number of approaches to testing P systems, based on a combination
of coverage criteria, state based techniques, model checking and mutation analysis
have been developed [3, 5]. Essentially, these techniques have been developed in the
context of cell-like P systems with a fixed structure. The challenge for the future
is to extend these to P systems with active membranes, as well as other types of
membrane systems; in particular, the development of a testing approach for tissue
P systems, for which the interaction with the environment is conceptually close to
the input/output behavior of interactive systems, is promising.

Research Topics in Membrane Computing 31

References

1. O. Andrei, G. Ciobanu, D. Lucanu: A Rewriting Logic Framework for Operational
Semantics of Membrane Systems. Theoretical Computer Science, 373, 2007, 163–181.

2. F. Bernardini, M. Gheorghe, F.J. Romero-Campero, N. Walkinshaw: A Hybrid Ap-
proach to Modelling Biological Systems. Int. Conf. on Membrane Computing, CMC
2007, LNCS 4860, Springer, 2007, 138–159.

3. M. Gheorghe, F. Ipate, C. Dragomir: Formal Verification and Testing based on P
Systems. Int. Workshop on Membrane Computing, WMC 2009, LNCS 5957, Springer,
2009, 54–65.

4. F. Ipate, A. Ţurcanu: Modelling, verification and testing of P systems using Rodin
and ProB. Ninth Brainstorming Week on Membrane Computing, 2011, 209–220

5. F. Ipate, M. Gheorghe, R. Lefticaru: Test generation from P systems using model
checking. Journal of Logic and Algebraic Programming, 79(6), 2010, 350–362

6. F. Ipate, R. Lefticaru, C. Tudose: Formal verification of P systems using Spin. Inter-
national Journal of Foundations of Computer Science, 22(1), 2011, 133–142

7. F. Ipate, R. Lefticaru, I. Pérez-Hurtado, M.J. Pérez-Jiménez, C. Tudose: Formal Verifi-
cation of P Systems with Active Membranes through Model Checking. Int. Conference
on Membrane Computing, CMC12, 2011, 241–252.

11 Iaşi Problems

Oana Agrigoroaiei, Bogdan Aman, Gabriel Ciobanu

Institute of Computer Science, Romanian Academy, Iaşi Branch, Romania
gabriel@info.uaic.ro,oanaag@iit.tuiasi.ro

11.1 Causality

Consider standard transition P systems with promoters and inhibitors and disso-
lution; they can be described, up to simulating one transition step with several
others, by transition P systems with just one membrane (and with promoters and
inhibitors).

In [3] we have defined causality at both specific and general level for transition
P systems with one membrane and without any other ingredients; specific causality
depends on a certain evolution step, while general causality takes into consider-
ation all possible evolution steps. Two questions arise immediately: whether this
construction is extendible to P systems involving promoters and inhibitors and
whether causality can be defined in a more static manner, without involving the
membrane system. One of the results of [3] (Theorem 15) indicates that the latter
problem is solvable by using the more dynamic notion of general causality.

A different problem related to causality concerns the relation between various
forms of evolution in transition P systems: maximal parallelism, local maximal

32 M. Gheorghe, Gh. Păun, eds.

parallelism and unrestricted parallelism. How do causal relations change when we
change the form of evolution for a given P system? We have work in progress con-
cerning the relationship between maximal parallelism and unrestricted parallelism
which we hope will also be useful in having a clearer image of what causality
means for membrane systems. Moreover, we ask how are such causal relations
connected with the object-based event structures we introduced in [2], where the
focus was not on rule application but on the objects being produced. As always, we
have to ask in what manner do results change if additional ingredients (especially
promoters and inhibitors) are introduced.

Finally, the idea of “computing backwards” [1], which was also mentioned in [8],
is strongly related to the notion of causality and it would be interesting to see how
it can be used to clarify or even to solve the problems proposed above.

11.2 Chemical Abstract Machine and P systems

The Chemical Abstract Machine (CHAM) [5] is suited to model asynchronous
concurrent computations such as algebraic process calculi. Intuitively, the state of
a system is like a chemical solution in which floating molecules can interact with
each other according to reaction rules; a magical mechanism stirs the solution,
allowing for possible contacts between molecules. In chemistry, this is the result of
Brownian motion. The solution transformation process is obviously truly parallel:
any number of reactions can be performed in parallel, provided that they involve
disjoint sets of molecules.

The chemical abstract machine presents molecules in a systematic way as terms
of algebras and refining the classification of rules. Some molecules do not exhibit
interaction capabilities; those which are ready to interact are called ions. A so-
lution can be heated to break complex molecules into smaller ones up to ions.
Conversely, a solution can be chilled to rebuild heavy molecules from components.
Furthermore, to deal with abstraction and hierarchical programming, a molecule
is allowed to contain a sub-solution enclosed in a membrane, which can be some-
what porous to allow communication between the encapsulated solution and its
environment. The chemical abstract machines all obey a simple set of structural
laws. Each particular machine is given by adding a set of simple rules that specify
how to produce new molecules from old ones. Unlike the inference rules classically
used in structural operational semantics, the specific rules have no premisses and
are purely local.

Since P systems and CHAM start from the same premises, but use different no-
tations and operational semantics and have different goals, it would be interesting
to study the connections between these two fields.

11.3 Type Systems

Type theory is fundamental both in logic and computer science. Theory of types
was introduced by B. Russell [9] in order to solve some contradictions of set theory.

Research Topics in Membrane Computing 33

In computer science, type theory refers to the design, analysis and study of type
systems. Generally, a type system is used to prevent the occurrences of errors dur-
ing the evolution of a system. A type inference procedure determines the minimal
requirements to accept a system or a component as well-typed.

Membrane systems consider cells as mechanisms working in a maximal parallel
and non-deterministic manner. However, the living cells do not work in such a way:
a chemical reaction takes place only if certain quantitative constraints are fulfilled.
In order to cope with such constraints, P systems should be enriched by adding a
quantitative type discipline, and making use of type inference and principal typing
[10]. We associate to each reduction rule a minimal set of constraints that must
be satisfied in order to assure that by the application of this rule to a well-formed
P system, we get a well-formed P system as well. A first step in this direction was
done in [4] where a type system for P system with symport/antiport rules is given.

The type systems can be used in defining more general and simpler rules for P
systems. For example, if N1 and N2 are some basic types, by considering a set of
typed objects V = {X1 : N1, X2 : N1, X3 : N1, A : N2}, the evolution rules of
the form Xi → Xj , Xj → A, 1 ≤ i ≤ 3, 1 ≤ j ≤ 3, can be replaced by rules of a
more general form:

1. N1 → N1 (any object of type N1 can evolve in any object of type N1);
2. N1 → N2 (any object of type N1 can evolve in any object of type N2).

11.4 Behavior Equivalence

Behavior equivalence is an important concept in biology needed for analyzing and
comparing the organs behavior. For example, an artificial organ is the functional
equivalent of the natural organ, meaning that both behave in a similar manner up
to a given time; e.g. the artificial kidney has the same functional characteristics as
an “in vivo” kidney. Recently, it is shown in [7] that the vas deferens’ of the human,
canine, and bull are equivalent in many ways, including histological similarities.
In [6] are presented different methods for comparing protein structures in order to
discover common patterns.

In membrane computing, two P systems are considered to be equivalent when-
ever they have the same input/output behavior. Such an equivalence does not take
care of the evolution of the two systems. What does mean that two P systems have
equivalent (timed) behavior? Defining several equivalences, we offer flexibility in
selecting the right one when verifying biological systems and comparing them.
When a P system can be replaced in a context with another one such that the
observed behavior is the same?

References

1. O. Agrigoroaiei, G. Ciobanu: Reversing Computation in Membrane Systems. Journal
of Logic and Algebraic Programing, vol. 79(3-5), 278-288, 2010.

34 M. Gheorghe, Gh. Păun, eds.

2. O. Agrigoroaiei, G. Ciobanu: Rule-based and Object-based Event Structures for
Membrane Systems. Journal of Logic and Algebraic Programing, vol. 79(6), 295–303,
2010.

3. O. Agrigoroaiei, G. Ciobanu: Quantitative Causality in Membrane Systems. Pro-
ceedings of the Twelfth International Conference on Membrane Computing, 53-63,
2011.

4. B. Aman, G. Ciobanu: Typed Membrane Systems. Lecture Notes in Computer
Science, vol. 5957, 169–181, 2010.

5. G. Berry, G. Boudol: The Chemical Abstract Machine. Theoretical Computer Science,
vol. 96, 217–248, 1992.

6. I. Eidhammer, I. Jonassen, W. Taylor: Structure Comparison and Structure Patterns,
Journal of Computational Biology, vol.7, 685–716, 2000.

7. D.E. Leocadio, A.R. Kunselman, T. Cooper, J.H. Barrantes, J.C. Trussell: Anatom-
ical and Histological Equivalence of the Human, Canine, and Bull Vas Deferens, The
Canadian Journal of Urology, vol.18, 5699–5704, 2011.

8. G. Păun: Some Open Problems Collected During 7th BWMC. Proceedings of the
Seventh Brainstorming Week on Membrane Computing, vol. 2, 197-206, 2009.

9. B. Russell: The Principles of Mathematics, vol.I, Cambridge University Press, 1903.
10. J. Wells: The Essence of Principal Typings. LNCS 2380, Springer, 913–925, 2002.

12 Membrane Algorithms

Gexiang Zhang

???
???
email address???

The possible interplay between membrane computing and evolutionary com-
putation may produce three kinds of research topics:

1. Membrane-inspired evolutionary algorithms (MIEAs). MIEA concentrates on
generating new evolutionary algorithms for solving optimization problems by
using the hierarchical or network structures of membranes and rules of P sys-
tems, and the concepts and principles of meta-heuristic search methodologies
[1, 2]. MIEAs have been studied in conjunction with cell-like membrane sys-
tems with fixed membrane structure. Further research topics might include
cell-like membrane systems with active membranes, tissue-like membrane sys-
tems and population membrane systems.

2. Automated designed of membrane computing models (ADMCMs). The auto-
mated synthesis of some types of membrane computing models or of a high
level specification of them is envisaged to be obtained by applying various evo-
lutionary algorithms. ADMCMs aim to circumvent the programmability issue
of membrane based models for complex systems [3].

Research Topics in Membrane Computing 35

3. Membrane evolutionary algorithms (MEAs). MEAs will focus on implementing
evolutionary algorithms within a membrane system environment in order to
take advantage of the parallelism and distribution of membrane computing,
given that more recent investigations in membrane computing are studying
the implementation of membrane systems on parallel or multi-core hardware
platforms. An important challenge for any of the above research developments
will be to apply them to complex real life systems.

References

1. G. Zhang, C. Liu, M. Gheorghe, F. Ipate: Solving satisfiability problems with mem-
brane algorithms. Proc. Fourth International Conference on Bio-lnspired Computing:
Theories and Applications, 2009, 29–36.

2. G. Zhang, C. Liu, H. Rong: Analyzing radar emitter signals with membrane algo-
rithms. Mathematical and Computer Modelling, 2010,52(11-12), 1997–2010.

3. X. Huang, G. Zhang, F. Ipate: Evolutionary design of a simple membrane system.
Proceedings of CMC, 2011.

13 Open Problems from Verona

Vincenzo Manca
University of Verona, Department of Computer Science
Verona, Italy
vincenzo.manca@univr.it

13.1 A (precise) dynamical problem

A membrane system is a form of compartmentalized rewriting structure based on
two main ingredients: multisets of objects and membranes, where objects and rules,
which transform and move object multisets, are placed on. Metabolic P systems,
MP systems. were introduced for modeling real biochemical systems in terms of
multiset rewriting. In the last years they have been widely investigated by Verona
group MNC (Models of Natural Computing). A brief introduction and references
can be found in the Scholarpedia page “Metabolic P Systems”.

One of the most recent result about MP systems was the discovery of a method-
ology for solving dynamical inverse problems in a systematic way by means of MP
systems [2, 3, 4].

A time series XT = (X[i] | i ≤ T ∈ N) is a sequence of real values intended as
“equally spaced” in time (N is the set of natural numbers).

36 M. Gheorghe, Gh. Păun, eds.

A MP grammar G is a generator of time series, determined by the following
structure (n,m ∈ N):

G = (M, R, I, Φ),

where:
1. M = {X1, X2, . . . , Xn} is a finite set of elements called metabolites. A metabolic

state is given by a list of n values, each of which is associated to a metabolite
(parameters can possibly be added to determine a metabolic state).

2. R = {αj → βj | j = 1, . . . ,m} is a set of rules, or reactions, with αj and βj

multisets over M for j = 1, . . . ,m;
3. I are initial values of metabolites, that is, a list X1[0], X2[0], . . . , Xn[0] provid-

ing the metabolic state at step 0;
4. Φ = {ϕ1, . . . , ϕm} is a list of functions, called regulators, one for each rule,

which, for each metabolic state, provide the fluxes of rules in that state.

A MP graph is a natural graphical representation of G, and G becomes a MP
system when values for the time interval, the population unit, and the metabo-
lite masses are added. G generates the (infinite) time series (X[i] | i ∈ N) for
X ∈ {X1, X2, . . . , Xn}, according to the following Equational Metabolic Algorithm
(EMA), where γ(X) denotes the multiplicity of X in the multiset γ and s[i] is the
metabolic state at step i:

X[i + 1]−X[i] =
∑

j=1,m

(α(X)− β(X))ϕj(s[i]).

DIP formulation for MP: Given n time series

Y T
1 , Y T

2 , . . . , Y T
n ,

corresponding to some “observed” variables, related by transformation/influence
relations among them, find a MP grammar G, expressing the known relations
among variables, and generating, for i ≤ T , exactly, or even approximately enough,
the time series Y T

1 , Y T
2 , . . . , Y T

n .
Many DIP problems of interest for biological/pathological phenomena were

solved in terms of MP systems. The solutions obtained resulted from suitable
combinations of several ingredients: i) a linear algebra formulation of EMA (to
which a stoichiometric expansion can be applied), ii) the Least Square Evalua-
tion method, iii) the Stepwise Linear Regression method, and iv) some suitable
statistical tests based on Fischer’s distributions.

A possible field of investigation could concern other classes of DIP problems,
in such a way that other kinds of DIP solutions could be found, for these problems,
by suitable discrete dynamical systems based on membranes.

13.2 A (vague) topological problem

Membrane computing is based on the intuition of a membrane as a spatial entity
closing a subspace within an environment (inside/frontier/outside). Cells are the

Research Topics in Membrane Computing 37

most evident biological realization of this notion. However, if we want to keep
this intuition close to the biological reality, the only inclusion relation of mem-
brane containment is too weak. In fact, in the membrane computing literature,
some extensions of the original notion of membrane were proposed in terms of
tissue-like and neuron-like membrane structures. Even these enrichments are not
expressive enough for dealing with aspects were membranes are not framed in a
fixed membrane structure hosting computations, but they are subjected to topo-
logical transformations exploring and determining forms. This perspective requires
a calculus on membranes rather than calculi within, or among, membranes. Some
ideas along this line of investigation arose in a research [1] devoted to multimem-
branes, for translating, in a pure membrane setting, computations which can be
easily expressed by MP grammars.

A possible field of investigation could concern the formulation of topological (in
wide sense) operations among membranes on which calculi can be defined which
resemble what happen at the level of morphogenesis in biological systems.

References

1. V. Manca, R. Lombardo: Computing with multi-membranes. In Proc. CMC 2011,
347–364.

2. V. Manca, L. Marchetti: Metabolic approximation of real periodical functions. J. Logic
and Algebraic Programming, 79 (2010), 363–373.

3. V. Manca, L. Marchetti: Log-gain stoichiometricstepwise regression for MP systems.
Int. J. Foundations of Computer Science, 22 (2011), 97–106.

4. V. Manca, L. Marchetti: Paper in progress, 2011.

38 M. Gheorghe, Gh. Păun, eds.

14 Unraveling Oscillating Structures by Means
of P Systems

Thomas Hinze1,2

1Friedrich Schiller University
Department of Bioinformatics at School of Biology and Pharmacy
Jena, Germany
2Saxon University of Cooperative Education
Dresden, Germany
thomas.hinze@uni-jena.de

14.1 Motivation

Endogenous oscillations have been identified to be essential for the function of
numerous systems found in biology as well as engineering [1, 2, 26]. A common
property of these systems lies in their necessity to synchronize and coordinate
inherent chemical or physical activities based on periodically iterated trigger sig-
nals [12]. In order to sustain a stable oscillatory signal behavior, a cyclic process
succession is required that is characterized by at least one positive or negative
feedback loop. Here, a feedback amplifies or downregulates a process chain at its
outset by means of signals obtained at its end [21]. This delayed signal evaluation
enables a concerted alternation between effects caused by the process chain and
counteractions initiated by the feedback. External stimuli or stochasticity might
affect signal oscillations resulting from a process cycle. In complex systems, cou-
pled oscillators can exhibit a pseudo-chaotic behavior which is hard to analyze
and control [18]. Probably, numerous evolutionary origins led to oscillatory reac-
tion systems, while independently technical attempts succeeded in construction of
single clocks or clock generators [4].

Exploration of chronobiological systems emerges as a growing research field
within bioinformatics focusing on various applications in medicine, agriculture,
and material sciences [5]. From a systems biology perspective, the question arises
whether biological control systems for regulation of oscillatory signals and their
technical counterparts utilize similar mechanisms [15]. If so, modeling approaches
and parameterization adopted from a strict modularization can help to identify
general components for frequency control especially in circadian clock systems
along with gaining comprehensive insight into mechanisms of clock maintenance,
synchronization, and entrainment to external stimuli like the daily rhythm of sun-
light and darkness.

Circadian rhythms embody an interesting biological phenomenon that can be
seen as a widespread property of life. The coordination of biological activities into
daily cycles provides an important advantage for the fitness of diverse organisms

Research Topics in Membrane Computing 39

[27]. Based on self-sustained biochemical oscillations, circadian clocks are charac-
terized by a natural period close to but not exactly of 24h that persists under
constant conditions (like constant darkness or constant light). Their ability for
compensation of temperature variations in the physiological range enables them
to maintain the period in case of environmental changes. Furthermore, circadian
clocks can be entrained. This property allows a gradual reset of the underlying os-
cillatory system for adjustment by exposure to external stimuli like daily variations
of brightness or daytime-nighttime temperature cycles.

Circadian clock systems appear to be special forms of frequency control systems
[16]. Following this line, it should be possible to identify appropriate interacting
modules representing elements of a dedicated control-loop model [3]. Indeed, cou-
pling of a controllable core oscillator with a low-pass filter and a multiplicator
suffices to reproduce the desired entrainment behavior of a circadian clock [17].

There are numerous types of controllable core oscillators found in circadian
clocks. The majority reveals the Goodwin type [8], a cyclic gene regulatory net-
work composed of mutual activating and inhibiting gene expressions. The most
effective way to influence its frequency is modification of protein degradation rates
[25]. Furthermore, core oscillators can be of post-translational type [23], exploiting
a cyclic scheme of protein phosphorylation, complex formation, or decomposition.
Here, the involved catalysts affect the frequency [14]. The third and most complex
type of core oscillators includes compartmental dynamics [22] aimed to be ad-
vantageously modeled using P systems combining a representation of dynamical
structures with tracing their spatiotemporal behavior.

14.2 Resulting Challenges

Within the domain of strictly continuous signals quantified by real numbers, mod-
eling and analysis of oscillating behavior has been well-studied [24]. Chemical
reaction networks assumed to reside in a homogeneous environment give a typ-
ical example: Each species is represented by its concentration which is allowed
to vary continuously over time. From the static network topology together with
the stoichiometry of the reactions, a corresponding ordinary differential equation
system (ODE) can be derived that specifies the reaction rates for each species [6].
Inclusion of parameterized kinetic laws accomplishes a mapping between species
concentration and effective reaction rate. The resulting ODE can easily be tested
for its capability of undamped oscillating species concentrations. To this end, the
eigenvalues of the Jacobian matrix obtained from the ODE right hand side are
sufficient [10]. Limit cycles indicate the oscillatory behavior in detail. In case of
sinusoidal or almost sinusoidal oscillatory waveforms, even properties of the en-
trainment behavior can be obtained analytically, for instance by the Kuramoto
method [19] which estimates the expected time to synchronization subject to the
range of relevant parameters.

The main advantage of analytical ODE-based methods unequivocally exploits
the fact that essential characteristics and properties of a system under study can

40 M. Gheorghe, Gh. Păun, eds.

be directly derived from the underlying mathematical model without any need for
a numerical simulation of its dynamical behavior. This makes the evaluation and
automated testing of candidate systems resulting from experimental data rather
efficient. In contrast, there is currently a lack of corresponding methods within the
field of P systems modeled in a discrete manner. Here, system properties mainly
emerge from exhaustive simulation studies. Conduction of those studies still re-
quires an extensive amount of human resources. Particularly in case of involved
active membranes, compartmental plasticity, and dynamical structures, a tool-
box for automated analysis would be helpful. In an ongoing project, we intend
to generate sustained oscillatory systems by artificial evolution in silico [20]. In
this context, the fitness evaluation should answer the question whether the system
candidates are able to oscillate endogenously or not and how the periodicity can
be controlled. Ideally, this task should be done by a piece of software [9]. Questions
concerning a toolbox for systems analysis also coincide with the need to identify
appropriate evolutionary operators affecting compartmental structures on the fly.
Those operators can be inspired by biological processes found in living cells like
division, degeneration, dissolution, creation, separation, merge, endocytosis, exo-
cytosis, or gemmation. Some of these operators can be found in recent frameworks
of P systems, but others still lack a detailed specification of its effects to sets
of molecular objects and local reaction and transportation rules (configuration
update schemes).

14.3 First Ideas

There are different oscillatory scenarios in biological systems. On the one hand,
periodicity might also be reflected in temporal changes of the compartmental struc-
ture. On the other hand, signalling molecules are often available in low concen-
trations ranging from single molecules to several thousand copies. Both aforemen-
tioned scenarios have in common to prevent pure ODE-based modeling techniques
due to the discrete manner of involved key entities. Motivated by the need for an
appropriate toolbox covering description, simulation, and analysis of discontinu-
ously considered biological reaction processes, we plan to extend the concept of
spatiotemporal P systems with kinetic laws [7, 11] towards an underlying back-
tracking mechanism able to explore the nature of undamped oscillations beyond
variations of species concentration. Following the idea of backtracking, the trace of
configurations passed by a P system becomes recorded in a suitable way [13]. By
monitoring the overall configurations over time, a derivation tree is obtained that
provides a comprehensive data pool for further analysis by automated backtrack-
ing. Sustained oscillations are expected to appear as recurring, but nonadjacent
overall configurations along a path through the derivation tree. In particular, we
wish to employ this technique for identification and description of biochemically in-
spired computational devices equipped with clocks, counters, or frequency scalers.
Moreover, we aim for gaining insight into the function of dedicated circadian clocks
by reverse engineering using backtracking P systems. This approach could benefit
from the flexibility regarding structural dynamics.

Research Topics in Membrane Computing 41

References

1. U. Alon. An Introduction to Systems Biology: Design Principles of Biological Circuits.
Chapman & Hall, 2006

2. J. Aschoff. A survey on biological rhythms. Biological Rhythms 4:3-10, 1981
3. B.W. Bequette. Process control: modeling, design, and simulation. Prentice Hall,

2003
4. R.E. Best. Phase-locked loops: design, simulation, and applications. McGraw-Hill,

2007
5. B. Botti, C. Youan (Eds.). Chronopharmaceutics. Science and technology for biolog-

ical rhythm guided therapy and prevention of diseases. John Wiley & Sons, 2009
6. K.A. Connors. Chemical Kinetics. VCH Publishers, Weinheim, 1990
7. F. Fontana, V. Manca. Discrete solutions to differential equations by metabolic P

systems. Theoretical Computer Science 372(2-3):165-182, 2007
8. B.C. Goodwin. Oscillatory behaviour in enzymatic control processes. Advanced En-

zyme Regulation 3:425-438, 1965
9. G. Gruenert, B. Ibrahim, T. Lenser, M. Lohel, T. Hinze, P. Dittrich. Rule-based

spatial modeling with diffusing, geometrically constrained molecules. BMC Bioinfor-
matics 11:307, 2010

10. B.A. Hawkins, H.V. Cornell (Eds.). Theoretical Approaches to Biological Control.
Cambridge University Press, 1999

11. T. Hinze, T. Lenser, P. Dittrich. A Protein Substructure Based P System for De-
scription and Analysis of Cell Signalling Networks. In H.J. Hoogeboom et al. (Eds.).
LNCS 4361: 409-423, Springer Verlag, 2006

12. T. Hinze, R. Fassler, T. Lenser, P. Dittrich. Register Machine Computations on
Binary Numbers by Oscillating and Catalytic Chemical Reactions Modelled using
Mass-Action Kinetics. International Journal of Foundations of Computer Science
20(3):411-426, 2009

13. T. Hinze, R. Fassler, T. Lenser, N. Matsumaru, P. Dittrich. Event-Driven Metamor-
phoses of P Systems. In D. Corne et al. (Eds.). LNCS 5391: 231-245, Springer Verlag,
2009

14. T. Hinze, T. Lenser, G. Escuela, I. Heiland, S. Schuster. Modelling Signalling Net-
works with Incomplete Information about Protein Activation States: A P System
Framework of the KaiABC Oscillator. In G. Păun et al. (Eds.). LNCS 5957 :316-334,
Springer Verlag, 2010

15. T. Hinze, M. Schumann, C. Bodenstein, I. Heiland, S. Schuster. Biochemical Fre-
quency Control by Synchronisation of Coupled Repressilators: An In-silico Study of
Modules for Circadian Clock Systems. Computational Intelligence and Neuroscience
2011:e262189, 2011

16. T. Hinze, C. Bodenstein, I. Heiland, S. Schuster. Capturing Biological Frequency
Control of Circadian Clocks by Reaction System Modularization. ERCIM News
85:27-29, 2011

17. T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Com-
puters for Clock Frequency Control Based on P Modules. In M. Gheorghe et al.
(Eds.). Proceedings CMC12, LNCS, Springer Verlag, 2011, to appear

18. T. Kapitaniak (Ed.). Chaotic Oscillators: Theory and Applications. World Scientific
Pub. Co., 1992

19. Y. Kuramoto. Chemical Oscillations, Waves, and Turbulences. Springer, 1984

42 M. Gheorghe, Gh. Păun, eds.

20. T. Lenser, T. Hinze, B. Ibrahim, P. Dittrich. Towards Evolutionary Network Re-
construction Tools for Systems Biology. In E. Marchiori et al. (Eds.). LNCS 4447:
132-142, Springer Verlag, 2007

21. V. Manca, L. Bianco, F. Fontana. Evolution and oscillation in P systems: Applica-
tions to biological phenomena. In G. Mauri et al. (Eds.). Lecture Notes in Computer
Science 3365:63-84, Springer Verlag, 2005

22. D. Morgan. The Cell Cycle: Principles of Control. Oxford University Press, 2006
23. T. Mori, D.R. Williams, M.O. Byrne, X. Qin, M. Egli, H.S. Mchaourab, P.L. Stew-

art, C.H. Johnson. Elucidating the ticking of an in vitro circadian clockwork. PLoS
Biology 5(4):841-853, 2007

24. T. Pavlidis. Biological Oscillators: Their Mathematical Analysis. Academic Press,
1974

25. P. Ruoff, M. Vinsjevik, C. Monnerjahn, L. Rensing. The Goodwin Oscillator: On the
Importance of Degradation Reactions in the Circadian Clock. Journal of Biological
Rhythms 14(6):469-479, 1999

26. S. Schuster, M. Marhl, T. Hoefer. Modelling of simple and complex calcium oscilla-
tions. European Journal of Biochemistry 269:1333-1355, 2002

27. V.K. Sharma, A. Joshi. Clocks, genes, and evolution. The evolution of circadian
organization. In V. Kumar (Ed.). Biological Rhythms, p. 5-23, Springer Verlag, 2002

15 Approaching a Question of Biologically Plausible
Applications of Spiking Neural P Systems for an
Explanation of Brain Cognitive Functions

Adam Obtulowicz

Institute of Mathematics, Polish Academy of Sciences
Śniadeckich 8, P.O.B. 21, 00-956 Warsaw, Poland
A.Obtulowicz@impan.pl

The (hierarchical) clustering (scene segmentation in particular) and binding
(feature integration) problem solution in cortical neural network together with
cortical subnetworks realizing Radial Basic Functions (briefly RBFs) represent,
among others, the cognitive functioning of brain. Recently, various network mod-
els of clustering, binding problem solution, and realization of RBFs in cortical
network have been proposed, where spiking neural networks are the most biologi-
cally plausible models, see [16], [18], [2], [3], [12], [14], [15], and [11] for a review.
The main common feature of these models is Hebbian learning which provides their
biological evidence. On the other hand, a transformation of an idea of Hebbian
learning from a framework of spiking neural networks to a framework of spiking
neural P systems (cf. [10], [17]) has been proposed in [8]. Thus one formulates the
following question:

Research Topics in Membrane Computing 43

Do spiking neural P systems provide biologically plausible mathematical
models of brain cognitive functions?

We approach the question and an answer to it by the following discussion of
conjectures and setting open problems.

Papers [5], [9] contain promising applications of spiking neural P systems for
solving topic problems related to some cognitive brain functions. But biological
evidence of these applications seems problematic because Hebbian learning proce-
dures approach is not considered for them.

On the other hand, the Hebbian learning modeled by spiking neural P systems
with only input neurons and one output neuron presented in [8] and solution
of XOR problem by spiking neural networks equipped with a Hebbian learning
procedure and with only three input neurons and one output neuron described
in [4] gives rise to the following conjecture:

Conjecture 1. There exists a learning problem, understood as in [8], whose output
is a spiking neural P system solving XOR problem.

If we compare precise timing of spikes approach for spiking neural networks
to the number of spikes approach for spiking neural P systems, then the latter
seems coarse and hence less biologically plausible than the spiking neural network
approach.

On the other hand the precise timing of spikes approach for spiking neural
networks is less biologically plausible than probabilistic spiking neural networks
because a relevant amount of noise is contained in the behavior of neurons (cf. [7]).
Therefore it is worth to initiate a research of probabilistic spiking neural P systems.

The view that human mind is “massively modular” (cf. [6], [13]) argued by
massively parallel functioning of brain neural network modules gives rise to a
question of approaching these massive modularity and massive parallelism of mind
and brain by application of a concept of a network of communicating spiking neural
P systems equipped with Hebbian learning procedures, respectively. The spiking
neural P systems constituting that network could correspond to brain network
modules realizing simultaneously various cognitive functions, respectively.

On the other hand, since spiking neural P systems seem more coarse with
respect to an approach to time than spiking neural networks with precise timing
of spikes, like e.g. in [2], we propose the following conjecture.

Conjecture 2. A biologically plausible modularity of brain could be represented
(modelled) by the following hybrid constructs:

1. a two-level construct of a spiking super-neural P system which is a spiking neu-
ral P system whose neurons are superneurons, i.e., multi-layer spiking neural
networks with a precise timing of spikes like, e.g., in [2],

2. a three-level construct of a spiking sub-super-neural P system which is a spik-
ing super-neural P system as above, where the neurons of superneurons are
P systems approaching neurons as cells which produce and transport copies of
molecules between electrically charged membranes.

44 M. Gheorghe, Gh. Păun, eds.

The construct in 1) gives rise to multi-layer spiking networks which could learn
themselves like in [2] their modular structure of spiking super-neural P systems
and hence which could explain emergence of cognitive capabilities of brain.

It is worth to discuss the above constructs with a regard to a possibility of their
molecular implementation which is suggested by recent findings outlined in [1].

References

1. Bandyopadhyay, A., Fujita, D., Pati, R., Architecture of a Massively Parallel Pro-
cessing Nano-Brain Operating 100 Billion Molecular Neurons Simultaneously, Inter-
national Journal of Nanotechnology and Molecular Computation 1 (2009), pp. 50–80.

2. Bohte, S.M., Spiking Neural Networks, Professorschrift, Leiden University 2003.
3. Booij, O., Temporal Pattern Classification using Spiking Neural Networks, M.Sc.

Thesis, Amsterdam University 2004.
4. Booij, O., Hieu tat Nguyen, A gradient descent rule for spiking neurons emitting

multiple spikes, in: Applications of Spiking Neural Networks, ed. S.M. Bohte and
J.N. Kok, Information Processing Letters, Amsterdam 2005.

5. Ceterchi, R., Tomescu, I.A., Spiking Neural P systems—a Natural Model for Sorting
Networks, in: Proceedings of Sixth Brainstorming Week on Membrane Computing,
Sevilla, February 4–8, 2008, ed. D. Diaz-Perenil et al., RGNC Report 01/2008, Sevilla
University Fenix Editora 2008, pp. 93–105.

6. Geary, D., The Origin of Mind: Evolution of Brain, Cognition, and General Intelli-
gence, American Psychological Association 2005.

7. Gerstner, W., Population Dynamics of Spiking Neurons: Fast Transients, Asyn-
chronous States, and Locking, Neural Computation 12 (2000), pp. 43–89.

8. Gutiérez-Naranjo, M.A., Pérez-Jiménez, M.J., A spiking neural P systems based
model for Hebbian learning, in: Proceedings of 9th Workshop on Membrane Com-
puting, Edinburgh, July 28 – July 31, 2008, ed. P. Frisco et al., Technical Report
HW-MASC-TR-0061, School of Mathematical and Computer Sciences, Heriot–Watt
University, Edinburgh, UK, 2008, pp. 189–207.

9. Ionescu, M., Sburlan, D., Some Applications of Spiking Neural P Systems, in: Pro-
ceedings of the 8th Workshop on Membrane Computing, Thessaloniki, June 25–28,
2007, ed. Eleftherakis et al., South-East European Research Centre 2007, pp. 383–
394.

10. Ionescu, M., Păun, Gh., Yokomori, Y., Spiking neural P systems, Fund. Inform.
71 (2006), pp. 279–308.

11. Kasiński, A., Ponulak, F., Comparison of Supervised Learning Methods for Spike
Time Coding in Spiking Neural Networks, Int. J. Appl. Math. Comput. Sci. 16 (2006),
pp. 101–113.

12. Knoblauch, A., Palm. G., Scene segmentation by spike synchronization in reciprocally
connected visual areas. II. Global assemblies and synchronization on larger space and
time scales, Biol. Cybern. 87 (2002), pp. 168–184.

13. MacDonald, K., Chiappe, D., Review of [6] in Human Ethology Bulletin 21:2 (2006),
pp. 14–18.

14. Meftah, B., Benyettou, A., Lezoray, O., Qingxiang, W., Image Clustering with Spiking
Neuron Network, in: World Congress on Computational Intelligence, International
Joint Conference on Neural Networks, Hong-Kong 2008.

Research Topics in Membrane Computing 45

15. Moore, S.C., Back-propagation in spiking neural networks, M.Sc. Thesis, University
of Bath 2002, http://www.simonchristianmoore.co.uk/Thesis4.html.

16. Natschläger, T., Ruf, B., Spatial and temporal pattern analysis via spiking neurons,
Network: Comp. Neural Systems 9 (1998), pp. 319–332.

17. Păun, Gh., Pérez-Jiménez, M.J., Spiking neural P systems. Recent results, research
topics, presented at the 6th Brainstorming Week on Membrane Computing, Sevilla
2008, web page http://psystems.disco.unimib.it/download/leidenGR65.pdf

18. Ruf, B., Computing and Learning with Spiking Neurons—Theory and Simulation,
Doctoral Thesis, Technische Universität Graz 1998.

16 Computer Vision

Daniel Dı́az-Pernil1, Miguel A. Gutiérrez-Naranjo2

1CATAM Research Group
Department of Applied Mathematics I
University of Seville, Spain
sbdani@us.es

2Research Group on Natural Computing
Department of Computer Science and AI
University of Seville, Spain
magutier@us.es

Computer vision [26] is probably one of the challenges for computer scientists
in the next years. This flourishing research area needs contributions from many
other scientific areas as artificial intelligence, pattern recognition, signal process-
ing, neurobiology, psychology or image processing among others. It concerns with
the automated processing of images from the real world to extract and interpret
information on a real time basis.

From a biological point of view, vision is an extremely complex process involv-
ing the transformation of the light energy into a signal which leaves the eye by
way of the optic nerve and arrives to the brain, where it is interpreted. From a
computational point of view, a digital image is a function from a two dimensional
surface which maps each point form the surface to a set of features as bright or
color.

Since many of such features are quantitative (as the color in an RGB encoding,
which is a three-dimensional vector with values in {0, . . . , 255}), in most cases, a
digital image can roughly be considered as a mapping from a subset of Z × Z (a
subset of the integer plane) into a set of multidimensional vectors which encode
their features. Let us remark that the subset of the integer plane and the set of
vectors used for encoding the features of the pixels can be considered finite and

46 M. Gheorghe, Gh. Păun, eds.

hence, the transformation of an image into another can be made in a discrete way.
The different treatments of such mappings (digital images) provide a big amount
of current applications in computer vision as optical character recognition (OCR),
fingerprint recognition and biometrics, automotive safety, surveillance or medical
imaging.

Many problems in the processing of digital images have features which make it
suitable for techniques inspired by nature. One of them is that the treatment of the
image can be parallelized and locally solved. Regardless how large is the picture,
the process can be performed in parallel in different local areas of it. Another
interesting feature is that the local information needed for a pixel transformation
can also be easily encoded in the data structures used in Natural Computing.

In the literature, we can find many examples of the use of natural computing
techniques for dealing with problems associated to the treatment of digital images.
One of the classic examples is the use of cellular automata [24, 25]. Other efforts
are related to artificial neural networks as in [14, 28].

In membrane computing, there is a large tradition in the study of information
structured as two dimensional objects (see, e.g., [2, 3, 10, 19]). The main motivation
for these studies is to bring together membrane computing and picture grammars.
From a technical point of view, arrays are two-dimensional objects placed inside
the membranes as strings are one-dimensional objects in the model of P systems
with string objects [15, 23].

In [3], the model of array-rewriting P systems was presented on the basis of
the transition P systems: Rules are of type A → B(tar) where A is the array
to be rewritten and B is the new one and tar ∈ {here, in, out} indicates the
emplacement of the picture where the substitution has been made.

For example4, let us consider a P system with three nested membranes
[[[]3]2]1, an alphabet with two symbols a and # (the blank), an initial configu-

ration with membranes 2 and 3 empty and the array
a
a

placed in the membrane

1. Let us consider the sets of rules

R1 =
{

#
a

→ a
a

(in)
}

,

R2 =
{

a #
→ a a

(out),
a # #
→ a a a

(in)
}

,

R3 = ∅.
This P system generates all the L-shaped angles with equal arms, each arm

being of length at least three.
Recently, a new research line has been open by applying well-known membrane

computing techniques for solving problems from digital imagery. For example, a
basic problem in computer vision is the segmentation.
4 Adapted from the Example 1 from [3].

Research Topics in Membrane Computing 47

Fig. 1. Segmentation result of a 600 × 600 CT image of human lungs. On the left,
the initial image, on the middle the binarized image, and on the right the segmentation
result. Image taken from [12].

Segmentation is the process of assigning a label to every pixel in an image
such that pixels with the same label share certain visual characteristics. The goal
of segmentation is to simplify and/or change the representation of an image into
something that is more meaningful and easier to analyze. Segmentation has shown
its utility in bordering tumors and other pathologies, computer-guided surgery or
the study of anatomical structure, but also in techniques which are not thought
to produce images but it produces positional information as electroencephalogra-
phy (EEG), or electrocardiography (EKG). In [6, 9, 11, 12] we can find several
approaches to this problem with membrane computing techniques. Figure 1 shows
an example of segmentation result of human lungs taken from [12]. Other problems
as thresholding [5] or smoothing [21] has also been considered in the framework of
membrane computing.

Special attention deserves [17], where the symmetric dynamic programming
stereo (SDPS) algorithm [18] for stereo matching was implemented by using simple
P modules with duplex channels.

A different approach to computer vision can also be obtained from compu-
tational topology. In particular, algebraic topology [16] provides techniques and
algorithms for dealing digital images from a topological point of view. In the lit-
erature, one can find approaches to algebraic topology by using techniques from
natural computing, as in [4] where natural computing and algebraic topology are
linked by using neural networks (extended Kohonen mapping).

Recently, the links between algebraic topology and membrane computing have
started to be explored via homology theory [7, 8, 13]. Homology theory is a branch
of algebraic topology that attempts to distinguish between spaces by construct-
ing algebraic invariants that reflect the connectivity properties of the space. The
field has its origins in the work of the French mathematician, theoretical physicist,
and philosopher of science Jules Henri Poincaré. Homology groups (related to the
different n-dimensional holes, connected components, tunnels, cavities, etc., of a
geometric object) are invariants from algebraic topology which are frequently used
in digital image analysis and structural pattern recognition. In some sense, they re-
flect the topological nature of the object in terms of the number and characteristics
of its holes.

48 M. Gheorghe, Gh. Păun, eds.

In a way similar to other applications of P systems, the theoretical advan-
tages of the membrane computing techniques for computer vision need a powerful
software and hardware for an effective implementation. The development of a sim-
ulators adapted to novel technologies deserves a special section in a paper devoted
to current frontiers in membrane computing. We only comment here that the most
recent hardware architectures as Field Programmable Gate Arrays (FPGAs) [27] or
the Compute Unified Device Architecture CUDATM [29] provide the technological
support for an effective parallel implementation of the algorithms. They capabili-
ties for the parallel implementation of membrane computing techniques applied to
computer vision have started to be explored with promising experimental results
[1, 20, 21].

An appropriate combination of membrane computing techniques together with
an efficient parallel implementation on the new hardware architectures can provide
competitive algorithms to different problems from computer vision. Among them,
we can cite dealing with textures, colors and/or 3D objects (or even 4D objects
where the evolution of objects in time is also considered). From algebraic topology,
the calculus of complex topological invariants of 2D and 3D objects can be a source
of new open problems for membrane computing.

Acknowledgements

DDP and MAGN acknowledge the support of the projects TIN2008-04487-E and
TIN-2009-13192 of the Ministerio de Ciencia e Innovación of Spain and the support
of the Project of Excellence with Investigador de Reconocida Vaĺıa of the Junta
de Andalućıa, grant P08-TIC-04200.

References

1. J. Carnero, D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo: Designing tissue-like P systems
for image segmentation on parallel architectures. In M.A. Mart́ınez del Amor, Gh.
Păun, I. Pérez-Hurtado de Mendoza, F.J. Romero-Campero, L.V. Cabrera, eds.,
Ninth Brainstorming Week on Membrane Computing, pages 43–62, Sevilla, Spain,
2011. Fénix Editora.

2. R. Ceterchi, R. Gramatovici, N. Jonoska, K.G. Subramanian: Tissue-like P systems
with active membranes for picture generation. Fundamenta Informaticae, 56(4):311–
328, 2003.

3. R. Ceterchi, M. Mutyam, Gh. Păun, K.G. Subramanian: Array-rewriting P systems.
Natural Computing, 2(3):229–249, 2003.

4. J. Chao, J. Nakayama: Cubical singular simplex model for 3D objects and fast com-
putation of homology groups. In 13th International Conference on Pattern Recog-
nition (ICPR’96), volume IV, pages 190–194, Los Alamitos, CA, USA, 1996. IEEE
Computer Society, IEEE Computer Society.

5. H.A. Christinal, D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez:
Thresholding of 2D images with cell-like P systems. Romanian Journal of Infor-
mation Science and Technology (ROMJIST), 13(2):131–140, 2010.

Research Topics in Membrane Computing 49

6. H.A. Christinal, D. Dı́az-Pernil, P. Real: Segmentation in 2D and 3D im-
age using tissue-like P system. In E. Bayro-Corrochano, J.-O. Eklundh, eds.,
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
14th Iberoamerican Conference on Pattern Recognition, CIARP 2009, Guadalajara,
Jalisco, Mexico, November 15-18, 2009. Proceedings, LNCS 5856, pages 169–176,
Springer, Berlin, 2009.

7. H.A. Christinal, D. Dı́az-Pernil, P. Real: Using membrane computing for obtaining
homology groups of binary 2D digital images. In P. Wiederhold, R.P. Barneva, eds.,
Combinatorial Image Analysis 13th International Workshop, IWCIA 2009, Playa del
Carmen, Mexico, November 24-27, 2009. Proceedings, LNCS 5852, pages 383–396,
Berlin, 2009. Springer.

8. H.A. Christinal, D. Dı́az-Pernil, P. Real: P systems and computational algebraic
topology. Journal of Mathematical and Computer Modelling, 52(11-12):1982 – 1996,
December 2010. The BIC-TA 2009 Special Issue, International Conference on Bio-
Inspired Computing: Theory and Applications.

9. H.A. Christinal, D. Dı́az-Pernil, P. Real: Region-based segmentation of 2D and 3D
images with tissue-like P systems. Pattern Recognition Letters, 32(16):2206 – 2212,
2011. Advances in Theory and Applications of Pattern Recognition, Image Processing
and Computer Vision.

10. K.S. Dersanambika, K. Krithivasan: Contextual array P systems. International
Journal of Computer Mathematics, 81(8):955–969, 2004.

11. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, H. Molina-Abril, P. Real: A bio-inspired
software for segmenting digital images. In A.K. Nagar, R. Thamburaj, K. Li, Zhuo
Tang, R. Li, eds., Proceedings of the 2010 IEEE Fifth International Conference on
Bio-Inspired Computing: Theories and Applications BIC-TA, volume 2, pages 1377
– 1381, Beijing, China, 2010. IEEE Computer Society.

12. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, H. Molina-Abril, P. Real: Designing a new
software tool for digital imagery based on P systems. Natural Computing, pages 1–6,
2011. 10.1007/s11047-011-9287-4.

13. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, P. Real, V. Sánchez-Canales: Computing
homology groups in binary 2D imagery by tissue-like P systems. Romanian Journal
of Information Science and Technology (ROMJIST), 13(2):141–152, 2010.

14. M. Egmont-Petersen, D. de Ridder, H. Handels: Image processing with neural net-
works - a review. Pattern Recognition, 35(10):2279–2301, 2002.

15. C. Ferretti, G. Mauri, C. Zandron: P systems with string objects. In Gh. Păun, G.
Rozenberg, A. Salomaa, eds., The Oxford Handbook of Membrane Computing, pages
168 – 197. Oxford University Press, Oxford, England, 2010.

16. D. Freedman, C. Chen: Algebraic topology for computer vision. Science And Tech-
nology, 2009.

17. G. Gimel’farb, R. Nicolescu, S. Ragavan: P systems in stereo matching. In P. Real, D.
Diaz-Pernil, H. Molina-Abril, A. Berciano, W. Kropatsch, eds., Computer Analysis
of Images and Patterns, LNCS 6855, pages 285–292. Springer Berlin, 2011.

18. G.L. Gimel’farb: Probabilistic regularisation and symmetry in binocular dynamic
programming stereo. Pattern Recognition Letters, 23(4):431–442, 2002.

19. S.N. Krishna, R. Rama, K. Krithivasan: P systems with picture objects. Acta
Cybernetica, 15(1):53–74, 2001.

20. F. Peña-Cantillana, D. Dı́az-Pernil, A. Berciano, M.A. Gutiérrez-Naranjo: A parallel
implementation of the thresholding problem by using tissue-like P systems. In P.

50 M. Gheorghe, Gh. Păun, eds.

Real, D. Dı́az-Pernil, H. Molina-Abril, A. Berciano, W.G. Kropatsch, eds., CAIP
(2), LNCS 6855, pages 277–284. Springer, 2011.

21. F. Peña-Cantillana, D. Dı́az-Pernil, H.A. Christinal, M.A. Gutiérrez-Naranjo: Im-
plementation on CUDA of the smoothing problem with tissue-like P systems. Inter-
national Journal of Natural Computing Research, 2(3):25–34, 2011.

22. Gh. Păun: Computing with membranes. Technical Report 208, Turku Centre for
Computer Science, Turku, Finland, November 1998.

23. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000. See also [22].

24. P.L. Rosin: Training cellular automata for image processing. IEEE Transactions on
Image Processing, 15(7):2076–2087, 2006.

25. P.J. Selvapeter, W. Hordijk: Cellular automata for image noise filtering. In NaBIC,
pages 193–197. IEEE, 2009.

26. L.G. Shapiro, G.C. Stockman: Computer Vision. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2001.

27. S.M. Trimberger: Field-Programmable Gate Array Technology. Kluwer Academic
Publishers, Norwell, MA, USA, 1994.

28. Y.T. Zhou, R. Chellappa: Artificial neural networks for computer vision. Research
notes in neural computing. Springer-Verlag, 1992.

29. NVIDIA Corporation. NVIDIA CUDATM Programming Guide.
http://www.nvidia.com/object/cuda home new.html.

17 Bridging P and R

Gheorghe Păun

Institute of Mathematics of the Romanian Academy
Bucharest, Romania, and

Department of Computer Science and Artificial Intelligence
University of Sevilla, Spain
gpaun@us.es

17.1 The Framework

We end this list of research topics with the issue of bridging MC with another
recent branch of natural computing inspired from the biochemistry of a living cell,
the reaction systems – see [1], [2], [3], [4], [5]. This has been already the subject of
[10] and [11], but many other issues remain to be clarified.

Both areas deals with populations of reactants (molecules) which evolve by
means of reactions, with several basic differences. Most of these differences are
not mentioned here (e.g., the compartmental structure of models in MC versus

Research Topics in Membrane Computing 51

the missing of membranes in reaction systems – we also call them R systems –,
the focus on evolution, not on computation, in reaction systems, the unique form
of rules in reaction systems and so on), and we recall the two basic ones in the
formulation from [1]:

The way that we define the result of a set of reactions on a set of elements
formalizes the following two assumptions that we made about the chemistry of a
cell:

(i) We assume that we have the “threshold” supply of elements (molecules) –
either an element is present and then we have “enough” of it, or an element is
not present. Therefore we deal with a qualitative rather than quantitative (e.g.,
multisets) calculus.

(ii) We do not have the “permanence” feature in our model: if nothing happens to
an element, then it remains/survives (status quo approach). On the contrary,
in our model, an element remains/survives only if there is a reaction sustaining
it.

Passing from multisets, which are basic in P systems, to sets (actually, to mul-
tisets with an infinite multiplicity of their elements) is a fundamental assumption,
which changes completely the approach; for instance, we can no longer define com-
putations with the result expressed in terms of counting molecules: the total set
of molecules is finite, any molecule is either absent or present in infinitely many
copies. Moreover, the behavior of a reaction system is deterministic, from a set
of symbols we precisely pass to a unique set of symbols (hence the behavior of a
reaction system can be described by a graph of outdegree one, having the nodes
marked with subsets of the total set of molecules). How to bridge at this level
the two research areas (defining computations in reaction systems or working with
multisets with infinite multiplicity of each element in P systems) remains as a re-
search topic. Three ways to introduce nondeterminism in reaction systems, so that
more interesting computation (evolution) graphs can be obtained are mentioned
in the next subsection.

P systems with sets were also considered in [9], mainly from the semantics (via
Petri nets) point of view.

The second assumption of the reaction systems theory is much easier to handle
in terms of membrane computing. The immediate idea is to simply remove any
element which does not evolve by means of a reaction; somewhat equivalently, if
we want to preserve an object a which is not evolving, we may provide a dummy
rule for it, of the type a → a, changing nothing.

Still, many technical problems appear in this framework. The presence of such
dummy rules makes the computation endless, while halting is the “standard” way
to define successful computations in membrane computing. Moreover, the rules
are nondeterministically chosen, hence the dummy rules can interfere with the
“computing rules”.

While the second difficulty is a purely technical one, the first one can be over-
passed by considering other ways of defining the result of a computation in a P

52 M. Gheorghe, Gh. Păun, eds.

system, and there are many suggestions in the literature. We mention here three
possibilities: (i) the local halting of [7] (the computation stops when at least one
membrane in the system cannot use any rule), (ii) signal-objects (the result con-
sists of the number of objects in a specified membrane at the moment when a
distinguished object appears in the system), (iii) signal-events (the result consists
of the number of objects in a specified membrane at the moment when a distin-
guished rule is used in the system). Such signals were considered in various papers;
we refer here only to [8].

Part of these possibilities are checked in [11] both for transition and for sym-
port/antiport P systems – with some cases still remaining open (the most impor-
tant one is that of catalytic P systems).

17.2 Computing R Systems

We do not give here formal definitions, but we refer the reader to the papers cited
below. In particular, we only briefly mention the results from [11] and [10].

Starting from a reaction system, a “generative device” can be defined, based
on passing from a configuration to another one, as usual in a reaction system
(without input from the environment). This sequence of configurations is unique,
because the passage from a set of molecules to the next one is deterministic, hence
we either stop after a finite number of steps or we get a sequence of the the form
uvω: after a finite path among subsets of S (the set of entities/objects in the R
system), we enter a cycle which goes forever.

We do not have here too much from a computability point of view, that is why
in [11] three possibilities to get a nondeterministic device are proposed: (i) working
with tabled R systems, as in Lindenmayer systems, [12] (in each step, a table is
used, nondeterministically chosen), (ii) considering also a finite multiplicity for
some of the objects, and (iii) by introducing a general threshold on the number of
rules which can use the same molecule. All these three possibilities remain to be
investigated: properties of the obtained computation graphs, possible links with
computing devices from formal language and automata theory, influence of the
introduced parameters (number of tables, cardinality of C, threshold k), possible
hierarchies.

Of course, another research topic is to find other ways of building a (string or
graph) computing device in terms of reaction systems.

17.3 From R to P

Let us consider for P systems each of the two basic assumptions of R systems.
The “threshold” supply of elements was already considered in [10], where an

analog of the notion of hypercomputation (computing beyond the Turing barrier)
was introduced, under the name of fypercomputation. It is called so the case when
a device can solve in a polynomial time problems known to be (at least) NP-
complete (the initial F in “fypercomputation” comes from “fast”).

Research Topics in Membrane Computing 53

Research in this framework is rather vivid in membrane computing, and the
usual way to speed-up computations is to trade-off time for space, with the (expo-
nential) space being created in a biologically inspired way: by membrane division,
membrane creation, string replication, etc. Also working with “enough copies of
each element which is present” leads to fypercomputations, and this is not surpris-
ing, because we have at hand an arbitrarily large working space. The P systems
working with multisets with arbitrarily large multiplicity were called in [10] ωP
systems.

More exactly, one considers P systems which contain certain distinguished el-
ementary membranes, whose objects are present in arbitrarily many copies (for
instance, if an object a is introduced from outside in such a membrane, then in-
side the membrane it becomes aω; it enters as a single copy, and multiplies inside
to arbitrarily many, like in reaction systems).

The arbitrary multiplicity of objects introduces an important change in the
functioning of a usual P systems. For instance, if we have the objects a, b, c in a
distinguished membrane, together with the rules ab → d, ac → e, then both these
rules can be (and should be) applied, because we have enough copies of a for both
rules; we obtain d, e, with all copies of a, b, c being consumed. If also an object f
is present together with a, b, c, then it remains unchanged (we do not adopt here
also the second assumption from the definition of R systems, although this can be
easily handled, by means of dummy rules of the form f → f).

This apparently innocent observation is able to speed-up a P system to the
level of fypercomputations. The proof of the following result can be found in [10]:

Theorem 6. SAT can be solved (in a uniform way) in a polynomial time by an ωP
system.

Let us now borrow from reaction systems area the second assumption, the “non-
permanence” one, saying that an object which is not involved in a rule does not
pass to the next configuration. Then, we cannot define the result of a computation
by halting, because in a halting step all objects vanish. Similarly, it is not enough
to add dummy rules of the form a → a (in transition systems), because this time
the computation never halts. Thus, we have to define successful computations
by other conditions – and we consider here the three possibilities recalled in the
beginning of the paper: local halting, signal-objects, signal-events. The definitions
are straightforward, we pass directly to recalling from [11] a result about the power
of P systems endowed with such conditions.

Theorem 7. Transition P systems of degree 2, using cooperative rules, without
the “permanence” of objects, are computationally complete when the successful
computations are defined by local halting or signal-objects. The same result holds
true for symport/antiport P systems (of degree 2 and of weight 2) for the case of
local halting.

An interesting open problem in this framework is the case of catalytic P systems,
known to be universal in the “permanence” assumption (see, e.g., [6]).

54 M. Gheorghe, Gh. Păun, eds.

The case of defining the result of a computation of symport/antiport P systems
by means of signals – objects or events – remains as an open problem. (Consid-
ering a priority relation on each set of rules can easily solve this problem.) The
symport/antiport P system used in the proof of Theorem 7 contains antiport rules
of sizes (2, 1) and (1, 2), which is “large” for universality results in the case when
objects are persistent. Can the size of rules be decreased also in the case discussed
here?

References

1. A. Ehrenfeucht, G. Rozenberg: Basic notions of reaction systems, Proc. DLT 2004
(C.S. Calude, E. Calude, M.J. Dinneen, eds.), LNCS 3340, Springer, 2004, 27–29.

2. A. Ehrenfeucht, G. Rozenberg: Reaction systems. Fundamenta Informaticae, 75
(2007), 263–280.

3. A. Ehrenfeucht, G. Rozenberg: Events and modules in reaction systems. Theoretical
Computer Sci., 376 (2007), 3–16.

4. A. Ehrenfeucht, G. Rozenberg: Introducing time in reaction systems. Theoretical
Computer Sci., 410 (2009), 310–322.

5. A. Ehrenfeucht, G. Rozenberg: Reaction systems. A model of computation inspired
by biochemistry. Proc. DLT 2010 (Y. Gao et al., eds.), LNCS 6224, Springer, 2010,
1–3.

6. R. Freund, L. Kari, P. Sosik: Computationally universal P systems without priorities:
two catalysts are sufficient. Theoretical Computer Sci., 330 (2005), 251–266.

7. R. Freund, M. Oswald: Partial halting in P systems. Intern. J. Foundations of Com-
puter Sci., 18 (2007), 1215–1225.

8. P. Frisco: Computing with Cells. Advances in Membrane Computing. Oxford Univer-
sity Press, 2008.

9. J. Kleijn, M. Koutny: Membrane systems with qualitative evolution rules, Fundaenta
Informaticae, to appear.

10. Gh. Păun: Towards fypercomputations (in membrane computing). LNCS, Springer,
to appear.

11. Gh. Păun, M.J. Pérez-Jiménez: Towards Bridging Two Cell-Inspired Models: P Sys-
tems and R Systems. Submitted, 2011.

12. G. Rozenberg, A. Salomaa: The Mathematical Theory of L Systems. Academic Press,
New York, 1980.

Acknowledgements

The work of Gh. Păun was supported by Proyecto de Excelencia con Investigador
de Reconocida Vaĺıa, de la Junta de Andalućıa, grant P08 – TIC 04200.

Research Topics in Membrane Computing 55

Closing Remarks

As also said in the Introduction, this collection of open problems and research
topics in MC is only a working material, in particular, a working material for 10th
BWMC. No such list can be complete, and, as expected, some problems are local,
others are very general, while the sections are not at all uniform. For instance,
many further research ideas wait to be addressed in the P and dP automata area,
as well as in the SN P systems area. Still, we believe that such a list is useful, on
the one hand, because it can entail cooperation about the co-authors of the paper
and the readers, on the other hand, because it points out active areas of MC. It
remains now to see the impact of this list on the activity during 10th BWMC.

The editors are much indebted to all MC researchers who have contributed to
this “mega-paper”.

