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Abstract In this work, we present a novel method for
automating persistent surveillance missions involving multi-
ple vehicles. Automata-based techniques are used to generate
collision-free motion plans for a team of vehicles to satisfy a
temporal logic specification. Vector fields are created for use
with a differential flatness-based controller, allowing vehicle
flight and deployment to be fully automated according to the
motion plans. The use of charging platforms with the vehi-
cles allows for truly persistent missions. Experiments were
performed with two quadrotors for two different missions
over 50 runs each to validate the theoretical results.

Keywords Persistent monitoring - Multi-robot systems -
Aerial robotics - Formal methods

1 Introduction

In this paper, we investigate the automatic deployment of
multiple quadrotors under resource constraints. The short
battery life in many unmanned aerial vehicles (UAVs)
presents a significant barrier to their use in complex, long
term surveillance missions. Moreover, the use of multi-
ple vehicles allows for more complex behavior and longer
mission horizons, but further complicates the task of deploy-
ing those vehicles given limited flight time. We present an
algorithm that generates a feedback controller for multi-
ple quadrotors with charging constraints to meet a complex
temporal logic specification. The algorithm comprises a
three-part tool chain that first plans a high level routing sched-
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ule for the quadrotors, then generates a vector field control
input for the quadrotors to accomplish the schedule, and
finally controls the quadrotors’ nonlinear dynamics to follow
the vector field with a feedback controller. The performance
of the complete system, with its three interacting parts, is
investigated in 50 experimental runs using two quadrotors
and three charging stations in a motion capture environment
as well as in several longer horizon experiments to test the
efficacy of the system.

We consider the following problem: given an environ-
ment and a temporal logic mission specification with time
deadlines that needs to be satisfied infinitely often, generate
control policies for a team of quadrotors to complete the mis-
sion, while ensuring vehicles remain charged and collisions
are avoided. The solution to this problem requires the use
of several sophisticated systems, whose interaction both at
a theoretical level and an experimental level produces many
unique challenges.

The environment shown in Fig. 1 is presented as a moti-
vating example, consisting of three charging stations, three
regions of interest, and two aerial vehicles. Vehicle battery
life is 40 time units, and charging takes 120 time units, where
time units are a generic unit that can be instantiated based
on a particular implementation. Given this environment and
these battery and charging constraints, the vehicles must per-
form a persistent surveillance mission defined by arich linear
temporal logic formula which imposes time bounds on each
loop of the vehicles’ (infinite) runs. Thus, the specification is
given as a bounded time formula which needs to be satisfied
infinitely often. An example of such a mission specification
to be satisfied infinitely often by the multi-robot system is:
“within 16 time units observe Region R3 for at least 3 time
units; within 28 time units, observe Region R1 for at least 2
time units; and within 46 time units, observe Region R2 for at
least 2 time units then within 8 time units observe Region R1
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Fig. 1 a Partitioned environment viewed from above and b transition
system. Green squares are charging stations, while blue squares are
regions of interest. States in the transition system are charging stations
and regions of interest. Weights on transitions are based on analytically
calculated time bounds (Color figure online)

or Region R3 for at least 2 time units.” We seek a method to
generate a control policy ensuring that vehicles can be auto-
matically deployed to successfully complete this mission in
the specified environment. Our solution is a general method
for solving problems of this type, with complex missions
to be automatically satisfied by a team of robots subject to
charging constraints.

Our approach is related to the vehicle routing problem
(VRP) (Dantzig and Ramser 1959), which can be summa-
rized as: given a number of identical vehicles at a depot and
the distances among all sites and the depot, find a minimum
distance tour for each vehicle such that it begins and ends
at the depot and visits each site at least once. With time
bounds on when each site must be visited, the VRP becomes a
problem known as the Time Window VRP (VRPTW) (Toth
and Vigo 2001). Multi-agent control for the VRPTW has
also been considered without temporal logic constraints in
Michael et al. (2011), Stump and Michael (2011). Our work
uses temporal logic constraints for the VRPTW with richer
specifications, providing a framework for automatic satisfac-
tion of complex, persistent, multi-agent routing problems.

The most closely related recent work includes Karaman
and Frazzoli (2008) in which the authors propose a fragment
of metric temporal logic, which restricts temporal operators
to atomic propositions and their negation. In that work, each
site may be visited only once, and bounds on transition dura-
tion are not allowed. Additionally, their work does not take
into account resource constraints, and optimizes a weighted
sum of distance traveled over a finite horizon. Our approach
allows for a vehicle to visit a site multiple times during a tour
if it is required, capturing resource constraints, and allowing
bounds on transition durations.

Temporal logic and formal methods (Baier and Katoen
2008) have been used for robot motion planning and control
in persistent surveillance in Smith et al. (2011), Ulusoy et al.
(2013). These works, while considering optimal persistent
surveillance with temporal logic constraints, do not consider
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battery constraints. These works also do not consider time
windows, which we use in this paper. Temporal logic has been
used to consider resource constraints in Ozay et al. (2011), in
which the authors consider constraints on peak power con-
sumption. Our work does not take into account peak power
consumption, but instead considers resource constraints in
the form of total energy available for flight.

Resource constraints have been modeled in the routing
problem for one vehicle without temporal logic constraints
in Sundar and Rathinam (2014). Resource constraints have
also been modeled for persistent monitoring in Mulgaonkar
and Kumar (2014), in which the authors present a platform
for autonomous charging of UAVs, including an algorithm
for persistent surveillance for multiple vehicles without tem-
poral logic constraints. Our work allows for richer mission
specifications while still modeling resource constraints.

Related methods for creating routing plans appear in
Vasile and Belta (2014), where a specialized logic, called
Time Window Temporal Logic (TWTL) was used as a speci-
fication language. In contrast, in this work, we use a fragment
of an off-the-shelf temporal logic, called bounded linear tem-
poral logic (BLTL). BLTL and TWTL are equally expressive
languages (in the sense of language equivalence), although
specifications given in one language may be more concise or
natural in the other. For example, in BLTL it is difficult to
express that a task must be performed within a time window
(i.e., after some time #; but before some time ), whereas
such a specification can be stated easily in TWTL. The frag-
ment of BLTL we consider does not permit the expression of
such time window tasks, instead allowing only the expres-
sion of deadlines. In addition, in this paper we consider the
continuous dynamics of the vehicles, while in Vasile and
Belta (2014) the vehicles were assumed to move on a finite
graph-like environment. Details on the differential flatness
approach to vehicle control appear in Zhou and Schwager
(2014). A preliminary version of this work appears in Leahy
et al. (2014), which included fewer experimental results and
no technical proofs of the differential flatness controller, vec-
tor field time bounds, or vector field derivatives.

2 Problem formulation and approach
2.1 Environment and vehicle models

Generating a control policy for our persistent surveillance
problem first requires creating an abstraction of the envi-
ronment and quadrotor behavior, including a model of the
quadrotor battery charging and discharging. By specifying
the mission using a temporal logic formula (see Sect. 2.3),
we are able to use automata theoretic techniques in conjunc-
tion with these abstractions to synthesize a control policy.
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We consider a team made of N identical quadrotors. A
finite abstraction of the environment is given as a graph G =
(V= SUC, E,w), where S is the set of sites and C is
the set of charging stations or depots. An edge e € E C
V x V denotes that travel is possible between the source
and destination of the edge. Edges represent the fact that a
vector field can be constructed to fly a quadrotor between the
regions labeled by those two nodes (see Sect. 4). Quadrotors
can deterministically choose to traverse the edges of G, stay
at a site for service, or stay docked in a charging station. A
duration is associated with each edge, which represents the
flight time and includes docking or undocking, if applicable,
and is given by w : E — Zs>1. The construction of the
environment graph G is described in Sect. 4.

In this paper we assume that the team has a mutually
exclusive operation mode, i.e. at any moment in time at
most one quadrotor is flying. Thus, collision avoidance is
conservatively guaranteed. Mutually exclusive operation is
useful for experimentally demonstrating our method, includ-
ing the ability to charge vehicles to prolong mission horizon.
Because fully concurrent operation limits mission horizon in
the absence of more vehicles and charging stations, we only
consider mutually exclusive operation. However it should be
noted that our method may be extended to fully concurrent
operation, as presented in Vasile and Belta (2014), and we
plan to extend our experiments to include fully concurrent
operation in the future.

Each vehicle has a limited amount of battery life, specified
as an integer value, and must regularly return to a charging
station. The maximum operation time starting with a fully
charged battery is denoted by f,,, while the maximum charg-
ing time starting with an empty battery is denoted by #.j,.
The charge-discharge ratio, which denotes the amount of
time required to charge the battery vs. how long the vehi-
cle may fly on a fully-charged battery, is y = (ﬁ‘;—l’j] > 1.
Using the ceiling operator provides a conservative ratio
that only takes integer values. For simplicity, we assume
that time is discretized, and all durations (e.g., w(e), fop,
tc) are expressed as an integer multiple of a time interval
At.

A battery is abstracted by a discrete battery state b; (i) €
{0, ..., t.p}, corresponding to quadrotor i at time ¢ € Zxg,
and an update rule, which specifies the change of charge after
d time units:

. min{b; (i) +d, t.p}  vehicle i is docked
bita(i) = , . (D
b (i) — yd otherwise

It is assumed that the quadrotors are equipped with identical
batteries. The batteries may be charged at any of the unoc-
cupied charging stations C. Charging may start and stop at
any battery state. Once a quadrotor is fully charged, it will
remain fully charged until it leaves the charging station. We

assume that at the start of the mission all quadrotors are fully
charged and docked at charging stations.

We will say that a quadrotor is active if it is flying, i.e.
moving between sites and charging stations or servicing a
request. A request at a site is said to be serviced if a quadrotor
hovers above it. The time bounds in (2) represent the duration
for which each site is to be serviced. A time interval in which
all vehicles are docked and none are charging is called idle
time. Note that idle time is therefore a property of the multi-
robot system and not a property of any particular vehicle.

2.2 Routing policy

For g € V, we use g to denote that a quadrotor is flying
towardsg.Let V = {g | ¢ € V}. A control policy for the team
of quadrotors is a sequence v = vjvy - -- where v; € (V U
\7)N specifies at each time t € Z>( and for each quadrotor
i € {l,..., N}if quadrotor i is at a site or charging station
or if it is moving. Let v, (i) and v(i), i € {1, ..., N}, denote
the control value for quadrotor i at time ¢ and the control
policy for quadrotor i (i.e., the sequence of control values),
respectively. Then a transition (g1, g2) € E performed by
quadrotor i starting at time ¢ will correspond to v; (i) = ¢,
Viaa(@) = qo and v, (i) = go, k € {1, ...,d — 1}, where
d = w((q1, q2)) is the duration of the transition. Servicing
or charging for one time interval (At time) by quadrotor i at
time ¢ corresponds to v (i) = v;+1(i) € V. A control policy
vV = vjvy - - - determines an output word 0 = 0103 ... such
that o, = {v;(0)|v; (i) € S,i € {1,..., N}} is the set of all
sites occupied by the N quadrotors at time ¢ € Z>(. We use
€ to denote that no site is occupied. Note o; is either € or
a singleton set, because of the mutually exclusive operation
mode assumption. Let ¢!?! and ¢ denote d and infinitely
many repetitions of ¢, respectively.

Let v be a control policy. We say that v is feasible if at each
moment in time all N quadrotors have non-negative battery
states, i.e., b;(i) > Oforalli € {I,..., N}and t € Z>o.

2.3 Bounded linear temporal logic

To capture the richness of the specifications we consider, we
use a fragment of bounded linear temporal logic (BLTL) (Jha
et al. 2009), a temporal logic with time bounds on each of its
temporal operators. The mission specification presented in
Sect. 1 can be expressed as G¢p, where ¢ is given in (2) as
a BLTL formula and the G operator indicates that ¢; should
be satisfied infinitely often.

¢1 = F'°G’R3 AFBG?RI1
AF*®(G?R2 AF'°G?(R1 Vv R3)) )

In (2), A and V are the usual Boolean operators indicating
conjunction and disjunction, while F and G are the temporal
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operators “eventually” and ‘““always”, respectively. Super-
scripts on the temporal operators are time bounds on those
operators. The fragment we consider consists of BLTL for-
mulas in positive normal form (Baier and Katoen 2008) and
using only the F and G temporal operators. This fragment
allows expression of missions with deadlines on performing
tasks as well as lower bounds on dwell time. Each Ri is a
request associated with the region. A control policy is said
to satisfy a persistent surveillance specification G¢, where ¢
is a BLTL formula, if the generated output word satisfies the
BLTL formula ¢ infinitely often and there is no idle time—as
defined in Sect. 2.1—between any two consecutive satisfac-
tions of ¢. Note that, between successive satisfactions of ¢,
the quadrotors may recharge their batteries, i.e. at least one
may not be idle, because it charges its battery.

2.4 Problem formulation

The problem as informally stated in Sect. 1 is formulated in
Problem 1:

Problem 1 Given an environment G = (V = S U
C, E, w), N quadrotors with operation time #,, and charg-
ing time 7., and a BLTL formula ¢ over S, find a feasible
control policy that satisfies G¢ if one exists, and design a
controller to automatically deploy the quadrotors to carry
out the control policy. If such a control policy does not exist,
report failure.

2.5 Technical approach

There are three main components in our system: control
policy generation, vector field construction, and differential
flatness-based flight control, each corresponding to a differ-
ent subsystem. These interacting subsystems are shown in
Fig. 2. There are two steps in the solution, an offline plan-
ning stage and the online execution of the system, shown
in the figure in the red and blue boxes. The solution is out-
lined as follows: first, a vector field is constructed offline
for navigating the quadrotors, from which a finite repre-
sentation in the form of a transition system is abstracted as
explained in Sect. 4. Next, motion plans are generated offline
to satisfy the mission specification in Sect. 3 using timing
information and the transition system from the vector field
subsystem. Finally, during execution, a differential flatness-
based approach is used to control the vehicles through the
previously constructed vector field, as presented in Sect. 5.

3 Control policy generation

The proposed approach to Problem 1 is based on automata
techniques (Baier and Katoen 2008). The motion model of
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Fig. 2 A diagram of the online and offline components of the system.
The red rectangle indicates the components involved in the offline plan-
ning stage, and the blue rectangle indicates those which are used during
execution of the flight mission (Color figure online)

the quadrotor team is represented as a product transition sys-
tem between N copies of G which is pruned of any states
and transitions which violate the mutually exclusive opera-
tion mode. The product transition system is then composed
with a finite state automaton which captures the charging
constraints. The resulting product model is then composed
with another finite state automaton which accepts the sat-
isfying language corresponding to the given BLTL formula
¢. The finite state automaton encoding ¢ is obtained by first
translating it (Tkachev and Abate 2013) to a syntactically co-
safe Linear Temporal Logic formula (Kupferman and Vardi
2001) and then to an automaton using the scheck tool (Latvala
2003).

Let v be a feasible control policy satisfying G¢. We
define a loop as a finite subsequence of v starting with the
satisfaction of the formula ¢ and ending before the next
satisfaction of ¢. The satisfiability problem (Problem 1) is
solved on the resulting product automaton by considering all
possible states of the team at the start of a loop and paths
between these states obtained with Dijkstra’s algorithm. For
more details about the procedure, including fully concur-
rent flight, see Vasile and Belta (2014), where the authors
prove the completeness of the proposed approach for TWTL.
Although this work considers BLTL instead of TWTL, the
expressiveness of the two logics is identical, and therefore
the results of Vasile and Belta (2014) apply to this work as
well.

The worst case computational complexity for generat-
ing the control policy is O (2N + NkHZN), where N is
the number of vehicles and k is the difference between
the number of vehicles and depots (charging stations). This
process is performed offline, before deploying the vehi-
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Fig. 3 Vector field detail and
quadrotor flight data. The cube
at the top left shows a
control-to-facet vector field, and
the cube at the bottom left
shows a stay-in-cell vector field.
One of these two kinds of fields
is given to the quadrotor in each

cell along its path to guide it
through the desired trajectory

cles. Implementing the control policy using a vector field
is computationally efficient and can be performed in real-
time.

4 Vector field and transition system weights

We use a vector field for the implementation of the control
policies synthesized as explained in Sect. 3, because it allows
for the discrete environment model to be combined with the
continuous dynamics necessary for vehicle navigation. Addi-
tionally, once the vector field has been created, upper limits
on travel times through the vector field provide the weights
w for the environment graph G such that a control policy can
be synthesized.

4.1 Partition

To generate the vector field, we first partition the envi-
ronment into cubes. Each cube is defined by two vectors,
a = (ay,az,a3) and b = (by, by, b3) where a; < b; for all
i = 1,2,3. These vectors represent the corners of the cube
closest and farthest from the origin, respectively. Thus, each
cube may be written as

C(a.b) = {x cRIVi € {1,2,3) 1y < xi §bi}. 3)

Paths made by edges in the environment are found as
sequences of these cubes. The paths are constrained such
that quadrotors fly to a fixed height from the charging sta-
tions and perform all observations from that fixed altitude.
From these paths, we generate vector fields to ensure each
sequence of cubes is followed.

4.2 Vector field construction

A vector field everywhere inside a given cube can be created
as a convex combination of a set of vectors at its vertices
(Belta and Habets 2006), expressed as

3 Xi — a & (vj)
h(x1, x2,x3) = E H(b'—a-)
l 1

veV(a,b) i=1
b — x: 1§ (vi)
x (b—x) h(v), )
i —ai

where x; is the coordinate in the i#h dimension of a point
in the cube, V (a, b) are the vertices of cube C (a, b), h (v)
are the vectors at each vertex v € V (a, b), and &; (v;) is an
indicator function such that &; (a;) = Oand &; (b;) = 1. Such
a vector field can be used to keep the vehicle from leaving
the cube (stay-in-cell) or to force it to leave through a given
facet (control-to-facet), as displayed in Fig. 3. Construct-
ing the vector field of the form (4) serves several purposes.
First, it allows for calculation of upper bounds on exit time,
as explained in Sect. 4.3, which allows for control policy
generation. Second, it permits analytical calculation of the
vector field and its derivatives at any point in the vector field,
as explained in Sect. 5.2. Finally, such a vector field can be
designed to be continuous, allowing for smooth flight during
experiments.

For each cube in any given path, we create a control-
to-facet vector field to lead to the next cube in the path.
Because discontinuities in the vector field could result in
undesirable behavior of the quadrotors, we must ensure that
velocity is continuous from one cube to the next. We ensure
continuity by examining vectors at the facet where cubes
meet. For each corner of such a facet, the vectors from

@ Springer



Auton Robot

A B A B
A B | |

(a) (b) (c)

Fig. 4 Two-dimensional example of combining vectors. a Control-to-
facet vector field from A to B and B to C, and stay-in-cell vector field
for cell C. b Vector conflict where A, B and C meet. ¢ Final vector field,
keeping only non-conflicting vector components

™
%

(@) (b)

Fig. 5 Two-dimensional example of vector field configurations from
A to B. a Allowable configuration results in vectors with some
zero-magnitude components, while resulting in no vectors with zero-
magnitude. b Not allowable configuration with an occurence of zero-
magnitude for all components (circled)

the two cubes are compared to each other. Only the vec-
tor components that the two vectors have in common are
kept. This process is illustrated in Fig. 4. In the figure,
cells A, B, and C are joined together, and B then shares a
facet with A and C. The vectors for cell B and C on their
shared facet are identical, and continuity is ensured. But
the vectors on A’s shared facet with B are different (Fig.
4b). Thus the vertical components of these vectors are dis-
carded, but the horizontal components, which are identical,
are kept (Fig. 4c). Because of this process, there are lim-
itations to the types of arrangements of cubes that can be
constructed, because they would result in a vector of zero
magnitude (see Fig. 5b), but in practical examples, such
arrangements are unlikely to be desirable and can be avoided
by using a finer partition of the environment if necessary.
It should be noted that discontinuities are inevitable when
the vehicle stops and starts again in a given region. Such
discontinuities are less problematic than those that arise
between cubes, because the vector field can be designed
with arbitrarily small initial velocity within a cube, whereas
the discontinuity between two cubes may be unpredictable.
Another consideration when creating the environment par-
tition is the size of the cubes relative to the localization
capabilities of the vehicles for which the vector field is being
designed. As the size of the cubes approaches the localiza-
tion resolution of the vehicles, the more likely the vehicle
is to suffer from incorrect velocity input from the vector
field.
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4.3 Weights

Because satisfaction of a BLTL formula depends on the time
to travel among the regions of the environment, these times
must be known. We can calculate the upper bound on the
travel time between any two regions, which are captured as
weights on the transition system as shown in Fig. 1. This
section presents the method for computing those weights.
We model hovering over a region or charging as self-loop
transitions of weight 1. Calculating the upper time bound
for leaving a cube depends on the vectors at the vertices. If
none of these vectors has a component of magnitude zero, we
calculate the time bound for exiting the cube through facet
F as

TF —In (s_F) bi—ai (5)

Sp) SF—Sp

where F is the facet opposite to F, and sf, sz are the mini-
mum vector components in the it/ direction on facet F and
F, respectively. Note that F need not be the facet through
which the cube is entered. Because F is opposite the exit
facet, considering the vectors at the corners of F and F
accounts for all 8 corners of a given cube, and hence includes
all of the vectors that contribute to the vector field in a given
cell. A complete derivation of this bound can be found in
Aydin Gol and Belta (2013). In the event that s approaches
Sp T approaches (b; — a;) /SE

Because of the continuity requirements on the vector field,
it is possible to have a vector with a component of magnitude
zero (i.e. as seen in Fig. 5a). In this case, as long as there
remains a non-zero component in another direction, there
is a guaranteed upper bound on the time to leave the cell.
This time bound, in the case of a zero-magnitude component
in the ith direction and a non-zero component in the jth
direction, while exiting in the i¢/ direction through the facet
containing the zero-magnitude component, can be expressed
as

Th =1/ +1/
b,‘—a,' 1 (M)
= _— n _—
sk (5 —1) 2
b/—aj
F

where 0 < M < 1 is a parameter that affects the tightness
of the bound, due to the asymptotic nature of the solution
approaching the zero-magnitude component in the it/ direc-
tion. Although analytical calculation a value of M that results
in the tightest bound is difficult, it can be found numerically
by solving
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M 2 3 2
20n (5 ) AM? 4 BMY = (A+ 4 M2 +3 (A + 1)

xM—2A=0 @)

bj—aj

for M, where A = biS;Fa" and B = 5 ) Proof of
this time bound and the optimal value of M can be found in
Appendix 1.

5 Vector field following

Motion planning often involves the use of vector fields to
be followed by a robot. This is easily accomplished with
most ground robots as well as slow aerial robots. In our
experiments however, we use quadrotors, which cannot eas-
ily follow a vector field because of their high dimensional,
nonlinear dynamics. Thus, we exploit the differential flat-
ness of quadrotor dynamics to design a controller which will
allow the quadrotor to follow the vector field constructed in
Sect. 4.2, compensating for the quadrotor’s nonlinear dynam-
ics (Zhou and Schwager 2014).

5.1 Differential flatness

Differential flatness is a property of some nonlinear systems
allowing the state vector and input vector to be written in
terms of a smaller number of flat outputs and their time
derivatives. The function mapping the flat outputs and their
derivatives to the states and inputs is known as the endoge-
nous transformation (Wongpiromsarn et al. 2009). Quadrotor
dynamics are known to be differentially flat, and we use this
property to find a closed-loop controller to drive a quadrotor
as if it were a simple integrator traveling through a desired
velocity vector field.

Formally, a nonlinear system £ = f (&, ) is said to be
differentially flat if there exists an invertible function « such
that

o =a (& ... ) @®)

for a finite number of derivatives, d,, where o is called the
flat output. The inverse of « yields the trajectories of & and
as functions of the flat outputs and d,; of their time derivatives

é:ﬂ@ﬁ“wa%» ©)

M:y@ﬁ”wa%v. (10)
Taken together, B and y are known as the endogenous trans-
formation. Below, we present the endogenous transformation
for a quadrotor, with the position and yaw angles as its flat
output.

rotation direction

Fig. 6 Quadrotor coordinate frames with a North-East-Down world
coordinate system. The world frame is denoted F,,, and the aircraft
body-fixed frame is 7,

A quadrotor can be modeled as arigid body with forces and
torques produced by its four motors and gravity (Mellinger
and Kumar 2011). The forces, moments, and coordinate
frames in such a model are displayed in Fig. 6. We define
the rotation matrix from the body frame to the world frame
using ZYX Euler angles as

R=R¢ )Ry 0)R.9)
COCY  SHpSOCY — ChpSy  CHSOCY +ShSyr
=| COSY  SHpSOSY+CHCy CHpSOSY — SPpCy |,
—56 SHpCH C¢Co
(1D

where ¢ is roll, 6 is pitch, ¥ is yaw, and S- and C- indicate
sin () and cos (-), respectively. The dynamics of a quadrotor
are then given by the nonlinear system of equations

1

U =ges + —Rfe3 (12)
m

R = RQ (13)

op=J 't — I 'QJIwp (14)

p=v, (15)

where v = [vy, vy, vZ]T is the velocity in the world frame, g
is the acceleration due to gravity, m is the mass, f; is the total
thrust force from the rotors, e3 = [0, 0, 117, and hence fze3
is aligned with the negative vertical direction of the body
frame, —zp. R is the rotation matrix from the world frame to
the body frame, defined in terms of Euler angles v, 6, and ¢.
The angular velocity of the quadrotor expressed in the body
frame is wp = [y, @y, a)Z]T, and Q = a)g is the tensor form
of wp. The torque on the quadrotor is given by t in the body
frame F},. J is the inertia matrix of the quadrotor, and p =
[x,y, z17 is the position of the quadrotor in the world frame.

The system as defined in (12)—(15) has a 12-dimensional
state, & = [x, ¥, 2, Uy, Uy, Uz, ¥, 0, ¢, 0y, 0y, ©]7, and
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4-dimensional input, u = [ f;, 7y, Ty, 7.]”, which s the total
thrust and three torques. The state and input are differentially
flat. Their flat outputs

o =[o1,02,03, 041" =[x, v,z ¥, (16)

consisting of position and yaw, are such that the state, & is
a function of these outputs and their derivatives. More pre-
cisely, ¢ = B(o, 5,6, 0), with

[.X, ya Zv v)h Uy’ vZa ‘ﬁ]T
= B17(0,6) = [01, 02, 03, 61, 62, 63, 4]
0 = Pg(0,0,6) = atan2(Ba, Pp) (17)
¢ = /39(0, dr U) = atanz(:BC’ \/ :33 + 52)
[wy, Wy, wz]T = Bio:12(0, 6,6, 6) = (RTR)V’

where
Ba = — COS 0401 — Sin 0467
Be = —sin 0461 + cos 0407,

and R is the rotation matrix with the Euler angles (¢, 6)
defined in (17). Furthermore, the input, 1, is also a function

[TX7 ty’ TZ]T = V2:4£U, d» btv U) U) . (19)
=J(RTR+RTR)Y + RTRI(RTR),

where 1.3 = [61, 62, 53] for short and the ¥ map is the
inverse operation of ”*. For details and a proof, please refer
to Zhou and Schwager (2014).

With the flat outputs and their derivatives obtained as
described below, the above equations can generate all the
states and inputs. A standard SE(3) controller (Lee et al.
2010) can be implemented to control the quadrotor flight
along the vector field using the states and inputs as a control
reference. The control architecture incorporates the open-
loop inputs from the differential flatness procedure as a
feed-forward element, while the reference states from the dif-
ferential flatness procedure are combined with the measured
states to produce an error signal for the S E (3) feedback con-
troller. This feed-forward, feedback architecture is shown in
Fig. 7.

Open-loop inputs Quadrotor

Dynamics
Ref. states -+« error, SE(3)
A controller
Measured states

Fig. 7 Block diagram for quadrotor control, with differential flatness
feed-forward element and SE(3) feedback controller

Flat outputs | Differential

Flatness

l A
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5.2 Vector field derivatives

The inputs described in (19) require knowledge of velocity,
acceleration, jerk, and snap. Hence it is necessary to find the
of the vector field. We only consider vector fields which do
not specify rotation, hence the yaw angle oy is irrelevant. We
arbitrarily set oy (#) = 0.In general, the flat output derivatives
61:3, 61:3, 0'1:3, O 1.3 atany point p in a vector field 4(p) can
be recursively calculated by

o13(p)  =h(p)
613(p) = J613(p), p)o13(p) 20)
613(p) = JG13(p), p)o13(p)

13(p) = J(01:3(p), P)o1:3(p),

where J (f(p), p) denotes the Jacobian matrix of the func-

tion f(p).

The velocity is obtained directly from the vector field
described by (4), from which the derivatives required for the
differential flatness controller given in (20) can be derived
analytically. First (4) is rewritten in matrix form as

hip, hip, hip,
,p3)=lct,...,c8]| : . @
hsp,  hgp, hgp,

h(p1,...

In this form, the coefficients ¢ are functions of position,
but the values of & are fixed for any given cube. This form is
therefore convenient for computation of the acceleration and
other vector field derivatives.

In general, the acceleration at p is given by

a(p) = J((p), pv(p), (22)

where J (f(p), p) denotes the Jacobian matrix of the func-
tion f(p), which is a 3 x 3 matrix with entries

j 8v,- h 861 + +h 8C8 (23)
= —=hip— 8pi -
Y 3pj P 3pj P 3pj

Through straightforward calculation, acceleration is there-
fore given by

3

8
ock
ai=73, (Z hicp; a) vj- 24
k=1

j=1

It should be noted that the vector fields for acceleration, jerk,
and snap are continuous everywhere within a given cube but
may be discontinuous at the facets between cubes. Similar
calculations can be made for jerk and snap, and are presented
in Appendix 2.
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6 Results and experiments

The partitioned environment (Figs. 1 and 12) consists of 385
cubes each with edge length 0.36m. Control policies for
G¢1—where ¢; is given as (2)—were calculated over the
transition system displayed in Fig. 1. The computation time,
excluding encoding of (2), was 301.7 s on a Linux system
with a 2.1 GHz processor and 32 GB memory, and the final
product automaton had 579,514 nodes and 2,079,208 edges.
No solutions were found for quadrotors starting on Chargers
C2 and C3, but all other combinations of starting positions
yielded solutions. The parameters ¢, and #,, were 120 and
40 time units, respectively.

Control policies were also computed for G¢o, where ¢»
is given as

¢ = F'(G*R2 A F'G*R1)
A FB(G*R2 A FH*G?R3). (25)

This new specification can be understood as “within 7 sec-
onds observe Region R2 for at least 2 seconds then within 5
seconds observe Region R1 for at least 4 seconds and within
45 seconds observe Region R2 for at least 2 seconds then
within 12 seconds observe Region R3 for at least 2 seconds.”
The transition system, f., and t,, were the same as for G¢;.
The final product automaton had 284,550 nodes and 998,574
edges, and reguired 180 s to compute, excluding encoding of
(25).

Experiments were performed in the Boston University
Multi-robot Systems Lab. The lab consists of a flight space
with IR cameras to track reflective markers on the quadrotors
using an OptiTrack system. This system allows for real-time
localization of the quadrotors during experiments. Two K500
quadrotors from KMel robotics were used to execute the con-
trol policies described in Sect. 6.

Charging stations (Fig. 8) were designed and built at
Boston University for automatic docking and charging of
quadrotors. These platforms allow a vehicle to land when
its battery requires charging. When using multiple such plat-
forms, another vehicle can then take off, ensuring continuous
monitoring in situations where one vehicle may not be able
to satisfy a persistent monitoring mission specification on its
own. A screenshot of the GUI is shown in Fig. 9.

The charging stations are made of laser cut acrylic parts
connected with PLA plastic 3D printed parts. The electron-
ics of the station consist of the Hyperion EOS0720i Net3AD
charger, modified to enable control by MATLAB. To secure
arobust connection with the stainless steel pads of the charg-
ing station, the quadrotors are equipped with stainless steel
contacts mounted on springs with magnets. The platform
is entirely controlled by MATLAB via USB connection,
allowing for the detection of the presence of a quadrotor, real-

Fig. 8 Quadrotor resting on charging station

time monitoring of battery and charging status, and control
of the charging parameters including battery type, capacity,
and charging rate. The maximum charging rate that can be
achieved is 8 Amperes.

Two sets of experiments were performed. In the first, a
shorter version of the persistent surveillance mission was run
50 times each for G¢; and G¢» to validate the satisfaction of
the mission specifications, specifically with respect to time
bounds. The second set of experiments consisted of running
the system for G¢; until loss of battery power in order to
demonstrate the persistent abilities afforded the team by the
charging stations. The two sets of experiments are presented
in Sects. 6.1 and 6.2.

6.1 Short horizon experiments

Figures 10 and 11 show the results of a flight by two quadro-
tors for Gy and Gy, respectively. Seconds were used as the
time units for these experiments so flights could be rapidly
performed and analyzed.

For G¢, the quadrotors, shown in red (Quad 1) and blue
(Quad 2) in Fig. 12, start fully charged from the charging
stations C'1 and C2, respectively. The control policy v for
the two quadrotors, generated as described in Sect. 3, is the
following:

(1) = C1IRT RIBIR3Y R34 6311 03135)
(c3[3”1€2[5]132[31151[4]131[311?2[4]1%263[9])“)
v(2) = 229 R RoBIR M R B3I
- - - w
(c1mRIRIFIRSH R3tICT 1) 6)

@ Springer
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Fig. 9 Graphical user interface for charging stations. Interface displays graphs of battery voltage, battery current, percent of full charge, and
individual cell voltages versus time. It also displays other battery information on the right hand side
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Fig. 10 Timeline of quadrotor flights for two loops for ¢;. The first two rows display the first loop, with Quadrotor 1 flying before Quadrotor 2.

The next two rows show the second loop, with Quadrotor 2 flying first

Under control strategy (26), in the first loop Quadrotor 1 (red)
takes off first and services sites R1 and R3 and Quadrotor
2 (blue) completes the loop by servicing sites R2 and R1.
In all subsequent loops, Quadrotor 2 (blue) takes-off first
and services sites R1 and R3 and Quadrotor 1 completes
the loop by servicing sites R2 and R1. After the first loop,
Quadrotors 1 and 2 always return to C3 and C1, respectively.
The corresponding output word is

o — €T R1B1141 p3141123] o131 (4] p 1131 4] po (9]
(6[7] R 131141 p3l41 18] pol31 4] p (3] (4] R2€[9J)“’ .
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The flights presented in the experiments consist of the first
two loops each satisfying ¢1. Any subsequent loop would
be identical to the second loop. Since ¢; can be satisfied
repeatedly, these flights can satisfy the mission specification,
Gor.

Figure 10 shows that the specification was satisfied for
both loops in the flight. Region R1 was visited in 5.76 s in
Loop 1 and 7.48 s in Loop 2, ahead of the 28 s deadline.
Likewise, Region R3 was visited in 12.44 and 12.64 s ahead
of the 16 s deadline. In the second portion of each loop,
Region R2 was visited in 34.00 and 30.27 s with a deadline
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Fig. 11 Timeline of quadrotor flights for two loops for ¢,. The first two rows display the first loop, with Quadrotor 1 flying before Quadrotor 2.

The next two rows show the second loop, with Quadrotor 2 flying first

Fig. 12 Screencaps of the first
flight loop for G¢

of 46 s, and Region R1 was visited within the 8 s deadline
after each visit to Region R2.

Likewise, for specification G¢s, the control policy for the
two quadrotors was:

12]C1[71]

(1) = (CS[”ﬁ2[5]R2[3]§1[4]R1[5]51[
= - = - - w
R1[6]R1R2[4]R2[3]R1[4]R1R3[4]R3[3]C3[lo])

[12] [10]

v(2) = (C2[3”1€2 RPIRIMR1RY RIBICS

- - - w
C3[1]R2[5]R2[3]R1[4]R1[5]C2[14]C2[37]) @

Under this control policy, Quadrotor 1 starts on Charger
C3 and takes off first, servicing Regions R2 and R1, and
then landing on Charger C1. Next, Quadrotor 2, starting
on Charger C2, takes off and services Regions R2 and R3,
before landing on Charger C3. For the second loop, Quadro-
tor 2 begins, servicing Regions R2 and R1, followed by
Quadrotor 1 servicing regions R2 and R3. After the sec-
ond loop, the quadrotors are in their initial configuration.
Any subsequent two-loop flight would be identical to this

sequence of two loops. The output word associated with these
control policies is:

0= (6[6]R2[3]6[4]R1[5]6[25]R2[3]6[4]R16[4]R3[3]6[16]

R2[3]6[4]R1[5]6[21]R16[4]R2[3]6[4]R16[4]R3[3]6[]0])w ‘

Figure 11 shows the satisfaction of the specification for
both flight loops. Region R2 was serviced in 6.05 and 4.59 s
in Loop 1 and Loop 2, respectively, ahead of the 7 s deadline.
Region R1 was visited in 11.75 and 10.85 s for Loops 1 and
2, with a deadline of 14 s. For the second portion of Loops 1
and 2, Region R2 was visited in 36.24 and 39.84 s, ahead of
the deadline of 45 s. Finally, Region R3 was visited in 48.90
and 48.76 s, with a deadline of 59 s.

The two-loop flights described above was performed 50
times for each specification, and both quadrotors were consis-
tent in their flight times. The standard deviation in the length
of each portion of the flight time was on the order of 0.1 s for
both specifications. Despite this consistency, the time bound
on flying from Charger C1 to Region R1 was violated by

@ Springer
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Table 1 Results of long horizon

experiments Batteries Init. Flight time w/o Flight time w/ Percent
xp voltage (V) charging (min:s) charging (min:s) increase
Old 12.5, 12.6 19:09 24:22 27
New 12.5,12.5 22:53 34:36 51

the second quadrotor in each flight, while not being violated
by the first quadrotor for specification ¢;. While the vehicles
were nominally identical, small physical differences between
them required the controllers to be tuned using different val-
ues. Because both quadrotors followed the same vector field
using the same controller, this time bound violation suggests
some potential for better tuning of the controllers. No such
inconsistency occurred for specification ¢,.

6.2 Long horizon experiments

The missions we consider in this work require that a BLTL
formula ¢ be satisfied infinitely often. For two vehicles to
satisfy this specification perpetually, there must be a period
in which both vehicles are charging and neither is flying. This
requirement follows from the fact that the time required to
fully charge a battery is in general about three times longer
than the flight time for a fully charged battery. Therefore, if
we wish to have at least one vehicle airborne at any given time
(i.e., constant surveillance), two vehicles are insufficient to
perpetually satisfy ¢. The charging stations should nonethe-
less extend the feasible mission horizon when at least one
vehicle is airborne at all times, despite the fact that loss of
battery power is inevitable with constant flight for only two
vehicles.

Two experiments were performed to test the extra endu-
rance afforded by the use of charging stations: one with new
batteries, and one with batteries that have been used on the
quadrotors previously, both for specification G¢;. In both
experiments, the batteries started fully charged. Performing
experiments with two sets of batteries allows us to control
for effects due to the age of the batteries. With each set of
batteries, the system was tested until failure occurred—that
is, until a quadrotor ran out of charge—using the charging
stations to recharge the batteries during mission execution
and without using the charging stations. Results from these
experiments are displayed in Table 1. With both the new and
old batteries, charging increased mission horizon substan-
tially, with greater increase in flight time with new batteries
(51 vs. 27 %).

7 Conclusion

We presented a method for automatic control policy synthesis
and vehicle deployment for a persistent surveillance mission
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for agents with charging constraints. The implementation of
the persistent surveillance framework required three systems
to be integrated together: a BLTL control synthesis algorithm,
a vector field generation algorithm, and a quadrotor differ-
ential flatness controller. Because a conservative approach
was used, such as using upper bounds on travel time rather
than expected travel time, the system met the specifications
reliably and predictably.

Our method easily and effectively accommodates rapid
experimentation for different mission specifications, envi-
ronments, or numbers of vehicles. By using the environment
partition and transition system generation with time bounds,
minimal human input is required to execute such missions.
That is, if the user specifies a surveillance mission as well
as the locations of regions of interest, charging stations,
and vehicles, execution of the mission requires no further
human intervention. Further, the inclusion of charging sta-
tions, whose performance can be modeled using automata,
allows us to extend the feasible horizon of such missions.
With an appropriate number of vehicles, the charging stations
should also accommodate perpetual surveillance missions.

These experiments establish a framework that can be
extended to a variety of future work. Our deterministic model
of battery life is limited and one future research direction
involves robust mission planning with a stochastic battery
model. We are particularly interested in conducting experi-
ments involving missions that require multiple vehicles to be
airborne simultaneously. Such missions would involve more
complex distributed tasks, such as simultaneously servicing
several sites, or distributing tasks among subgroups of agents.
Along those lines, we are also interested in extending this
work to longer mission horizons with the use more vehicles,
especially perpetual flight with at least one agent airborne at
all times.

Acknowledgments This work was supported in part by NSF Grant
Numbers CNS-1035588, NRI-1426907 and CMMI-1400167 and ONR
Grant Numbers N00014-12-1-1000, MURI N00014-10-10952 and
MURI N00014-09-1051.

Appendix 1: Derivation of time bounds

The derivation for (6) follows the same structure as that of
(5), which can be found in Aydin Gol and Belta (2013).
That derivation involves finding the minimum velocity vec-
tor towards the exit facet, and solving a linear system to find
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Fig. 13 Vector field with zero-magnitude component for deriving time
bounds
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the time taken to exit at that velocity. In our work, however,
the minimum velocity towards the exit facet may be zero,
and so an alternate method must be used to compute the time
bound. For this derivation, we assume that positive x is the
direction of the desired exit facet, as displayed in Fig. 13. In
the event that the minimum magnitude of velocity towards
the exit facet is zero, we restrict velocity in one of the other
coordinates to be non-zero away from the other facets, which
in this figure is the y direction, but holds also for the z direc-
tion. Following from (4),

. b,-—x b,-—x
= ; 1— , 28
* bi—aisF+( bi—ai)SF ( )

where s and s are the vectors in the x direction away from
the exit facet F and the opposite facet F. But the magnitude
of & depends on the y position through sz and sz.

We separate the x and y directions in order to bound the
time to exit the cube without needing to solve the coupled
nonlinear equations of the vector field. First, we note that in
(28),

st(l—bj_y)h, (29)

bj—aj

where & is the magnitude of the vector at the corner of the
cube in the y direction. We write the dynamics for the y
direction as

b — b —
y=" yh+(1— ’ y)(—h), (30)
bj—aj bj—aj
which rearranges to
. 2h
y=- y+h. 3D
bj —aj

This equation asymptotically approaches equilibrium at

bj—aj

5 (32)

y:

which means that getting a finite solution for time to equi-
librium is not possible. However, we can solve for the time
to some fraction of its equilibrium, y* = M b ;aj , where
0 < M < 1. The linear system in (31) can be solved explic-

itly for the time to reach y* as

bj — aj
Then, we can substitute M bj ;aj for y in (29) to get
M
=2 hx + h, (34)
bl' — daj

which can be solved explicity for the time to reach x = b;,
yielding

¢ _Mln(ﬁ) (35)
(-1 \2)7

Adding (33) and (35) yields the time bound in (6).

To solve for the value of M that gives the tightest bound,
we must take the derivative of (33) and (35). Starting with
(33), we find

di_ bj—aj 1
dM _( 255 )(M—l)' (36)

Similarly, taking the derivative of (35) yields

M b,‘ —da; 1
- (7) ( r ) (M —2) er

The quantities b; —a;,bj—aj,sF,and s  are all non-negative,
bi —daj

bt ) with A and (2424) with
F SE

B and rearrange to get (7). Since (6) is convex, the solution
to (7) corresponds to a value of M such that the time bound

given by (6) is minimized.

and hence we can replace (

Appendix 2: Analytical calculation of vector field
derivatives

As with calculation of acceleration in (22), jerk j can be
computed by applying the Jacobian to the acceleration as

—aw(p @), p ) = 24P
= a (v , = —_———
J p@®),p o di
dp1 dp2  9p3 V]
= el (38)
daz  da3  daz v3
op1 opp  Ip3
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The partial derivatives of acceleration can be solved by dif-
ferentiating the terms for acceleration to get

da; Tosy  adn 0| ) N
api [31;./‘ iy 9111.1] v |+l Jia Jis] |
V3 J3j

ap;
(39)

where J;; is the Jacobian as defined in (23). These partial
derivatives can be solved as

hy;

8.],']' _ 8261 8268 .
9 _[3pj3pk Bpjapk] Sl (40)
Pk

hgi

In this equation, 4;; is the pjth component of the vector at
the ith vertex, and the ¢;’s are the coefficients calculated in
2.

The same process is used to calculate snap:

g . BT -
) 3 3 ap3 v
3j dp 171 'pz 'm 1
par |5 | @D
P [ B
op1 dp2  Op3
i V]
Ji _ 32(1,' BZai 32(1,' v + M M 3&
ap; = | 9p10p; 3p2dp; p3dp; | | U2 ap1 dp2 Ip3
j 3
Jij
X | Joj 42)
J3;

All of the terms in (42) have been calculated previously in
(4), (23), and (39), except the second partial derivatives of
acceleration, which can be expressed as

2 . Kl
d7a; _ [ 9% 9T 9 J;3
ap-ape  Lopiopc  dpjope dpjopr | | V2
PjopPk 3
4 , — Y
+ dJi1 dJin dJi3 Ir:
pjdpx  dpjopx  pjdpx | | Y2
J3j
dJ; dJ dJ; ]lj_
i1 i i3 .
+ [3Pk apk 3[’k] 2
J3j]
9Jy;
o
.
+[Jn Ji2 i3] e (43)
9J3;
opk

Again, each of these terms is known except the second partial
derivatives of the elements of the Jacobian matrix, which are
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written as
2 hii
d Jij _ 8201 3203 . 44
P =\ ooy Wpomap || |- (44)
PLopI i j9pKkop1 i
8i

Thus all elements are known, and acceleration, jerk and snap
can be expressed as functions of position, velocity, and partial
derivatives of the coefficients calculated in (21). Analytical
computation in these forms allows for efficient online com-
putation of the parameters needed for the vector field based
controller used in the experiments.
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