
A
p

C
D

a

A
R
R
A
A

K
S
P
S
C
M

1

f
m
s
p
i
s
b
e
s
t
t
n
i
d
s
g

r
C
b
p

p

1
d

Applied Soft Computing 11 (2011) 5498–5507

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l ho me p age: www.elsev ier .com/ l ocate /asoc

 software system for collaborative robotics applications and its application in
article swarm optimization implementations

ristian I. Vasile ∗, Cătălin Buiu
epartment of Automatic Control and System Engineering, “Politehnica” University of Bucharest, Splaiul Independenţei nr. 313, sector 6, 060042 Bucharest, Romania

 r t i c l e i n f o

rticle history:
eceived 20 December 2009
eceived in revised form 30 March 2011
ccepted 1 May 2011
vailable online 7 May 2011

a b s t r a c t

This paper presents a particle swarm optimization (PSO)-inspired multi-robot search application based
on an innovative software system for collaborative robotic applications. The system has a multi-layer
architecture which provides low- and high-level interfaces to the robots, resource (robots) management,
security policies and concurrent robot access. The main result is the successful testing of the PSO-inspired
algorithm on real-world experiments, using Khepera III and e-puck robots. Simulated results obtained
eywords:
warm intelligence
article swarm optimization
oftware system
ollaborative robotics

in other studies are therefore validated by the real-world experiments. Differences between simulation
and real-world experiments are presented and discussed critically.

© 2011 Elsevier B.V. All rights reserved.
ultiagent system

. Introduction

There are many real-world applications which require highly
ault-tolerant robotic systems, and in which a single complex robot

ay not be appropriate, since a fatal error, either hardware, or
oftware, leads to mission failure. The swarm intelligence (SI)
aradigm, based on using multiple simple autonomous agents was

nspired by the behaviour of bird flocks, fish schools and insect
ocieties, like ants, termites or bees. For example, ants’ collective
ehaviours (foraging, division of labour, etc.) have been studied
xtensively and are used as inspiration sources for similar robotic
warms behaviours [1]. The number of agents in the swarm gives
he system its robustness, and the loss of robots may not hinder
he successful completion of the task. Systems which use SI tech-
iques have distributed control and information is used by every

ndividual to update its state or react to it, therefore no single
ecision-making unit exists. Interactions between robots them-
elves and with the environment are exploited to develop robust,
oal-oriented and sometimes emergent collective behaviours [2].

SI fundamental ideas have led to the development of many algo-
ithms, some of which are briefly described in the following. Ant

olony Optimization (ACO) is a path optimization algorithm class
ased on the search behaviour of ants and uses virtual ants and
heromones to find the best path. A routing scheme using ACO has

∗ Corresponding author. Tel.: +40 0722679831; fax: +40 0212500745.
E-mail addresses: cvasile@ics.pub.ro, wasserfeder@yahoo.com,

theory@gmail.com (C.I. Vasile), cbuiu@ics.pub.ro (C. Buiu).

568-4946/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2011.05.009
been developed by Di Caro and Dorigo [3]. Particle swarm opti-
mization (PSO) is a global stochastic optimization algorithm for
problems in which the best solution can be represented as a point
or surface in a n-dimensional space. Stochastic Diffusion Search
(SDS) is a probabilistic global search algorithm used for problems
in which the objective function can be decomposed into multiple
independent partial-functions.

It has been shown that such collective behavioural approaches
can be used to solve a variety of tasks. Robots can assemble them-
selves to stabilize over uneven ground, to cross gaps or transport
large objects [4]. Other task may include inspection of inaccessi-
ble structures like jet turbine engines with a swarm of miniature
robots [5], sewage or industrial installations. One particular inter-
esting problem is locating one or more targets in an unknown
environment, because it is well suited to swarm robotics. Adapted
variants of the PSO algorithm have been presented in [6,7] and
were studied in a simulated environment. The PSO approach was
shown to have better performance than a genetic algorithms (GA)-
based one [8]. In [9] an inner PSO-inspired search strategy was
tuned with an outer PSO, while a hybrid PSO with fuzzy logic con-
trollers strategy was considered in [10]. The effects of real-world
factors [11] and the group size [12] were also studied. In this paper
a PSO-inspired search algorithm will be presented and the results
of real-world experiments on Khepera III and e-puck robots will be
discussed. There are two main contributions of this paper. Firstly, a

software system for implementing multi-robot applications is pro-
posed. Secondly, previous work on PSO-inspired multi-robot search
is validated by implementing and running the approach on real
robots (Khepera III and e-puck research platforms).

dx.doi.org/10.1016/j.asoc.2011.05.009
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:cvasile@ics.pub.ro
mailto:wasserfeder@yahoo.com
mailto:ptheory@gmail.com
mailto:cbuiu@ics.pub.ro
dx.doi.org/10.1016/j.asoc.2011.05.009

C.I. Vasile, C. Buiu / Applied Soft Computing 11 (2011) 5498–5507 5499

 of th

s
c
e
c

2

r
s
t

i
i
a
u
K
2
s

h
c
L

e
n
c
u
c
i
c
v
t
e
c

m
a
I
o
c
l

Fig. 1. Block diagram

Section 2 presents the architecture of the proposed software
ystem, while the next section describes the collective search appli-
ation used for testing the software system. Section 4 gives some
xperimental results and critical comments. The paper ends with
onclusions and directions for further research.

. Software system

The software system currently supports Khepera III and e-puck
obots, but support for other types of robots can be easily added. A
hort description of the robots is given below in order to point out
he available hardware features.

The Khepera III is a research robotic platform. Features available
nclude 11 infrared sensors, 5 ultra-sonic sensors, 2 DC motors with
ncremental encoders, swappable Lithium-Polymer battery pack
nd a built-in Bluetooth module. The robot is designed to be mod-
lar by using a new fully open extension bus compatible with the
oreBot system. The KoreBotLE extension has an Intel XScale PXA-
55 400 MHz microcontroller and is flashed with a Linux operating
ystem, enhancing the robot’s computing power.

The e-puck robot is another research robotic platform which
as 8 infrared sensors, 3 microphones, an accelerometer, a VGA
amera, 2 DC motors with encoders, a led ring, a speaker, swappable
ithium-Polymer battery and a built-in Bluetooth module [13].

Communication with a Khepera III (without the KorebotLE
xtension) or an e-puck can be done through a Bluetooth con-
ection via their BSP (Bluetooth Serial Port) service. This type of
onnection has many disadvantages. Because only one device can
se the Bluetooth connection at a time, switching between different
lients who want to access the robot is very slow. It does not allow to
mplement access policies, remote access from outside the robot’s
ommunication range nor traffic logging for future use. Another
ery important problem is the lack of protection against acciden-
al misuse of Khepera III’s ‘U’ command. This command is used to
nter the serial boot loader mode to upgrade the firmware and can
orrupt the dsPic’s memory [14].

The software system proposed was created to solve the above
entioned problems. Other features were also added to help

nd speed-up robot and multi-robot application development.

t was designed to be flexible, easy to use and extensible. In
rder to meet these requirements, the system was split into
omponents, each one being developed independently. This also
owers the maintenance and testing costs. The system can be
e software system.

extended to add support for various other robots and features as
well.

The software system defines the following components: the Poll
and Command Service (PCS), a generic concurrent PSO framework,
a GUI and the collective search application created using this sys-
tem (Fig. 1). The implementation was done in Python 2.5 and was
tested under Ubuntu 8.04.

2.1. PCS service

The service offers an abstraction layer in the design and devel-
opment of robotic applications. This component is the core of the
software system and is designed as a resource manager for the Blue-
tooth connection to the robot. It is composed of a server program,
a custom communication protocol, a low-level API and a high-level
interface.

The PCS server mediates the communication between the clients
and the robot. Request from clients are sent though TCP/IP con-
nections to the server, which sends appropriate commands to the
robot via the Bluetooth connection. This solution also eliminates the
need for Bluetooth devices to access the robot, especially for desk-
top PCs which do not usually come with such extensions. Clients
do not need such devices, since the Bluetooth connection is main-
tained and managed by the server. The overall communication rate
of the PCS service is limited by the Bluetooth serial communication,
which has a rate of 115,200 bps. The current version of the server
implements a simple CREW access policy. The read and write per-
missions were defined by splitting up the robot’s commands into
two groups: poll commands and set commands. These are used to
check the permissions for a pending request. For the Khepera III
robot, the ‘U’ is not recognized by the server in order to protect
the robot from misuse. The server also supports logging and has
an interactive mode for use by an administrator. Communication
with the server is done by using the PCS communication protocol.
The protocol defines two types of packages, request and response,
and the request handling procedure. It is a protocol over TCP/IP and
uses ASCII messages. The package format is composed of two fields:
[Type][Message]. Type field represents the first byte of the package

and can take one of the five following values:

• ‘A’ – acknowledge response package
• ‘N’ – not acknowledge response package

5 ft Com

•
•
•

c
s
T
f
l
l
t
a

h
e
i
b
p
s
i
i
c
t

p
A
a
fi
m
u
f
u
r
I
m
r
p
T
o
g
u
c
h
t
i
m

2

s
K
P
b
b
p
i
t
o
c
v
t
s
t
b

500 C.I. Vasile, C. Buiu / Applied So

‘R’ – request write permission request package
‘P’ – poll command request package
‘S’ – set command request package

The message field contains additional information passed to the
lient in response packages or the command to be forwarded by the
erver to the robot via Bluetooth in poll and set request packages.
he message field in write permission request packages is reserved
or future use and is ignored. The total length of the message is
imited to 1024 bytes. An example of a PCS package is: ||S|D, l5000,
5000 〈 LF 〉 ||, which is a set command request package for setting
he speed of the two motors to 5000 encoder steps per second for

 Khepera III robot.
The request handling procedure implemented by the server

as three steps. In the first step the type and message fields are
xtracted from the package. Second, it is checked if the package
s of permission request type and if so, a response package, given
y the active access policy, is sent back. Third, it is checked if the
ackage is of poll or set request type. Next, it is checked if the mes-
age body is void and then the permissions are verified. If the test
s passed, the message is forwarded to the robot and according to
ts response, a PCS response message package is sent back to the
lient. The acknowledge package will contain, in its message field,
he response from the robot.

A low-level API was created, implementing the client-side PCS
rotocol, to be used in application development. A feature of this
PI is the message format and parameter values checking mech-
nism, according to the Khepera III manual [14] and the e-puck
rmware. This API offers two methods for requesting write per-
issions and for sending poll or set commands. This component is

sed as a base for the high-level robot (Khepera III, e-puck) inter-
ace. The interface implements methods for all commands in the
ser manual (except for the ‘U’ command on Khepera III) and for
eading and setting the robot states, i.e., LEDs, speed, position, etc.
t also maintains local robot states, updated at every successful

ethod call. This is useful in situations where a state cannot be
ead directly, like the LEDs state, or where it is not necessary to
oll the robot for the values, for example for logging or debugging.
he robot interface implements two high-level movement meth-
ds, one for moving forward a given distance and one for rotating a
iven angle, based on the robot’s physical parameters given in the
ser manual. The forward movement method implements obsta-
le detection and can use a given obstacle avoidance procedure to
andle the interruption. The default action, when none is given, is
o stop the robot. Because the rotation is around the robot’s axis, it
s not necessary to check for collision in the rotation method. Both

ethods however return whether the target was detected or not.

.2. PSO framework

The particle swarm optimization (PSO) algorithm is a global
tochastic optimization technique developed by Eberhart and
ennedy [15]. It was inspired by the social behaviour of bird flocks.
SO is a population-based technique, the population (swarm)
eing composed of individuals, called particles. Problems solved
y this method have solutions which can be represented as a
oint or surface in a n-dimensional space. The solution surface

s used to define a fitness function, which the algorithm is trying
o optimize. The system is initialized with a random population
f solutions and its state is updated in every generation. Parti-
les “float” through the search-space, following their best fitness
alue (local optimum), obtained by evaluating the fitness func-

ion, and the best solution in its neighbourhood or in the entire
warm (global optimum). The global optimum is the best solu-
ion from the local ones. The state of a particle, position, velocity,
est fitness value and position, is updated by the following for-
puting 11 (2011) 5498–5507

mula:

vij(k + 1) = w ∗ vij(k) + rand() ∗ c1 ∗ (pbestj(k) − xij(k))

+ rand() ∗ c2 ∗ (gbestj(k) − xij(k)) (1)

xij(k + 1) = xij(k) + vij(k) (2)

where vij and xij are the velocities, respectively the positions, of
the particles in the search-space. w is a inertial parameter used to
slow the velocity over time, ensuring that the swarm converges. It
also prevents the swarm from exploding. c1 and c2 are learning fac-
tors and represent the influence the local optimum (pbest) and the
global optimum (gbest) have over the velocity. Usually this factors
are set to 2. rand() is a random variable uniformly distributed in
[0,1] [6].

The PSO technique does not use a complex model of the world.
Each particle (robot) has to know only its current position, the
position of its local optimum and the position of the global opti-
mum. Because the PSO algorithm has a stochastic nature, it does
not depend too much on the accuracy of the localization system.
Due to these properties, the PSO is easy to implement and does not
require large computational power and memory. This approach is
different from others which may use maps and other knowledge
about the environment in order to plan actions and execute them
[16] and which, most of the time, may require more computational
power and memory.

The PSO framework is a generic concurrent implementation of
the above described technique. Although it was designed to be used
in collaborative robotics applications, it can also be used in com-
putational optimization problems as a stand-alone module. It is
composed of four components: PSO, Particle, Localizer and Barrier.

The Particle module defines an interface to be used by the
PSO implementation. It maintains the state of a particle (posi-
tion, velocity, best local fitness) and offers thread-safe methods
to access it. This is necessary because every Particle is a thread.
The behaviour of the particles is defined by implementing the fit-
ness evaluation, movement and target detection methods. These
are used in the thread, associated with the particle, inside a loop,
synchronized with the PSO procedure. In every iteration the con-
vergence condition is checked and the particle moves to the next
position. The movement of the particle may correspond to a robot’s
movement.

The Localizer module is used to define a global localization
mechanism. It offers methods to update the positions of the par-
ticles and to determine the target’s position. In computational
applications this module has no meaning and can be ignored.

The PSO module contains the generic and concurrent implemen-
tation of the technique. It initializes the procedure and runs the
main loop of the algorithm, which is synchronized with the parti-
cles ones. In every iteration the particles’ states are updated first
using the given localizer, then by computing the local and global
optima and finally by using the PSO formula. Particles’ states are
limited by given intervals, bounding the search-space and the max-
imum absolute value of the velocity. The stop condition is checked
using the method supplied by the Particle module. When the stop
condition is reached the associated threads are released and then
they join with the main one.

Synchronization is made possible by the Barrier module, which
contains the implementation of a custom re-entrant barrier. It is

designed to unlock completely if a certain condition is met, by
setting the internal flag. This modification to the standard barrier
allows the main procedure to release the particles’ threads when
the stop condition is met.

C.I. Vasile, C. Buiu / Applied Soft Computing 11 (2011) 5498–5507 5501

2

l
s
p
p
f

3

t
U
d
w
e

3

a
a
s
i
m

•

•
•

f
r
l
O
h
t
o
i
A
e

i

Fig. 2. GUI displaying the arena and robot-particles’ states.

.3. GUI

The GUI component is an auxiliary module and implements a
ightweight interface used to display the arena and the particles’
tates in real-time (Fig. 2). The particles’ states represent the current
osition and velocity vectors in the image (PSO) search space. Each
article is given a name to identify it. The image source can be either
rom a webcam or simulated.

. The collective search application

The software system proposed in this paper was designed
o support the development of collective robotic applications.
sing this system, a collaborative search application has been
eveloped. Its purpose is to validate the proposed architecture, soft-
are solutions, and the PSO-inspired algorithm through real-world

xperiments.

.1. Search problem

Finding one or more targets in an unknown environment is
n important task well suited for swarm robotics. The behaviour
nd architecture of the multi-robot system are designed in corre-
pondence with the specific localization problem it addresses. It
s important to specify that the search problem depends on three

ajor factors:

the target(s): their number, nature, dynamics, and mode of
appearance;
the search agents: their number, architecture and capabilities;
the environment: its dimension, type, dynamics, structure, and
previously known environmental information.

The movement and nature of the targets are very important
actors. A movement prediction and adaptation method may be
equired. This may be created using a target model or adaptive
earning. The nature of the target plays an important role also.
dour localization was considered in [17]. This problem depends
eavily on the environment (wind direction) as well. It is impor-
ant to notice that some factors have meaning in relationship to
thers. For example, the dimensions of the environment is taken
nto account relative to the dimensions of the target(s) and robots.

nother important issue is the availability of robots, technology,
quipment and funds.

The nature of the localization defines the solution’s strategy and
mposes a specific behaviour upon the system, which may vary con-
Fig. 3. Block diagram of the application.

siderably from case to case. Good identification of the problem type
can generate optimization possibilities and ensures the quality of
the solution, by correctly covering all the possible cases.

The application was designed to locate a single static target in
the semi-structured, unknown, static and plain environment of the
arena (see Fig. 2). PSO-inspired algorithms have been shown, in
simulated experiments, to be efficient solutions to this problem. In
this paper it will be shown that those results can be reproduced in
real-world experiments.

3.2. PSO model versus real-world

In order to be able to apply the PSO technique for the search
problem in a real environment it is necessary to overcome some
problems. These are due to the difference between the PSO model
and the real-world. Particles are in one-to-one correspondence
with a robot, which must obey the laws of physics. Therefore their
movement is restricted: a robot, having bounded velocity and accel-
eration determined by the technology used, cannot “teleport” as
a particle does. Therefore it needs time to adjust its heading and
move to the next position in each iteration. Because each robot may
take a different amount of time to get to its next position, a syn-
chronization procedure was created. Another important difference
between abstract particles and real robots is that the latter have
dimensions and shape as opposed to the point-particles. A colli-
sion avoidance algorithm was implemented, because robots cannot
get however close to obstacles and other robots. The computation
of the fitness function must also be implemented. A detailed dis-
cussion about these differences and their effect on a PSO-inspired
search algorithm can be found in [6,11].

3.3. PSO-inspired solution

The solution, as mentioned above, uses the PCS service and the
PSO framework. The application is composed of a robot/particle

controller, a global localizer and a run environment (Fig. 3). The run
environment initializes the robots/particles’ states, the PSO algo-
rithm, the localizer and launches the GUI. It also binds together all
the components.

5502 C.I. Vasile, C. Buiu / Applied Soft Computing 11 (2011) 5498–5507

(a) The operation mode of avoiding an object,
using the pivot and rotation speeds

(b) Neural network structure

an obj

3

e
o
a
b
b
i
l

r
t
t
t
t
t
T
p

t
c

b
m
o
b
r
e
(

r
t
h
P
t
i
f
t
o
t
f
l
t
t
n
p
i
r

Fig. 4. Obstacle avoidance behaviour. (a) The operation mode of avoiding

.4. Robot controller

This module is responsible for controlling a Khepera III or an
-puck robot within the PSO search algorithm. It also contains a
bstacle avoidance procedure. It was built on top of the PSO particle
nd PCS Khepera III or PCS e-puck modules. This binds together the
ehaviour of a particle with its physical instance. To distinguish
etween the robots, each one is given a name and a color interval

n the RGB space. These are used by the GUI, respectively by the
ocalizer.

It is important to notice that unlike generic particles used in PSO,
eal robots have bearings, which may differ from the ones given by
heir velocity vector. This inconsistency may be due to the fact that
he robot may enter the obstacle avoidance mode and the fact that
he particle’s velocity in the PSO algorithm does not correspond
o the real one. The two velocities do not correspond, because of
he restrictions of the physical environment (as explained above).
herefore the velocity in the PSO search-space is used just to com-
ute the next position to be reached.

This module defines procedures, needed by the PSO framework,
o compute the fitness value, to move to the next position and to
heck if the target was found.

The fitness value is the two-dimensional Euclidean distance
etween the robot’s and the target’s centers. The target detection
ethod is implemented using the two infra-red ground sensors

f the Khepera III robot. Because the target is a black label, it can
e detected using infra-red light. On the other hand, the e-puck
obots do not have ground sensors, therefore the target is consid-
red detected if a robot is sufficiently close to the target’s position
e.g. within an area of a given radius, centered in the target).

Movement to the next position is achieved in two steps. First the
obot rotates towards the new location and then it moves forward
o it. The rotation angle is computed as the difference between the
eading, computed by using the new velocity of the particle in the
SO search space, and the robot’s current heading, obtained from
he global localization mechanism. The distance to the next position
s obtained by multiplying the one in search space with a conversion
actor. The forward movement can be interrupted by the detec-
ion of an obstacle or another robot. These cases are handled by an
bstacle avoidance procedure. The behaviour of the robot changes
o “coward” Braitenberg vehicle [18]. This is implemented using a
eedforward neural network. It is composed of a single two-neuron
ayer (Fig. 4(b)). The output values of the neurons, computed using
he infra-red sensors’ readings, are used to set the motor speeds of
he robot. However, these speeds are not set directly, because the

et does not calculate the right and left wheel speeds. Instead, a
ivot speed and a rotation speed are computed. The pivot wheel

s then chosen based upon the difference between the sums of the
ight, respectively left, sensor readings. The rotation speed is always
ect, using the pivot and rotation speeds and (b) neural network structure.

greater than the pivot speed, except when there is no obstacle, in
which case they are equal. The amplification factor and the weights
were determined by experiment.

The pivot speed is set to the wheel that is further away from the
obstacle, moving the robot away from it (Fig. 4(a)). The movement
between speeds’ updates is a uniform circular one. The center of
rotation is completely determined by the two speeds. In case the
robot gets very close to an obstacle, the pivot speed will become
zero or even negative and the center of rotation will be between
the wheels. The rotation angle depends on the two speeds and their
update time. This particular implementation was used because it
enables the robots to avoid very quickly other robots in close prox-
imity.

3.5. Global positioning

Global localization is implemented in two ways by using a
custom color-based tracking procedure (used in the Khepera III
experiments) or a dedicated tracking software, Swistrack [19] (used
in the e-puck experiments).

3.5.1. Custom tracking procedure for the Khepera III experiments
The custom tracking module was built using the open source

artificial vision OpenCV (Open Source Computer Vision) and the
PIL (Python Image Library) libraries. It is responsible for updating
the positions and heading of particles between the PSO algorithm’s
iterations. It also provides the GUI with images from a webcam.
It is built on top of the Localizer module and implements a global
positioning system. A relative positioning system used in collabora-
tive robot applications can be found in [20]. A detailed presentation
about positioning systems can be found in [21].

The localization system uses a Microsoft LifeCam VX-3000, posi-
tioned over the arena. Robot identification is implemented by
attaching colored disks on top of the robots. The disks are blue,
red and green colored, and each contains a smaller yellow interior
disk. This interior disk indicated the front of the robot. The robots’
positions and headings are computed based on the disks’ colors
and the interior disks. The target is a black square on the arena sur-
face (Fig. 2). The system uses three-dimensional interval vectors,
each component corresponding to one RGB channel, to identify the
colors: red, blue, green, yellow and black.

The positions are computed by extracting color blob bound-
aries from the image for each robot’s color. Then for each robot
the boundary of its inner yellow blob is extracted. The center of
the outer blob is the robot’s position. The heading is determined by

the position-vector defined by the centers of the two disks, inner
and outer (Fig. 5(a)). Positions are absolute and headings are taken
clockwise from the x-axis. The point of reference (the origin of the
axes) is the upper left corner of the image.

C.I. Vasile, C. Buiu / Applied Soft Computing 11 (2011) 5498–5507 5503

ackin

u
u
t
e
t
t
a
v
t

3
e

(
f
i
h
e
d
t
s

m
b
b
c
o
d
c

3

a
g
o
r
a
s

includes the PSO parameters (inertial coefficient, learning factors,
search-space boundaries), the camera parameters (index, bright-
ness, contrast and hue) and the robot’s parameters (name and color
intervals). They are presented in Tables 1 and 2.

Table 1
Run environment parameters.

PSO parameters

Parameter Value

Number of particles 2, 3 (Khepera III) and 4, 6 (e-puck)
Dimensions of the search-space 2
Boundaries of the search-space ([0, 640], [0, 480])
Maximum velocity of a particle 141
Inertia coefficient (w) 1.2
Local learning factor (c1) 2
Global learning factor (c) 2
Fig. 5. Robot localization. (a) Color based tr

The locations and headings are used by the PSO algorithm to
pdate the robot-particles states before computing the fitness val-
es and the local and global optima. It is important to mention
hat a delay is inserted before each start of update procedure. This
nsures that the camera has been stabilized. In addition, the access
o the internal image buffer is synchronized, because images from
he webcam are used in the localization procedure and in the GUI
s well. This module also collects state information (position and
elocity in the image-search-space) from the robots and delivers
hem to the GUI.

.5.2. Interfacing with the Swistrack tracking software for the
-puck experiments

In the experiments using the e-puck robots, a webcam
Microsoft LifeCam VX-3000) placed above the arena is used as well
or global positioning. In this case a dedicated multi-object track-
ng software, Swistrack, is used to compute absolute positions and
eadings of the robots. Markers are also placed on the top of the
-puck robots. In this case, the marker is a black triangle on a white
isk (Fig. 5(b)). Swistrack uses blob detection and tracking in order
o compute positions and headings. Interfacing with the Swistrack
oftware is done through a TCP/IP connection.

This positioning system uses identical markers, therefore a
ethod is implemented in order to establish the correspondence

etween robots and tracked markers. This correspondence has to
e done before running the experiments. In order to establish the
orrespondence each robot is rotated a fixed angle (30◦) while the
ther robots do not move. Rotation is used because this movement
oes not involve obstacle avoidance. After each robot “knows” its
orresponding tracked marker the experiment may start.

.6. Simulation module

This module is a lightweight implementation of the PSO search
lgorithm in a simulated environment. It was created to offer a
raphical, robot-independent, method for testing and monitoring

f the PSO algorithm. The program does not take into account envi-
onmental factors, nor the structure of the robots, but it implements

 simple collision detection and avoidance mechanism. It uses the
ame PSO framework as the real-world application. Although it is
g and (b) black and white marker tracking.

a very simple implementation, the experience gained developing
and using it has helped in debugging the PSO framework.

4. Results and interpretation

Experiments were conducted in order to show that the PSO-
inspired algorithm can successfully locate a target in an unknown
environment. These were done for different arena configurations,
start locations and number of robots.

4.1. Experimental setup

The experiments were made on a flat, white, 1.5 m × 1 m surface.
It is bounded by walls and contains a number of white polystyrene
objects, used as obstacles, and the target, which is a black or red
label stuck on the table. A webcam has been put above the arena
and is used in the positioning system. Markers (colored or black and
white disks) have been attached to the robots, to allow the localiza-
tion system to compute their position and heading. The software
run environment was implemented as a script which contains all
parameters needed to run the collective search application. This
2

Stop condition Target found or maximum number of
iterations exceeded

Maximum number of iterations 40
Conversion constant 2.34375 mm/pixel

5504 C.I. Vasile, C. Buiu / Applied Soft Com

Table 2
Camera parameters and colors.

Parameter Value

Camera parameters
Index 1
Brightness 50
Hue 50
Contrast 50
Delay 1 s

Robots and target color intervals for the Khepera III experiments
Red (outer disk) ([160, 255], [0, 120], [0, 90])
Blue (outer disk) ([0, 30], [90, 140], [160, 255])
Green (outer disk) ([90, 125], [160, 225], [90, 130])
Yellow (inner disk) ([130, 255], [150, 220], [0, 120])
Black (target) ([0, 30], [0, 30], [0, 30])

Table 3
Experimental results with 3 Khepera III robots.

Experiment no. No. of iterations Duration

1 9 3 min 44 s
2 7 2 min 45 s
3 6 2 min 25 s

e

•
•

•
•

•

T
e

4 9 3 min 42 s
5 12 5 min 02 s

A number of hypotheses were assumed in the design of the
xperiments. These are as follows:

The environment is static and unknown to the robots.
Illumination of the environment is considered to be uniform in
order to avoid dark shadows.
There is only one target in the arena and it is static.
The distance between a robot and a target can be “sensed” by

the robot from any location in the arena, but the location (the
coordinates) of the target is unknown to the robots.
Each robot “knows” its own position in the arena. The initial posi-
tion is random.

able 4
-Puck experimental results.

Experiment no. No. robots No. of iterations Durat

1 4 7 54 s

2 4 6 47 s

3 4 6 48 s

4 4 5 42 s

5 4 6 48 s

6 6 5 37 s

7 6 7 1 min
8 6 7 1 min
9 6 5 35 s

10 6 5 38 s

11 4 10 1 min
12 4 9 1 min
13 4 9 1 min
14 4 12 1 min
15 4 16 2 min
16 6 8 1 min
17 6 9 1 min
18 6 10 1 min
19 6 12 2 min
20 6 7 1 min
21 6 13 2 min
22 6 14 2 min
23 4 8 1 min
24 4 8 1 min
25 4 12 2 min
26 6 6 1 min
27 6 5 46 s

28 6 7 1 min
29 6 23 4 min
30 6 10 1 min
puting 11 (2011) 5498–5507

• Robots can communicate between each other at any range. They
exchange data about local optima in order to establish the global
optimum and also for synchronization between loops.

• There is no central coordination node, and the robots will try to
follow their local (own) and global optima. The system is com-
pletely autonomous, it runs without human intervention to find
the target.

In order to measure the performance of the multi-robot system,
two metrics are considered, the total execution time of an exper-
iment and the number of iterations. The total execution time is
important because it is desired to find the target as fast as possi-
ble. The number of iterations, on the other hand, is used in order
to measure the performance of the PSO control algorithm without
taking into account the execution time of each iteration. The exe-
cution time of an iteration is determined by the localization system
and the movement of the robots. The robots’ movement depends on
the robots’ types and the movement procedure used. The number
of iterations and the total execution time give a good estimation of
the performance of the system.

As stated in Section 3.4, the target is considered to be found if a
robot detects the black label on the arena with its ground infrared
sensors in the Khepera III experiments, or if a robot is within an
area of 10 cm radius centered in the target’s position in the e-puck
experiments.

The distance of a robot to the target is computed based on the
information from the positioning system. Therefore the distance
“sensed” by the robots is influenced by the noise and errors of the
positioning system, in particular by the webcam. More details are
provided in Section 4.2.

4.2. Results
The following comments were made based on the results:

• In the Khepera III experiment, which use the color based tracking
system, the localization time is significant, about 50% of the total

ion Arena configuration Target position

Without obstacles Center of the arena
Without obstacles Center of the arena
Without obstacles Center of the arena
Without obstacles Center of the arena
Without obstacles Center of the arena
Without obstacles Center of the arena

 03 s Without obstacles Center of the arena
 06 s Without obstacles Center of the arena

Without obstacles Center of the arena
Without obstacles Center of the arena

 45 s Few obstacles Center of the arena
 25 s Few obstacles Center of the arena
 26 s Few obstacles Center of the arena
 47 s Few obstacles Down left corner of the arena
 38 s Few obstacles Up right corner of the arena
 20 s Few obstacles Center of the arena
 36 s Few obstacles Center of the arena
 44 s Few obstacles Center of the arena
 Few obstacles Center of the arena
 05 s Few obstacles Center of the arena
 10 s Few obstacles Down left corner of the arena
 28 s Few obstacles Up right corner of the arena
 17 s Many obstacles Center of the arena
 11 s Many obstacles Center of the arena
 10 s Many obstacles Down left corner of the arena
 02 s Many obstacles Center of the arena

Many obstacles Center of the arena
 02 s Many obstacles Center of the arena
 13 s Many obstacles Down left corner of the arena
 34 s Many obstacles Up right corner of the arena

C.I. Vasile, C. Buiu / Applied Soft Computing 11 (2011) 5498–5507 5505

F es, (b)
o

•

•

•

•

ig. 6. Arena configuration for the e-puck experiments. (a) Arena without obstacl
bstacles and robots.

execution time. In the e-puck experiments, which use the Swis-
track software, the localization time is less expensive and can be
neglected.
The algorithm can overcome situations of reciprocal blockage.
This is done in several iterations though.
The algorithm’s behaviour is especially highlighted by two PSO
specific behaviours in particular. The first observed behaviour is
that of the robots moving towards each other. This is specific to
the PSO technique, because the particles velocities, used to com-
pute their positions, are calculated based on the global optimum.
Therefore the swarm has the tendency to converge. The second
one can be observed when the robot is near the target, but does
not go over it, i.e., does not detect it, and moves away from it.
In the next iteration the robot goes back towards the target. This
behaviour indicates that the robot is going towards the best fit-
ness value. Since it has a worse value, because it moved away,
the robot will rotate and go back towards the local and global
optimum, towards the target.
In all experiments, the robots managed to find the target before
the maximum number of iterations was exceeded. In a number of
instances, all robots were in the target’s vicinity. The number of
iterations and execution time are presented in Table 3 for Khep-
era III experiments and Table 4 for e-puck experiments. It can

be deduced that the multi-robot system converges to the target
stably and quickly.
The obstacle avoidance mechanism is working well, no
wall-robot or robot-robot collisions were observed, but its perfor-
 arena with few obstacles, (c) arena with many obstacles and (d) arena with few

mance may increase if more adaptive control techniques would
be used.

• Most of the movements to the next positions are interrupted by
the detections of an obstacle. The robots thus enter the obstacle
avoidance procedure frequently.

Three arena configurations were considered in the e-puck
experiments (see Fig. 6), without obstacles (Fig. 6(a)), with few
obstacles (Fig. 6(b)) and with many obstacles (Fig. 6(c)). The deploy-
ment of the swarm is a very important problem and it may have
a great impact on the performance of the search algorithm. In all
experiments the robots were distributed randomly in the arena.
In some experiments, the target’s position was changed from the
center of the arena to one of its corners. The convergence of the
robots to the target (center of the arena) can be seen in Fig. 6(d).
The dimensions of the robots in relation to the arena can also be
noticed.

In order to prove the relative effectiveness of the proposed
approach, random search experiments were conducted. It is shown
in Fig. 7, the minimum, maximum and mean execution time of
the random search experiments in the three arena configurations
and two target positions, center and upper right corner of the
arena. The execution time in random searches varies very much

between experiments and depends heavily on the initial positions
of the robots. Moreover, in the experiments with the target in the
upper right corner of the arena, the performance of the random
search decreases significantly. The decrease in performance can be

5506 C.I. Vasile, C. Buiu / Applied Soft Computing 11 (2011) 5498–5507

Without obstacles Few obstacle s Many obstacles
0

60

120

180

240

300

360

420

480

540

600

660

720

a co

E
xe

cu
tio

n
tim

e
(s

ec
)

Random Search Experiments

4 Robots − Center
4 Robots − Up right corner
6 Robots − Center
6 Robots − Up right corner

 searc

e
r
b
p
a
t

e
t
t

•

•

•

Aren

Fig. 7. Random

xplained by the fact that it is less likely for the robots to randomly
each the corner. Also, the detection area is a quarter of a disk,
ecause of the arena boundaries. On the other hand, with the pro-
osed PSO-based search, the execution time is much more stable
nd there is only a slight decrease of performance for the case with
he target in the upper right corner.

It is very useful in many applications to identify and analyse the
rror sources in order to minimize their influence and effects on
he application and results. The most important error sources in
he proposed collaborative search application are:

Webcam – It is the most important source of error in the appli-
cation, because it is used in the computation of the positions
and headings of the robots. Errors may be large due to the
poor image quality obtained with the available Linux driver,
gpscav1-20071224. They are important in the computation of
the bearings. If the markers are not properly detected, then the
robots will move on random headings. Another factor is the lim-
ited resolution of the camera with a conversion coefficient of
2.34375 mm/pixel. By experiment it has been observed that the
localization errors are less than: 10 cm for position and 20◦ for
heading, for the color based tracking algorithm, and 2 cm for
position and 5◦, for heading for the Swistrack based procedure.

These errors are, however, not fatal to the PSO procedure which,
due to its nature, is very fault-tolerant against positioning errors.
If a robots moves in a random way, in the next iteration it will go
towards the new optima. This can be explained by the fact that
the PSO algorithm itself contains random components, which are
used for optimization.

The effect of the errors on the algorithm is of delaying the
convergence, that is the total execution time increases.
Illumination – Illumination is the second most important source of
errors, because it affects both the webcam and the infra-red sen-
sors. By creating shadows and reflections, it causes color shifts,
which make the marker detection less precise. In the color based
localization, larger RGB intervals must be taken in order to detect
all the pixels of a given color. This, however, increases the risk of
detecting pixels which do not belong to the robot. This phenom-

ena complicate the calibration process of the localization system
and contribute indirectly to its errors’ magnitude.
Infra-red sensors – The infra-red sensors are the main source of
errors in the obstacle avoidance algorithm. They are affected by
nfigurations

h experiments.

the noise in environment and by sources of infra-red light, like
the sun, incandescent lightbulbs and infra-red sensors of other
robots. Errors are significant, especially in the case of robot–robot
interaction. The effects of these error have been minimized by
implementing a special infra-red error correction module.

• Wheel slippage – Because the surface of the arena used is smooth,
the wheels may slip on it. The errors derived from this phe-
nomenon are insignificant in this application, but can become
significant if odometric positioning is used instead of a global
one.

5. Conclusions

The software system proposed in this paper has been success-
fully used to develop a collaborative robotics application. It was
shown that it facilitates the application development, by offering
standard easy-to-use robot control interfaces, a framework for the
swarm intelligence PSO technique, a number of utility programs for
simulation and visualization and sample and test code.

The proposed application and its implementation demonstrate
the importance and the power of the PSO algorithm, even in
the presence of multiple error sources. The robots have man-
aged to find the target in a low number of iterations and in all
the tests. Thus, it is shown that the swarm intelligence methods
can be used successfully for solving complex tasks, like find-
ing a target in an unknown environment. The experiments have
shown that the execution times of the PSO algorithm are sim-
ilar, unlike in the random-walk searches. Therefore it has been
demonstrated that the collaborative solution is reliable, stable and
efficient. These results, which were already established in simu-
lated experiments [6,7], were obtained in real-world experiments,
thus validating the simulated results. The authors are not aware
of any previous publications on real-world experiments on multi-
robot search using PSO-inspired algorithms. The main result of the
study is the successful testing of a PSO-inspired algorithm in real
environments.

Future work will include improvements to the PCS server and
protocol. These will include adding support for Koala and other

robots, support for multi-robot control from a single server, extra
access policies, error messages in the Not Acknowledge response
packages, support for more detailed logging and more commands
to the server. Another important change will be to implement a

ft Com

c
i
a
i

p
p
b

A

P

R

[

[

[

[

[

[

[

[

[

[

[

[

C.I. Vasile, C. Buiu / Applied So

oncurrent version of the request handling mechanism. The robot
nterfaces will also be extended with more high-level movement
nd behaviour methods. The GUI will be extended to allow more
nteraction with the algorithms and the robots.

However the most important change will be adding a com-
letely distributed variant of the PSO algorithm, with a local
ositioning system. Other swarm intelligence techniques will also
e explored.

cknowledgement

This work was supported by CNCSIS UEFISCSU, project number
NII IDEI 1692/2008.

eferences

[1] T.H. Labella, M. Dorigo, J.L. Deneubourg, Division of labour in a group of robots
inspired by ants’ foraging behaviours, ACM Transactions on Autonomous and
Adaptive Systems 1 (1) (2001) 4–25.

[2] A. Martinoli, Swarm Intelligence in Autonomous Collective Robotics: From
Tools to the Analysis and Synthesis of Distributed Control Strategies. Ph.D. (The-
ses number 2069). École Polythechnique Fédérale de Lausanne, Department of
Informatics, 1999.

[3] G. Di Caro, M. Dorigo, AntNet: distributed stigmergetic control for communi-
cations networks, Journal of Artificial Intelligence Research 9 (1998) 317–365.

[4] A.L. Christensen, R. O’Grady, M. Dorigo, Morphology control in a self-assembling
multi-robot system, IEEE Robotics and Automation Magazine 14 (4) (2007)
18–25.

[5] N. Correll, A. Martinoli, Collective inspection of regular structures using a
swarm of miniature robots, in: Springer Tracts in Advanced Robotics, The 9th
Int. Symp. on Experimental Robotics, Singapore, 2004, pp. 375–385.

[6] J. Pugh, A. Martinoli, Inspiring and modeling multi-robot search with parti-
cle swarm optimization, in: IEEE Swarm Intelligence Symposium, Honolulu,
Hawaii, 2007, pp. 332–339.

[7] J. Pugh, A. Martinoli, Distributed adaptation in multi-robot search using particle
swarm optimization, in: Lecture Notes in Computer Science, 10th International
Conference on the Simulation of Adaptive Behavior, Osaka, Japan, 2008, pp.
393–402.

[8] J. Pugh, A. Martinoli, Multi-robot learning with particle swarm optimization,
in: International Conference on Autonomous Agents and Multiagent Systems,
Hakodate, Japan, 2006, pp. 441–448.

[9] S. Doctor, G.K. Venayagamoorthy, V.G. Gudise, Optimal PSO for collective
robotic search applications, in: IEEE Congress on Evolutionary Computation,
Portland, Oregon, 2004, pp. 1390–1395.

10] G. Venayagamoorthy, L. Grant, S. Doctor, Collective robotic search using hybrid
techniques: fuzzy logic and swarm intelligence inspired by nature, Engineering
Applications of Artificial Intelligence 22 (3) (2008) 431–441.

11] J. Pugh, A. Martinoli, The cost of reality: effects of real-world factors on multi-

robot search, in: IEEE International Conference on Robotics and Automation,
Roma, Italy, 2007, pp. 397–404.

12] A. Hayes, How many robots? Group size and effciency in collective search tasks,
in: Proc. of the 6th Int. Symp. on Distributed Autonomous Robotic Systems,
Fukuoka, Japan, 2002, pp. 289–298.
puting 11 (2011) 5498–5507 5507

13] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat, J.-
C. Zufferey, D. Floreano, A. Martinoli, The e-puck, a robot designed for education
in engineering, in: Proceedings of the 9th Conference on Autonomous Robot
Systems and Competitions, vol. 1, no. 1, 2009, pp. 59–65.

14] F. Lambercy, G. Caprari, Khepera III Manual ver 2.2. Available at: http://ftp.k-
team.com/KheperaIII/Kh3.Robot.UserManual.2.2.pdf, on: 21.08.2009.

15] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Pro-
ceedings of the 7th International Symposium on Micro Machine and Human
Science, Nagoya, Japan, 1995, pp. 39–43.

16] W. Burgard, M. Moors, C. Stachniss, F. Schneider, Coordinated multi-robot
exploration, IEEE Transactions on Robotics 21 (2005) 376–386.

17] A. Hayes, A. Martinoli, R. Goodman, Swarm robotic odor localization, in: Proc.
of the IEEE Conf. on Intelligent Robots and Systems, Maui, USA, 2001, pp.
1073–1078.

18] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology, MIT Press, Cam-
bridge, MA, 1984.

19] T. Lochmatter, P. Roduit, C. Cianci, N. Correll, J. Jacot, A. Martinoli, SwisTrack –
a flexible open source tracking software for multi-agent systems, in: Proceed-
ings of the IEEE/RSJ 2008 International Conference on Intelligent Robots and
Systems (IROS 2008), 2008, pp. 4004–4010.

20] J. Pugh, X. Reamy, C. Favre, R. Falconi, A. Martinoli, A Fast on-board relative
positioning module for multi-robot systems, in: IEEE/ASME Transactions on
Mechatronics, Focused Section on Mechatronics in Multi Robot Systems, 2009,
in press, http://infoscience.epfl.ch/record/131138.

21] C. Buiu (Ed.), Robotţi cognitivi – Concepte, Arhitecturi, Aplicaţii (Cogni-
tive robots – Concepts, Architectures, Applications), Universitară, Bucureş ti,
2008.

Cristian I. Vasile was born in December 1986. He grad-
uated the Faculty of Automatic Control and Computers
of the POLITEHNICA University of Bucharest, Romania
in 2009. He is a master student in the program Intel-
ligent Control Systems at the Department of Automatic
Control and Systems Engineering of the same University.
He is also a teaching assistant at the Laboratory of Nat-
ural Computing and Robotics of the same department.
His primary research interests are collaborative robotics,
swarm intelligence, human–swarm interfaces and dis-
tributed algorithms.

Cătălin Buiu was born in June 1968. He graduated
the Faculty of Automatic Control and Computers of the
POLITEHNICA University of Bucharest, Romania in 1992
and obtained the PhD in control engineering at the same
Faculty in 1997. He is now a Professor of Cognitive
Robotics and Modelling of Biological Processes and Head
of the Laboratory of Natural Computing and Robotics at
the Department of Automatic Control and Systems Engi-
neering of the same University. His active research areas
include intelligent control, cognitive robotics, modelling
of biological processes, and educational technologies. He

has authored or co-authored 9 books and more than
60 journal and conference papers. He is an IEEE mem-

ber, member of the IEEE Technical Committee on Safety, Security, and Rescue
Robotics, Member of the IFAC Technical Committee on Intelligent Autonomous
Vehicles.

http://ftp.k-team.com/KheperaIII/Kh3.Robot.UserManual.2.2.pdf
http://infoscience.epfl.ch/record/131138

	A software system for collaborative robotics applications and its application in particle swarm optimization implementations
	1 Introduction
	2 Software system
	2.1 PCS service
	2.2 PSO framework
	2.3 GUI

	3 The collective search application
	3.1 Search problem
	3.2 PSO model versus real-world
	3.3 PSO-inspired solution
	3.4 Robot controller
	3.5 Global positioning
	3.5.1 Custom tracking procedure for the Khepera III experiments
	3.5.2 Interfacing with the Swistrack tracking software for the e-puck experiments

	3.6 Simulation module

	4 Results and interpretation
	4.1 Experimental setup
	4.2 Results

	5 Conclusions
	Acknowledgement
	References

