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Abstract

This report presents the results of a friendly competition for formal verification and
policy synthesis of stochastic models. The friendly competition took place as part of the
workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2018. In
this first edition, we present five benchmarks with different levels of complexities and
stochastic flavours. We make use of six different tools and frameworks (in alphabetical
order): Barrier Certificates, FAUST2, FIRM-GDTL, Modest, SDCPN modelling & MC
simulation and SReachTools; and attempt to solve instances of the five different benchmark
problems. Through these benchmarks, we capture a snapshot on the current state-of
the art tools and frameworks within the stochastic modelling domain. We also present
the challenges encountered within this domain and highlight future plans which will push
forward the development of more tools and methodologies for performing formal verification
and optimal policy synthesis of stochastic processes.

1 Introduction

Disclaimer The presented report of the ARCH friendly competition for stochastic mod-
elling group aims at providing a unified point of reference on the current state of the art
in the area of stochastic models together with the currently available tools and framework
for performing formal verification and optimal policy synthesis to such models. We further
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provide a set of benchmarks which we aim to push forward the development of current
and future tools. To establish further trustworthiness of the results, the code describing
the benchmarks together with the code used to compute the results is publicly available at
gitlab.com/goranf/ARCH-COMP.

This report summarizes results obtained in the 2018 friendly competition of the ARCH
workshop1 for the newly established stochastic modelling group. This new category in the
friendly competition aims to push forward the verification of such models, and has the practical
goal to test existing or prototype tools that verify a set of new benchmarks for such models.

Within this category, we have identified five novel benchmarks, comprising different model
structures and dealing with diverse applications. All the benchmarks have varying levels of
complexity, different type of stochasticity and different problem specifications. Using the current
tools and algorithmic frameworks, we perform verification tasks on each of the benchmarks. The
tools and frameworks used are (in alphabetical order): Barrier Certificates, FAUST2, FIRM-
GDTL, Modest, SDCPN modelling & MC simulation, SReachTools. We further identify the
current challenges with running the benchmarks and set out a plan for this category within
upcoming rounds of the ARCH competition.

This report has the following structure. Section 2 presents the benchmark descriptions which
include a discussion of the individual models syntax and semantics, and a presentation of the
specifications of interest. Next, in Section 3 we present the participating tools or algorithmic
frameworks that are used to solve instances of the individual benchmarks. We present the
results for each benchmark in Section 4. Finally, we identify key challenges and discuss future
plans in Section 5.

2 Benchmarks

We discuss a new set of benchmarks for stochastic models, and attempt a uniform syntactic
presentation of them. These are: an anesthesia delivery system; a building automation system;
a heated tank; a lawn mower; and a benchmark dealing with a Mars rover. Each benchmark has
specific features, which we delineate first. Next, we discuss each benchmark, the different prob-
lems to be solved together with specifications of interest, and different paths to their successful
verification. Afterwards, the outcomes of the verification of each benchmark are presented in
detail.

Specific modelling features We briefly list the key features of each benchmark:

• Anaesthesia delivery system benchmark : this benchmark is based on an automated anaes-
thesia delivery problem, with a human (an anaesthesiologist) in the loop [21, 5]. The
model is described in the form of a discrete-time stochastic hybrid system [1] that de-
pends both the current state of the model and a history of the past input actions by the
anaesthesiologist. Stochasticity comes both in the form of process noise in the underlying
continuous variables and in uncertainty on the applied input action. This benchmark
focuses on two verification problems: (i) the stochasticity viability problem and (ii) the
stochastic first-time hitting reach-avoid problem.

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH
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• Building automation systems benchmark : this benchmark is based on a library of models
describing different components within a smart building system [10]. We focus on two in-
stances of possible benchmarks, both of which describe discrete-time linear systems with
varying numbers of continuous state variables. The overall benchmark focuses on the
verification and policy synthesis around safety properties.

• Heated tank benchmark : this benchmark is based on a known model within the area of
reliability and safety [33, 34, 41]. The benchmark is composed of discrete states that
transition using Poisson arrivals, depending on the failure rates of the tank and on con-
tinuous variables describing the temperature and water level in the tank. The continuous
variables evolve in continuous time. The difficulty in this benchmarks includes the very
low probability of transitions between states due to the low failure rates.

• Lawn mower benchmark : this benchmark focuses on controller synthesis and on verifica-
tion for a driverless industrial-size lawn mower [20]. While a number of diverse schemes
can be used for synthesising a controller, we use one that has a simple switching mech-
anism for guiding the mower between way-points in the field. We describe discrete-time
dynamics of the mower together with the controller architecture. The closed-loop model
fits into the framework of discrete-time hybrid systems, which has six continuous states,
two discrete modes, and nonlinear vector fields in each mode. Although statistical tech-
niques such as multilevel Monte Carlo method [17] can be used to verify properties of the
continuous-time dynamics presented in [20], we transform the model into discrete-time
polynomial dynamics and use barrier certificates [27] for the verification task.

• Mars rover benchmark : this benchmark considers the problem of planetary exploration
with a two-agent team composed of a Mars rover and a Mars helicopter, tasked to collect
a set of samples from the Mars surface. Due to the high cost and risk associated with
these missions, it is critical to have strong correctness and performance guarantees on the
robot behaviours. This benchmark is composed of two agents described using partially
observable models operating in a partially-known deterministic environment. It is tasked
with complex mission specifications that could be used for real Mars rover operations [36,
35].

2.1 Anaesthesia Delivery System Benchmark

This section proposes a benchmark problem for stochastic verification techniques. Past bench-
marks and work exist for automated anaesthesia delivery systems [21, 5]. We consider the
problem of providing probabilistic guarantees of safety for the automated anaesthesia deliv-
ery problem with a human (anaesthesiologist) in the loop. We use a discrete-time stochastic
hybrid system model to describe the patient’s depth of hypnosis, based on the well-studied
multi-compartment model for delivery of Propofol (anaesthetic) in paediatrics. Propofol can be
delivered via two mechanisms: via a bolus dose, delivered by the human, or via infusion pump,
whose rate is determined by the automation. We model the human’s action (i.e., the delivery
(or not) of a bolus dose of anaesthetic), as a non-deterministic, discrete-time stochastic process
that depends on the current state of the system, as well as the past actions of the human in a
predetermined interval. For the infused Propofol, we presume a piecewise constant input that
is bounded. Uncertainty in the system dynamics is captured via additive Gaussian noise. Two
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problems of interest are 1) a viability problem, in which we seek to maximise the probability of
the state lying within known, safe depths of hypnosis; and 2) a reach-avoid problem, in which
we seek to maximise the probability of the state reaching a desirable depth of hypnosis, while
staying within safe hypnosis depths.

2.1.1 Model formulation

We denote a discrete-time time interval by N[a,b] for a, b ∈ N and a ≤ b, which inclusively
enumerates all integers in between (and including) a and b. We denote non-random vectors
with an overline, random variables with bold case, random vectors with bold case and an
overline, In ∈ Rn as the identity matrix, the Cartesian product of the set G with itself k ∈ N
times as Gk, and the cardinality of G with |G|.
Propofol concentration in the patient with external drug administration The con-
centration of a drug administered to a patient is often represented by a multi-compartment
model [26]. The concentration of Propofol in different compartments of the body are modelled
using the three-compartment pharmacokinetic system [32, 30, 21]:

ẋ(t) =

−(k10 + k12 + k13) k12 k13

k21 −k21 0

k31 0 −k31

x(t) +


1
V1

0

0

u(t) (1)

The state x(t) = [x1(t) x2(t) x3(t)]> ∈ X = R3 represents the concentration in each of the
three compartments. The input u(t) ∈ U ⊂ R represents the rate of administration of Propofol,
and V1, kij ∈ R (i, j ∈ {1, 2, 3}) are patient dependent parameters. Table 1 lists the parameter
values determined for a 11-year old child weighing 35 kilograms from the Paedfusor dataset [2].

k10 k12 k13 k21 k31 V1
0.4436 0.1140 0.0419 0.0550 0.0033 16.044

Table 1: Model Parameters from the Paedfusor dataset.

Automated anaesthesia delivery and anaesthesiologist in the loop We discretise the
continuous-time model (1) using a zero-order hold with a time-step of Ts = 20s, and presume
that the anaesthesiologist input occurs exactly at the sampling instant. The discrete-time
approximation of (1) (using parameter values given in Table 1) is

x[k + 1] =

[
x1[k+1]

x2[k+1]

x3[k+1]

]
=

[
0.8192 0.03412 0.01265

0.01646 0.9822 0.0001

0.0009 0.00002 0.9989

][ x1[k]

x2[k]

x3[k]

]
+ ω[k] +

[
0.01883

0.0002

0.00001

]
(v[k] + σ[k]) (2)

= Ax[k] + ω[k] +B(v[k] + σ[k]) (3)

The automated input is v[k] ∈ V, and the input from the anaesthesiologist is the random
variable σ[k] ∈ H, a finite set that contains all possible dosages the anaesthesiologist can give
at the current time instant k. We presume the anaesthesiologist may either choose to not
provide a bolus dosage or give a bolus dosage at the rate of 30 mg/min for Ts seconds resulting
in a dose of 10 mg being administered during the interval of Ts seconds. The zero-mean
Gaussian random vector ω[k] ∼ N (0,M) with known covariance matrix M ∈ R3×3 accounts
for the variation in the system model for different patients. State matrices are described by
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system matrix A ∈ R3×3 and input matrix B ∈ R3×1. The bolus dosage ensures that the
required concentration of the drug can be achieved and maintained throughout the duration of
administration with the help of a trained anaesthesiologist [26]. In this benchmark problem,
we choose V = [0, 7] mg/min, H = {0, 30} mg/min, and M = 10−3I3. The continuous state

x[k] = [x1[k] x2[k] x3[k]]
> ∈ R3 is a random vector due to the stochastic human input σ[k]

and the noise ω[k].

Probabilistic model of the anaesthesiologist actions We model the bolus dosage, σ[k],
as a stochastic process that depends on the current state x1[k] and the past values of σ[·]. We
also assume the anaesthesiologist uses a concentration threshold parameter α to decide if a
bolus dosage is to be given. Table 2 describes a fictitious anaesthesiologist model, through the
probability of applying the bolus dosage under various conditions.

Probability of applying
Conditions

the bolus dosage
0.95 x1[k] > α and 0/1 bolus dosage was given in past three minutes
0.90 x1[k] ≤ α and 0 bolus dosage was given in past three minutes
0.50 x1[k] ≤ α and 1 bolus dosage was given in past three minutes

0 otherwise

Table 2: A model of the anaesthesiologist’s decision to apply a bolus

2.1.2 Discrete-time stochastic hybrid system model

We write (2) as a discrete-time stochastic hybrid system (DTSHS) [1] by defining the tuple
H(X ,Q,V, Tx, Tq), where

1. X = R3 is the continuous state space,

2. Q = {0, 1}9 is the discrete state space,

3. S = Q×X is the hybrid state space,

4. V = [0, 7] mg/min is the admissible controls for the automation,

5. Tq : Q×S → [0, 1] is a discrete stochastic transition kernel on Q given the current hybrid
state (q, z) ∈ S and is defined by (5), and

6. Tx : B(X )× S × V → [0, 1] is a Borel-measurable stochastic kernel on X given given the
current hybrid state and the current automation action (q, z, v) ∈ S × V and is defined
by (6).

We first define the (normalised) anesthesiologist input augmented with his/her past actions

as q[k] ∈ Q = {0, 1}9, i.e., a binary “counter” that counts the number of bolus dosages given
by the user in the past 9 time steps or three minutes (9Ts = 180s), since the stochastic process
describing the anaesthesiologist actions is not inherently Markov. The dynamics of the discrete
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state are described by

q[k + 1] =



0 0 . . . 0 0

1 0 . . . 0 0

0 1 0 . . . 0

...
. . .

. . .
. . . 0

0 . . . 0 1 0


q[k] +


1
30

0

...

0

σ[k]. (4)

The binary counter state q[k] is a random vector since σ[k] is a random variable. We incorporate
the anaesthesiologist model in Table 2 to define the discrete transition kernel,

Tq(q
′, q, z) =



0.95 q′ = [1 q1:8]
>
, ‖q‖1 ≤ 1, z1 > α

0.05 q′ = [0 q1:8]
>
, ‖q‖1 ≤ 1, z1 > α

0.9 q′ = [1 q1:8]
>
, ‖q‖1 = 0, z1 ≤ α

0.1 q′ = [0 q1:8]
>
, ‖q‖1 = 0, z1 ≤ α

0.5 q′ = [1 q1:8]
>
, ‖q‖1 = 1, z1 ≤ α

0.5 q′ = [0 q1:8]
>
, ‖q‖1 = 1, z1 ≤ α

1 q′ = [0 q1:8]
>
, ‖q‖1 = 2

0 otherwise

(5)

where q1:8 is the vector [q1 . . . q8]
> ∈ {0, 1}8, and z1 ∈ R is the first component of z. From

(4), the first component of q′1 is 1 if the current action of the anaesthesiologist σ[k] is 30 (apply
bolus); otherwise, q′1 is 0.

The stochastic continuous state transition kernel, Tx, can be defined using (2) and the
probability measure over (R3,B(R3)). Since ω[k] ∼ N (0,M), if the current automation input
is ν ∈ V, the current continuous state is z ∈ X , and the discrete state q ∈ Q

Tx(·|q, z, ν) ∼ N (Az +B(ν + 30q1),M). (6)

2.1.3 Verification problem

Consider a safe set K = {z ∈ X : 1 ≤ z1 ≤ 6, 0 ≤ z2 ≤ 10, 0 ≤ z3 ≤ 10} ⊂ X , and a target set
T = {z ∈ X : 4 ≤ z1 ≤ 6, 8 ≤ z2 ≤ 10, 8 ≤ z3 ≤ 10} ⊂ X .

Problem 2.1.1. (Stochastic viability problem) Given an initial state (q[0], z[0]) ∈ S, com-
pute the maximum probability of guaranteeing x[k] ∈ K for k ∈ N[0,10], and design an admissible
controller that achieves this probability.

Problem 2.1.2. (Stochastic first hitting time reach-avoid problem) Given an initial
state (q[0], z[0]) ∈ S, compute the maximum probability of reaching T as early as possible while
staying in K, and design an admissible controller that achieves this probability.
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2.2 Building Automation System Benchmark

The Building Automation System (BAS) benchmark is a modular and extendable benchmark
constructed from a library of stochastic models representing the different components making
up a BAS. The library of models is presented in [10] and the reader is referred to the afore-
cited paper for more details. Using this library of models we setup two instances which aim to
address verification and policy synthesis respectively. We denote the first instance as CS1BAS,
while the second instance as CS2BAS. For each instance (i) we establish the dynamics of the
models, (ii) the specification of interest, and (iii) we describe possible solutions.

2.2.1 CS1BAS: Model

Figure 1: BAS setup for the first case study

We consider two zones, each heated by one radiator and with a common supply air, as
portrayed in Figure 1. The model is described as stochastic linear discrete-time model

x[k + 1] = Ax[k] +Bu[k] +Q+ ΣW [k] (7)

ys[k] =

[
1 0 0 0
0 1 0 0

]
x[k], (8)

with a uniform sampling time ∆ = 15 minutes. Here, the matrices A, B, Q are properly
sized and Σ = diag([(

√
∆σz1)2 (

√
∆σz2)2 (

√
∆σrw,r1)2 (

√
∆σrw,r2)2]) encompasses the variances of the

process noise for each state. W =
[
w1 w2 w3 w4

]T
are independent Gaussian random

variables, which are also independent of the initial condition of the process. The exact matrix
values are kept within the ARCH repository.

2.2.2 CS1BAS: Specification

We consider the stochastic safety property: to decide whether traces generated by the models
remain within a specified safe set for a given time period. Specifically, this is described using
the PCTL property:

Φ := P=p[�
≤N=1.5hours S] (9)

where p is the probability of satisfaction, S is the safe set is described as an interval around
the temperature set-point TSP = 20oC ±0.5oC, specifically,

S =


19.5 20.5
19.5 20.5
19.5 20.5
19.5 20.5

 .
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We have defined the acceptable probability of the specification to be true for p ≥ 0.9.

2.2.3 CS2BAS: Model

In this second case study we focus on the stochastic dynamics of the zone component. The
model is a discrete-time model with a sampling time ∆ = 15 minutes, and takes the form of

xc[k + 1] = Acxc[k] +Bcuc[k] + Fcdc[k] +Qc (10)

yc[k] =
[
1 0 0 0 0 0 0

]
xc[k]. (11)

Here the continuous state variable xc is composed of 7 states representing the zone and wall
temperatures, the input uc corresponds of the fan supply rate having a dimension of 1. The
disturbance vector dc has a dimension of 6 which represent external heat sources (weather, oc-
cupancy, radiators), while Qc represents constant additive terms within the model. We model
the disturbances as random external effects following Gaussian distributions with a mean µ and
variance σ, affecting the room temperature dynamics as Tout[k] ∼ N (µ = 9, σ = 1), Thall[k] ∼
N (µ = 15, σ = 1), CO2i [k] ∼ N (µ = 500, σ = 100), i ∈ {1, 2}, Trw,ri [k] ∼ N (µ = 35, σ =
5), i ∈ {1, 2}.

2.2.4 CS2BAS: Specification

We would like to synthesise a policy ensuring that the temperature within zone 1 does not
deviate from the set point by more then 0.5oC over a time horizon equal to 1.5 hours (i.e
N = 6). This can be translated into following PCTL specification:

Φ := P=p[�
≤N=6 |Tz1 − TSP | ≤ 0.5]

over which p is to be maximised for the optimal policy. Here, TSP = 20oC.
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Figure 2: Illustration of the heated tank benchmark (version 5)

2.3 Heated Tank Benchmark

The Heated Tank benchmark is a well-known example problem from the dynamic reliability
literature [33, 34, 41]. The system consists of a tank containing liquid whose level is influenced
by two pumps and one valve managed by a controller (see Fig. 2). The purpose of the liquid in
the tank is to absorb and transport the heat from a heat source; this means that under nominal
conditions one of the pumps produces a constant inflow of cool liquid, and a similar flow of
heated liquid leaves the tank through the valve.

2.3.1 Continuous-time hybrid-state process model

The general model adopted for this heated tank system is that of piecewise deterministic Markov
processes (PDMP). The discrete-valued process θt consists of components for the two inflow
pumps P1 and P2, the outflow valve V , the controller C and the tank T , i.e.

θt = 〈θP1,t, θP2,t, θV,t, θC,t, θT,t〉.

The Euclidean-valued process xt has two R-valued components, one for liquid height xH,t and
another for liquid temperature xT,t. These Euclidean-valued components evolve according to
the following switching differential equations:

ẋH,t = (χP1,t + χP2,t − χV,t) · q with initial condition xH,0 = Hinit and

ẋT,t = ((χP1,t + χP2,t) · (Tin − xT,t) · q + Ein) /xH,t with initial condition xT,0 = 15 2/3 ◦C

where χU,t indicates if unit U ∈ {P1, P2, V } is working or not (i.e. χU,t = 1 if unit U is
working and 0 otherwise), q is the flow parameter, Tin = 15 ◦C is the inflow temperature, and
Ein = 1

◦Cm
h is the heat source parameter. The differential equation for xT,t is from [41].

The (rare) event probabilities to be estimated on a finite time interval [0, tend ] are:

• the dryout probability P(∃ t ∈ [0, tend ] : xH,t ≤ Hdryout),

• the overflow probability P(∃ t ∈ [0, tend ] : xH,t ≥ Hoverflow ), and

• the overheating probability P(∃ t ∈ [0, tend ] : xT,t ≥ 100 ◦C).
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Versions q Hoverflow Hhigh Hinit Hlow Hdryout

1-3 0.6 m
h 3 m 1 m 0 m −1 m −3 m

4 0.6 m
h 5 m 1 m 0 m −1 m −5 m

5 1.5 m
h 10 m 8 m 7 m 6 m 4 m

Table 3: Parameter values for different versions of the heated tank benchmark

The evolution of the two R-valued state components xH,t and xT,t depends on the evolution
of the indicator processes χP1,t, χP2,t and χV,t. Codetta-Raiteri [11] identified five different
versions for the evolution of these indicator processes and the parameters. The values used
across the five versions for the flow and level parameters are listed in Tab. 3. We describe all
other differences between the five versions in the following subsections.

2.3.2 Version 1: Baseline

Each of the three units P1, P2 and V has the following set of four discrete modes:

ΘU = {On,Off ,StuckOn,StuckOff }.

The initial condition is
θP1,0 = On ∧ θP2,0 = Off ∧ θV,0 = On.

The switching from On to Off and vice-verse is managed by the controller.
In addition to this switching, there are four exponentially distributed failure switching pos-

sibilities: from On to StuckOn, from On to StuckOff , from Off to StuckOff , and from Off
to StuckOn. Each of these failure transitions happens at rate λ̂P1

= 1/438 h for P1, at rate

λ̂P2 = 1/350 h for P2, and at rate λ̂V = 1/640 h for V .
The controller mode process θC,t switches between the following three configurations:

ΘC = {Normal , Increase,Decrease}.

The initial condition of the controller is θC,0 = Normal . If xH,t ≤ HLow then θC,t switches from
Normal or Decrease to Increase. If xH,t ≥ HHigh then θC,t switches from Normal or Increase
to Decrease. The low and high liquid level parameter values are HLow = 6 m and HHigh = 8 m.

The control law of the controller is a function of θC,t. If θC,t = Normal then the controller
does not try to influence the pumps and valve. If θC,t = Increase then the controller aims to
increase the height of the liquid in the tank, by switching both pumps on, and by switching
the valve off. If θC,t = Decrease then the controller aims to decrease the height of the liquid in
the tank, by switching both pumps off, and by switching the valve on. The switching by the
controller has no effect on unit U if it is in failure mode StuckOn or StuckOff .

2.3.3 Version 2: Mode-dependent Failure Rates

Compared to version 1, the failure rates now depend on the current mode of the respective
component, and the two different kinds of failures occur with different rates. The following
modifications are made to the rates: For P1, the rate to move from Off to StuckOn is 20 · λ̂P1

and the rate to move from Off to StuckOff is 200 · λ̂P1 . For P2, the rate to move from On to

StuckOn is 20 · λ̂P2
and the rate to move from On to StuckOff is 200 · λ̂P2

. For V , the rate to

move from Off to StuckOn is 20 · λ̂V and the rate to move from Off to StuckOff is 200 · λ̂V .
All other rates are multiplied by a factor of 2.
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Method References v1 v2 v3 v4 v5
Conditional MC [34] Yes Yes Yes Yes Yes
PDMP-based MC [48] Yes – – – Yes
Fluid stochastic Petri net & MC [12, 13] Yes Yes Yes Yes Yes
Stoch. activity network & MC [11] Yes Yes Yes Yes Yes
Dynamic Bayes network [14] Yes Yes Yes Yes –
Advanced RESTART simulation [42] – – – Yes –

Table 4: Methods previously applied to the heated tank benchmark

2.3.4 Version 3: Controller Failure on Switching

Relative to version 1, each time the controller’s law is to trigger a switching of one or more
of the units P1, P2 and V , it is assumed that this controller action will be realized with a
probability of 90 % only. This means that there is a 10 % probability that a required switch is
not implemented for P1, P2 and V .

2.3.5 Version 4: Controller-Triggered Repairs

Relative to version 1, it is assumed that the control laws under Increase and Decrease include
triggering a repair of any unit (P1, P2 or V ) if it cannot be switched. The duration of such a
repair is assumed to be exponentially distributed, with a mean of 5 hours. Upon repair of unit
U , the controller implements the desired switching for this unit.

2.3.6 Version 5: Temperature-Dependent Failure Rates

Relative to version 1, the static failure rates λ̂P1
, λ̂P2

and λ̂V are replaced by temperature-

dependent failure rates λ̂P1
· α(xT,t), λ̂P2

· α(xT,t) and λ̂V · α(xT,t), respectively, where

αxT,t =
(
b1 · ebc·(xT,t−20) + b2 · e−bd·(xT,t−20)

)
/ (b1 + b2) (12)

with parameter values b1 = 3.0295, b2 = 0.7578, bc = 0.05756 and bd = 0.2301. Note that, in
order to resolve a typo in [11], for the above equation we followed [41].

2.3.7 Results from the Literature

Because the heated tank benchmark has been well-addressed in the literature, for each of the
five versions top event probabilities have been assessed. We give an overview of which modelling
and analysis methods have successfully been applied to which of the versions in Tab. 4, where
“MC” refers to Monte Carlo simulation.
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2.4 Lawn Mower Benchmark

Here we describe dynamics of a lawn mower adapted from [20]. A conceptual model of the
driverless lawn mower is shown in Fig. 3(a). The lawn mower is steered by controlling the
velocity separately on the two driving wheels. A sketch of the vehicle is shown in Fig. 3(b) and
its chassis and caster wheels are shown in Fig. 3(c).

(a) (b) (c)

Figure 3: Lawn mower schematics [20]

2.4.1 Dynamical model

The dynamic response of the lawn mower can be described by a 6-dimensional nonlinear stochas-
tic difference equation

x[k + 1] = f(x(k), v(k), w(k)), k = 0, 1, 2, . . . (13)

where x(·) ∈ R6 is the state, v(·) = [Vr(·), Vl(·)]T ∈ R2
≥0 is the input, and w(·) ∈ R2 is the noise.

The vector field f : R6 × R2
≥0 × R2 → R6 is defined by the following elements

f1(x, v, w) = x1 +
Ts
Izz

(
Afy sin

(
x6 +

π

2

)
a+ 2Cγ tan

(2(x2 − bx1)

(Vr + Vl)

)
b

)
,

f2(x, v, w) = x2 +
Ts
M

(
Afy sin

(
x6 +

π

2

)
− 2Cγ tan

(2(x2 − bx1)

(Vr + Vl)

))
− Ts(Vr + Vl)

2
x1,

f3(x, v, w) = x3 +
Ts(Vr + Vl)

2
cos(x5), (14)

f4(x, v, w) = x4 +
Ts(Vr + Vl)

2
sin(x5),

f5(x, v, w) = x5 + Ts

(
Vr − Vl

2D
+ x1

)
+ w1,

f6(x, v, w) = x6 −
Ts(Vr + Vl)

2d
cos(x6)−

Ts(Vr − Vl)(d+
√
D2 + (a+ b)2 sin(x6))

2Dd
+ w2,
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Mass, M Axle half Dimensions, Caster wheel Afy Izz Cγ
width, D (a, b) offset, d

700kg 1.2m 0.35m, 0.15m 0.1m 199 394Kg-m2 22000

Table 5: Lawn mower parameters

where x1, x2, x3, x4, x5, and x6 are respectively yaw, yaw rate, x, y, angle of vehicle with
respect to x-axis (θ), and relative orientation of caster wheel (β), respectively. The w1 and w2

are noises in orientation and angle of caster wheel generated due to uneven ground surface. Vr
and Vl are the control inputs representing velocity of right and left driving wheels, respectively.
Parameter Ts is the sampling time. The remaining parameters are listed in Table 5.

2.4.2 Controller mechanism

The main objective for the lawn mower is to cover a given area as soon as possible. This can be
seen as a path planning problem and is usually achieved by specifying a set of way-points, and
the task of the controller would be to move from an initial position in the vicinity of the current
way-point to the vicinity of the next way-point. We provide simple On-Off type controller for
the lawn mover to reach the desired position (xd, yd). Consider base velocity Vb and boost
velocity Vd. The control inputs that is velocities of right and left wheel are given as

Vr = Vb + Vdsgn(sin(θd − x5))

Vl = Vb − Vdsgn(sin(θd − x5)), (15)

where θd = atan2((yd − x4), (xd − x3)) and atan2 is the four-quadrant inverse tangent.

2.4.3 Specification of interest

The controller of the previous subsection does not take into account avoiding obstacles and
preventing collision with boundaries of the area. Here we define a specification that computes
the probability of avoiding obstacles over finite-time traces of the system.

The state space of the system is X = R6. Consider the desired location (xd, yd) = (−10,−5)
with selection of Vb = 2 and Vd = 1.5 We also consider the region X0 = [−0.5, 0.5]2× [−1, 1]2×
[−π, π]2 for the initial state of the system and X1 = [−0.5, 0.5]2 × [−4, 4] × [2.5, 4] × [−π, π]2

for the obstacles or one of the boundaries of the area. The set of atomic propositions is given
by Π = {p0, p1, p2} with labeling function L(xi) = pi for all xi ∈ Xi, i ∈ {0, 1, 2}, with
X2 := X\(X0 ∪X1) . The objective is to compute a lower bound α > 0 on the probability that
the solution process of length N = 200 satisfies the safe LTLf formula p0 ∧�≤200¬p1:

Φ := P≥α[p0 ∧�≤200¬p1].
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Figure 4: Labelled map of a campaign where blue and purple mark regions containing science
targets for the rover and orange area shows the region in sand.

2.5 Mars Rover Benchmark

We introduce the problem of planetary exploration with a two-agent team composed of a Mars
rover and a Mars helicopter, tasked to collect a set of samples from the Mars surface. Due to
the high cost and risk associated with these missions, it is critical to have strong correctness and
performance guarantees on the robots’ behaviours. To aid in this objective, we give a mission
specification framework and formally encode complex mission specifications used for real Mars
rover operation. The logic of choice is syntactically co-safe Linear Temporal Logic (scLTL)
defined over predicates in belief space [28, 43]. This approach allows us to capture temporal and
uncertainty constraints ranging from science campaign (e.g., getting science results from specific
regions) to operational constraints such as maintaining certain accuracy over the vehicles’ state
and the environment, inter-agent distance, and energy level.

For a first and more accessible case study, we consider a simplified version of the full spec-
ification set. Additionally, the rover is assumed to have stochastic motion and perception,
and is tasked with collecting samples from a partially-known deterministic environment. The
helicopter provides support by exploring the environment on-demand. Exploration is neces-
sary if insufficient knowledge is available to synthesise a control policy with sufficient success
probability.

2.5.1 Scientific Mars Mission

The set of requirements below specify a potential science campaign. We say that actions taken
by the rover or copter have an associated risk (r) of a certain (hidden) event, the requirements
impose bounds on the risks associated to specific events that the Mars rover copter mission can
take.

1. Rover must get a type A sample from a type A target and it must get one type B sample of
a science target of type B. Areas that potentially include either type A or B are shown in
purple and blue, respectively, in Fig. 4. They represent areas for potentially high-science-
value rock/soil samples that need to be collected.

2. Rover must maintain the variance of its state below Σmax. This specification is to maintain
accuracy along the mission, and reduce the risk of unexpected events.

3. Rover routes must avoid hazards. The rover can only take moderate risks when planning
its route along hazard areas such as large rocks, deep sands, steep slopes, which are given
as labelled regions on the map as part of the science campaign.
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Figure 5: Speed Constraints for Slope vs Rock CFA (Cumulative Fractional Area). High speed
(green), Low speed (yellow) and Stop (red).

4. Rover must follow speed constraints. Rover’s maximum speed is a function of the cumu-
lative fractional area of rocks, and the terrain slope, see Fig. 5.

5. Mars helicopter must avoid landing near hazards. These hazards include, inter alia, large
rocks, deep sands, and steep slopes. More precisely, the helicopter cannot land somewhere,
where it has a risk probability greater than r5 of landing within x5 meters of a hazard
zone.

6. Helicopter must maintain a minimum distance dmin and a maximum distance dmax from
the rover. The purpose of this specification is to protect the primary asset of the mission:
the rover, which carries all vital science instruments. The helicopter should not pose any
risk for the rover in case of helicopter failure, but should also maintain communication
range.

2.5.2 Introduction: A formal Belief space planning problem

In this section, we define the planning problem under uncertainty and in partially-observable
environments. We start by reviewing Partially-Observable Markov Decision Process (POMDP)
and associated synthesis problem. Then, we present the belief-based linear temporal logic (LTL)
properties to be used for mission planning.

POMDP. Let us denote the system state, action, and observation at the k-th time-step by
x[k], u[k], z[k], respectively. Let

x[k + 1] = g (x[k], u[k], w[k]) (16)

z[k] = h (x[k], v[k]) (17)

denote the system dynamics and measurement models, where w[k] ∼ pw (·|x[k]) and v[k] ∼
pv (·|x[k]) denote the state-dependent process and observation noise. Due to the observation
noise, the best one can infer about the system state is a probability distribution over all possible
states, referred to as belief b[k] = p(x[k]|i[k]) with history i[k] := {(u, z)0:k}. The belief space
(i.e., the set of all beliefs) is denoted by B. Belief is typically evolved using a recursive filter
denoted by τ as

b[k + 1] = τ(b[k], u[k], z[k + 1]). (18)
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As is common, one can generally assume that the belief space is a Polish space2 and that the
recursive filter is a Borel measurable mapping.

Belief-space LTL. Let b = b[0] b[1] b[2] . . . ∈ Bω be a belief sequence, and AP be finite set
of atomic propositions. Each element f ∈ AP is a predicate over the belief space B, and we
say that a belief b satisfies f if f(b) = >, where > is the truth Boolean value. Moreover, the
predicate functions f must be Borel measurable mappings. Using the set of belief-based atomic
proposition AP , we defined mission specifications using scLTL, which has as syntax

φ := > | f | ¬f | φ1 ∧ φ2 | φ1 U φ2 | © φ

For convenience, we use the additional operators: φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2), ♦φ ≡ >U φ, and
2φ ≡ ¬♦¬φ, where ≡ denotes semantic equivalence.

Control synthesis problem. The control synthesis problem for the POMDP with belief-
based LTL specifications can be formulated as follows:

Problem 2.5.1. Let φ be a given LTL formula and let the robot evolve according to dynam-
ics (16), with observation dynamics (17), and using a Bayesian filter defined by (18). Find a
policy µ∗ such that

µ∗ = arg max
µ∈M

Pr[b |= φ] subject to (16), (17), (18). (19)

2.5.3 POMDPs modeling rover, helicopter, and environment

In this section, we define the models for the Mars rover robot and helicopter robot, and the
Martian environment, where the two robots must perform science campaigns such as the one
described in Sec. 2.5.1.

The state of this combined system model is denoted as x = (xr, xc,m) and is comprised
of the rover state xr, the helicopter state xc, and the unknown environment state m. Each of
these states is not exactly known. Due to the noise in the robots’ motion and perception, the
best one can infer about the overall system state is its belief, i.e., the probability distribution
over all possible states, denoted by b[k] = p(x[k] | i[k]), where the history is given composed of
the past actions u and the past observations z, that is, i[k] := {(u, z)0:k}.

Based on joint belief over rover, helicopter, and the environment, b we can compute three
separate marginalised beliefs for each of the models as

br = p(xr|i[k]) = rover position distribution

bc = p(xr|i[k]) = copter position distribution

bm = p(m|i[k]) = environment belief

(20)

Rover model. The kinematics of the rover can be described using the special Euclidean group
of planar motions, i.e. SE(2). The rover’s state xr = (pr, vr) is a combination of its pose
parameterised as pr ∈ R2 × [−π, π) and its velocity vr ∈ R3. The dynamics of the rover can be
represented by a unicycle modelx[k + 1]

y[k + 1]
ϕ[k + 1]

 =

x[k] + v cos(ϕ[k]δk
y[k] + v sin(ϕ[k]δk

ϕ[k] + ωδk

+ w, (21)

where v (velocity) and ω (angular velocity) are the inputs and w ∼ N (0, Q) is Gaussian process
noise.

2With Euclidean spaces as a typical example, a Polish space is a separable and completely metrizable
topological space.
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Helicopter model. Similarly to the rover, the helicopter’s kinematic are given via SE(3) and
its state xc = (pc, vc) includes the pose parameterised as pc ∈ R3× [−π, π)2× [0, π], and velocity
vc ∈ R6.

Simplified rover and copter belief models For simplicity and practical implementation,
we will assume that the belief about the state of the rover’s and helicopter’s pose and velocity
are maintained using extended Kalman filters [29]. Thus, the beliefs are normal distributions
parameterised by mean and covariance, i.e., br ≡ (x̂r,Σr) and bc ≡ (x̂c,Σc), respectively.

Environment and sensor model. The Martian environment contains N regions of type
A,B, ... More specifically, every region is labeled by a single type indicating whether it could
potentially include either samples of that type, or hazards in case of hazard typed regions.
Thus the state of the environment comprises of 0, 1 values for each of the regions, 0 indicates
the absence of the type whereas 1 signifies its presence. Therefore the set of states of the
environment is given as R := {0, 1}N with elements m ∈ R. Over the time of a Mars mission
the unknown environment state remains constant.

Let the i−th region be represented by a bounded connected set Ri ⊂ R2, and assume that
Ri and Rj are disjoint sets iff i 6= j.

Furthermore, we use the notation RA to indicate the collection of sets of type A and RB
the collection of sets of type B.

At every time instant the rover, or helicopter, can decide to make an observation of one of
the regions. For the i-th region, we can obtain measurements zi ∈ {0, 1} of the semantic labels
over the environment by running classifiers on the images collected from the camera on the
rover. The false rate of these measurement is as follows:

p(zi 6= xitrue) =
1

2dmax
min{di, dmax} (22)

where di is the relative distance to the i−th region and where xitrue ∈ {0, 1} is the true, but
unknown, state of that regions. Where dmax is the largest distance from which you still get
informative images.

2.5.4 Mission Specification in LTL

In this section, we define the LTL predicates and properties corresponding to the mission
specifications described in Sec. 2.5.1.

The overall specification φ for the campaign executed over the span of T time units:

φ := 2≤T (funcert ∧ φsafety ∧ φoperational) ∧ φscience (23)

which expresses the mission where the science objective φscience needs to be satisfied and we
need to maintain a desired level of accuracy, safety, and operational constraints until the end of
the mission as expressed by funcert, φsafety, and φoperational, respectively. The operator 2≤T

denotes the bounded time invariance.

Science: The science objective in this campaign is to collect one sample from each of the high-
valued science areas A and B. The rover can obtain a sample from a region once it has entered
the region and if the sample type is present in the region. Thus we can specify its behavior
next. Consider the following predicate to indicate the position of the rover with respect region
i and risk ε given as

fi,ε(b
r) :=

{
1 if P(pr ∈ Ri × [−π, π]) ≥ ε
0 else.
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Furthermore, we denote a predicate associated to the observation of the i-th region as (zi = 1).
Thus we finally have the mission specification as

φscience := ♦≤T
∨
i∈A

(
(zi = 1) ∧ fi,1−ε(br)

)
∧ ♦≤T

∨
i∈B

(
(zi = 1) ∧ fi,1−ε(br)

)
. (24)

Uncertainty: The uncertainty objective is to maintain the desired level of accuracy on the
state estimates.

funcert := tr(Σr) < Σrmax with br ≡ (x̂r,Σr),

funcert := tr(Σc) < Σcmax with bc ≡ (x̂c,Σc). (25)

Safety: Space applications fall into the category of safety-critical applications. Thus, main-
taining the safety of systems during operation is a paramount objective of the mission. We
express the safety specification as:

φsafety := φkeepout ∧ fnear. (26)

The keepout part of the specification is given as follows. The distance from risky regions in
the map such as non-traversable obstacles, sandy areas with a risk of getting stuck, cliffs, and
high-slope areas, is captured by property φkeepout. We define keep-out constraints for the rover:

φkeepout :=
∧
i∈O

(bmi ≥ 0.05)→ ¬f(i,0.05)(br) (27)

where bmi is marginalised belief in the i-th region.
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3 Participating Tools & Frameworks

The tools and frameworks used in the category Stochastic Modelling are introduced subse-
quently in alphabetical order.

Barrier Certificates The paper [27] provides a systematic approach of using barrier certifi-
cates for algorithmic verification of stochastic systems against a wide class of temporal proper-
ties. It provides a method for computing lower bounds on the probability that a discrete-time
stochastic system satisfies a given safe LTL specification over a finite time horizon. This is
achieved by first decomposing the specification into a sequence of simpler verification tasks
based on the structure of the automaton associated with the negation of the specification.
Then it uses barrier certificates for computing probability bounds for simpler verification tasks,
which are further combined to get a lower bound on the probability of satisfying the original
specification. Computation of barrier certificates can be performed for polynomial dynamics
using sum-of-squares optimizations.

FAUST2 The tool Formal Abstractions of Uncountable-STate STochastic processes (FAUST2)
[39] generates formal abstractions of discrete-time Markov processes (dtMP) defined over con-
tinuous state spaces. The dtMP model is abstracted into a finite-state Markov chain or a
Markov decision process. The abstract model is formally put in relationship with the con-
crete dtMP via a user-defined maximum threshold on the approximation error introduced
by the abstraction procedure. FAUST2 allows exporting the abstract model to well-known
probabilistic model checkers, such as PRISM [31] or STORM [16]. Alternatively, it can han-
dle internally the computation of PCTL properties (e.g. safety or reach-avoid) over the ab-
stract model, and refine the outcomes over the concrete dtMP via a quantified error that
depends on the abstraction procedure and the given formula. The toolbox is available at
https://sourceforge.net/projects/faust2/

FIRM-GDTL The feedback information roadmap tool for Gaussian distribution temporal
logics supports the path planning of partially observable robots. The python-based toolbox can
handle several kinds of robots The tool is available at https://github.com/wasserfeder/

gdtl-firm/tree/dev-mars-fsa

Modest Toolset The Modest Toolset [25] supports the modelling and analysis of hybrid, real-
time, distributed and stochastic systems. A modular framework centred around the stochastic
hybrid automata formalism [24] and supporting the JANI specification [8], it provides a va-
riety of input languages and analysis backends. The modelling formalism at the core of the
Modest Toolset is the model of networks of stochastic hybrid automata (SHA), which combine
nondeterministic choices, continuous system dynamics, stochastic decisions and timing, and
real-time behaviour, including nondeterministic delays. A wide range of well-known and ex-
tensively studied formalisms in modelling and verification can be seen as special cases of SHA
e.g. STA (stochastic timed automata), PTA (probabilistic timed automata) and PA/MDP
(probabilistic automata/Markov decision processes). The toolset can can be obtained from
http://www.modestchecker.net/. For the experiments on the Heated Tank benchmark, we
used the Modest Toolset’s simulator “modes” [7] and its support for rare event simulation based
on importance splitting with the fixed effort method (using 64 child runs for each fixed effort
run) [6].
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SDCPN modelling & MC simulation Stochastically and Dynamically Coloured Petri Nets
(SDCPN) [18, 19] have been developed in support of the compositional modelling of any Gen-
eralized Stochastic Hybrid Automaton [9]. In combination with conditional and rare event MC
simulation, SDCPN modelling has successfully been applied for the quantitative risk modelling
and assessment of future air traffic management designs, e.g. [4].

SReachTools A MATLAB toolbox to tackle various problems in stochastic reachability. It
aims to support the following problems: Stochastic reach-avoid problem [40, 1] (guarantee-
ing safety for stochastic systems), Lagrangian methods-based underapproximation [22], Fourier
transforms-based underapproximation [46, 47], and forward stochastic reachability [45] (char-
acterizing the stochasticity of the state at a future time of interest). The tool is available at
https://unm-hscl.github.io/SReachTools/.

4 Results

We present the results obtained for each benchmark using the tools highlighted in Sec.3. Given
the different modelling structures, the dissimilar stochastic elements and that most of the tools
and frameworks are tailored to a specific task, not all tools or frameworks could be applied to
each benchmark. Consequently, in this section we present the results of the specific tools and
frameworks when a solution can be computed.

4.1 Anaesthesia benchmark

4.1.1 Verification and controller synthesis using SReachTools

We solve Problem 2.1.1 by synthesising an open-loop controller as well as a polytopic underap-
proximation of the true stochastic reach-avoid set. Figure 6 shows the obtained 2-dimensional
underapproximative polytope (x3[0] = 5) of the stochastic reach-avoid set for a probability
threshold of 0.99 using 10 direction vectors. This computation took ∼ 77 seconds on an In-
tel Xeon CPU with 3.4GHz clock rate and 32 GB RAM. Figure 7 shows the Monte-Carlo
simulation-based validation of the open-loop controller from one of the vertices.

The SReachTools code to solve Problem 2.1.1 is available on [44].

4.1.2 Verification using FAUST2

We perform probabilistic reachability analysis for the specification,

Φ := P=p[�
≤N S]

with

S =

1 6
0 10
0 10

 .
We perform this task using FAUST2, first over a 1 step time horizon and then for 5 times steps.
In both instances, we make use of an open-loop control policy with the input discretised between
[07]. Fig. 4.1.2 shows the obtained partition together with the optimal safety probability. In
this case, the abstraction only required 76832 states for an overall abstraction error of 0.1613
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Figure 6: Polytope containing a subset of the initial states from which an open-loop controller
exists that solves Problem 2.1.1.

Figure 7: Validating the open-loop controller at a particular vertex of the polytope using
Monte-Carlo simulation
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(a) N = 1

(b) N = 5

Figure 8: Partition of the safe set along with the optimal safety probability after N time steps

and took 46.6 seconds to be generated. We obtain a maximal probability of 1. Fig. 4.1.2
shows the obtained partition together with the optimal safety probability. In this case, the
abstraction required 104162436 states for an overall abstraction error of 0.2281 and took 818.0
seconds to compute. We obtain a maximal probability of 0.5607. In both instances, we can
note that the structure of the partitions correspond to the results obtained using SReachTools.
They also highlight however the current challenge in performing such abstractions. Namely,
that the number of states generated using the abstraction process is a function of the required
abstraction error and the time horizon of property of interest. It is also a function of the
variance associated with the process noise of the underlying dynamics of the stochastic model.
In this case, the model has a diagonal covariance matrix with a value of 5.
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Next, we generate the optimal policy for the given abstractions. The input has been discre-
tised into two points: [3.5 7]. We result with an optimal policy in the form of a look up table
which describes the optimal action to take for each grid point and time horizon. We show the
corresponding plot for a time horizon N = 1 in Fig. 4.1.2.

Figure 9: Input action lookup table at N = 1

4.2 Building Automation System benchmark

4.2.1 CS1BAS: Results

The results obtained using the individual tools are presented hereunder.

Verification using FAUST2 Here, we compute the optimal safety probability for the safe set
described in within the PCTL property described using (9) by applying FAUST2. Here, FAUST2

abstracts the safe set into uniform partitions over which the safety probabilities are given. The
obtained results are depicted in Fig. 10. The abstraction and computation of the value functions
took 21.08 seconds to be generated. The abstraction consists of 1444 representative points for
the continuous variables, while it consists of 25 representative points of the input.
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Figure 10: Partition of the safe set for model Ms, along with optimal safety probability for
each partition set

93



ARCH-COMP18 Stochastic models Abate et. al.

4.2.2 CS2BAS: Results

For the model described using (11) and the given specification, we aim to synthesise a policy
that maximises the safety probability p. This synthesis goal can be computationally hard due
to the number of continuous variables making up (11).

Verification using FAUST2 In order to make use of the FAUST2, we perform policy synthesis
via abstractions and (ε, δ) simulation relations [23]. The (ε, δ) pair providing the optimal trade
off is obtained using an abstract model with 1 continuous variable and corresponds to (0.28592,
10−2). Next, we use FAUST2 to perform a grid-based computation of the safety probability on
the abstract model and obtain a model of size 5943640 with an overall accuracy of 0.15. Over
this approximation we synthesise the optimal policy for the abstract model which results in a
safety probability of p′ = 1. We refine the obtained policy [23] such that it can be applied to the
original model (11). The overall process results in Φ being satisfied with a safety probability
of p = p′η −Nδ = 0.7900, where η is the abstraction error introduced by FAUST2. The total
computational time taken to obtain the optimal policy was 185.65 seconds.

4.3 Heated Tank benchmark

Versions 1 through 4 of the Heated Tank benchmark have been evaluated using both the Modest
and the SDCPN based MC simulation approach. On this basis we identify similarities and
differences regarding:

• understanding of the Heated tank benchmark versions

• formal modelling of the Heated tank versions

• estimated probabilities for dryout and overflow

4.3.1 Understanding of the Heated Tank benchmark versions

The understanding of the five versions of the Heated tank benchmark created by far the largest
challenge. There appeared to be various types of ambiguities on model details. There were
three sources of ambiguities:

1. ambiguity in the English language description of the problem;

2. differences in formal parts of the problem description;

3. differences in parameter values adopted

4.3.2 Formal modelling of the Heated Tank versions

The formal modelling of the Heated tank benchmark in Modest worked straightforward for
versions 1 through 4. However the straightforward modelling of the temperature dependent
failure rates of the Pump and Valve is not yet supported by Modest. This limitation regarding
the modelling of version 5 has been reported before for Dynamic Bayesian Networks (DBN) [14].

The formal modelling of the Heated tank benchmark using SDCPN worked straightfor-
wardly for all five versions. This finding is in line with the formal modelling capability of Fluid
Stochastic Petri Net (FSPN) [13, 12], as well as the FSPN extension through Stochastic Activity
Network (SAN) [11].
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As is shown by [42], the Heated tank example is such simple that it can also be captured
in a Piecewise Deterministic Markov Process (PDMP) model without the need to use of a
compositional model specification approach of FSPN, SAN, SDCPN or Modest. However, the
advantage of the latter is that larger stochastic hybrid models that consist of many interacting
systems can also be dealt with.

4.3.3 Estimated probabilities for dryout and overflow

The estimation results obtained for dryout probabilities, Overflow probabilities, and Overheat-
ing probabilities appear to agree well with those obtained by others in literature. From a rare
event probability estimation perspective, most interesting are the estimates obtained for the
dryout probability for version 4 of the Heated tank benchmark. In the Table below the results
obtained by the various methods are presented. Of these methods, Restart [42] and Modest have
shown the advantage of using splitting techniques in MC simulation of rare event probabilities.
An overview of the results produced by different tools is shown in Tab. 6.

The results for the Modest Toolset were obtained by using the modes simulator [7] and rare
event simulation using fixed effort importance splitting (64 child runs per main run) and an
ad-hoc importance function counting the number of components that fail in a relevant way.
They were obtained on an Intel Core i7-4790 system running 64-bit Ubuntu Linux 18.04. To
compute the reported result with 95% confidence and a relative-width confidence interval of
5% half-width, 2517 fixed effort runs were used, taking 25 seconds of simulation runtime.

Method SAN&MC [11] DBN [14] MC [42] Restart[42] Modest SDCPN & MC
Estimated Pdryout 5.1× 10−4 5.2× 10−4 4.9× 10−4 5.4× 10−4 5.09× 10−4 5.3× 10−4

Number of MC runs 100,000 - - - - 100,000
Standard deviation - - 1.7× 10−3 1.7× 10−4 - -

95% confidence ±1.4× 10−4 - - - ±5 % ±1.4× 10−4

Table 6: Results for the Heated Tank benchmark, version 4
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4.4 Lawn Mower benchmark

4.4.1 Verification using Barrier Certificates

We use Barrier Certificates for computing bounds on reachability probability. More specifically,
the approach has been recently developed for computing lower bound on probability of satis-
fying a safe LTL specification. Thus, it can be used for finding upper bounds on reachability
properties. Computationally, the approach is developed for discrete-time stochastic systems
with polynomial dynamics and uses sum-of-squares optimization techniques for finding such
bounds.

Transformation to polynomial dynamics. The dynamics of the lawn mower is not polyno-
mial. We employ a nonlinear transformation of the states to get polynomial vector fields with
polynomial constraints. We do coordinate transform as

[y1, y2, y3, y4, y5, y6] = [x1, tan
(2(x2 − bx1)

(Vr + Vl)

)
, x3, x4, x5, x6].

The closed-loop dynamics become

y1[k + 1] = y1[k] + Ts

(
1

Izz
(Afyz4[k]a+ 2Cγy2[k]b)

)
,

y2[k + 1] = y2[k] + Ts

(
2(1 + y2[k]2)

Vr[k] + Vl[k]

( 1

M
(Afyz4[k]− 2Cγy2[k])

−Vr[k] + Vl[k]

2
y1[k]− b

Izz
(Afyz4[k]a+ 2Cγy2[k]b)

))
,

y3[k + 1] = y3[k] + Ts

(
Vr[k] + Vl[k]

2
z2[k]

)
,

y4[k + 1] = y4[k] + Ts

(
Vr[k] + Vl[k]

2
z1[k]

)
,

y5[k + 1] = y5[k] + Ts

(
Vr[k]− Vl[k]

2D
+ y1[k]

)
+ w1[k],

y6[k + 1] = y6[k] + Ts

(
−Vr[k] + Vl[k]

2d
z4[k]−

(Vr[k]− Vl[k](d+
√
D2 + (a+ b)2z3[k]

2Dd

)
+ w2[k],

where z1 = sin(y5), z2 = cos(y5), z3 = sin(y6), z4 = cos(y6). The controller (15) in the new
coordinates can be simplified to two modes of operation depending on location in state space
as {

Vl = Vb − Vd, Vr = Vb + Vd, if z1(xd − y3)− z2(yd − y4) < 0

Vl = Vb + Vd, Vr = Vb − Vd, if z1(xd − y3)− z2(yd − y4) > 0.

The lower bound α = 0.8852 is obtained using YALMIP and SeDuMi for initial states
starting from X0 with the help of barrier certificate of order 2.
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4.4.2 Verification using FAUST2

The dynamics of lawn mover fits in the class of partially degenerate stochastic systems. Verifi-
cation of this class of systems using abstraction techniques is studied in [38, 37]. The available
theoretical results are developed for the general setting without particular assumption on the
dynamics except Lipschitz continuity of functions and sets. But the computations are per-
formed for the restricted case of “affine” deterministic dynamics and “polytopic” safe/target
sets. This restriction is due to the deterministic reachability analysis required in the first phase
of the approach.

The Lawn Mover case study is challenging due to the fact that the deterministic vector filed
is nonlinear, thus we would have to perform deterministic reachability over nonlinear dynamics.
This in principle is possible and has to be done approximately using numerical methods from
deterministic reachability. However, the error computation requires Lipschitz constants of the
boundaries of these sets. The computation can be easily done for polytopes, but since we don’t
know the shape of reachable sets, again the computation should be done numerically.

4.5 Mars Rover benchmark

In this section, we present results for a simplified version of the general problem presented in
Sec. 2.5. The full problem still presents significant tractability issues, and scalable methods are
under active development. Partial solutions to the general problem presented in Sec. 2.5 can
also be found in [36, 35].

We tackle the science, safety and uncertainty parts of the mission specification, and assume
that: (a) the rover has stochastic motion and perception, and access to a partially known
deterministic environment map, and (b) the helicopter has deterministic motion and perception
that can suffer from terrain classification errors.

The approach has two components: (a) an off-line planner that returns a motion plan for
the rover to satisfy the science mission or generate a request for exploring the environment by
the helicopter, and (b) an on-line execution algorithm that is coupled with a monitor to detect
mismatches between the maintained environment map and observations.

The off-line method is similar to the work in [43, 15] and starts by converting the LTL
specification to a Finite State Automaton (FSA). Then a belief space sampling-based planner
called Feedback Information RoadMap (FIRM) [3] is used to compute a finite abstraction of the
rover dynamics. The transition probabilities of the product MDP between the FIRM MPD and
specification FSA are computed using Monte Carlo simulation as detailed in [43]. The product
MDP captures motion, map state evolution, and specification satisfaction concurrently. The
maximally satisfying control policy is computed as the solution of a stochastic reachability prob-
lem on the product MDP projected onto the system MDP, robot, and environment. Execution
failures are handled by re-planning and mapping unexplored regions.

In Fig. 11, we show the results of our planner for a campaign at the Kimberly region in
Gale Crater on Mars, visited by Curiosity around Sol 607. The task is to collect one sample
from each region of type A (yellow) and type B (green) while avoiding all the obstacles (red)
shown in Fig. 11. The environment is partially known, and initially, map labels are available
only in the region surrounding the rover’s initial state. The rover can request the helicopter to
explore new areas to extend the planning region. Furthermore, if there is a mismatch between
the map and what the rover encounters during execution, the execution is aborted, and a new
plan is computed. Figure 11 shows results of the simulation along with a visualization in the
Mars environment. The rover starts by collecting a sample from region A (yellow). Next, it
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(a) Rover starts by trying
to plan in the initial re-
gion explored by the he-
licopter (shaded in gray)
but fails to find a solution.
Hence, the rover asks the
helicopter to map new re-
gions.

(b) Rover gets the map
from the copter and suc-
cessfully finds a policy
that satisfies the specifica-
tion.

(c) Rover starts executing
(blue line) the policy but
detects an additional ob-
stacle ObsLater that was
not labelled in the map
obtained from the heli-
copter. Rover tries to re-
plan but fails to find a
solution and extends the
FIRM abstraction.

(d) Rover uses the up-
dated map to find a solu-
tion from it’s current be-
lief and state in the FSA.
Finally, it executes the
solution and reaches the
goal state.

(e) Visualization of the Mars environment and trajectory executed by the rover at Kimberly region in Gale Crater.

Figure 11: Illustration of the incremental planning, re-planning and re-mapping procedure.

moves towards region B (green) but detects a new obstacle (red) on the way. Thus, it re-plans
and re-maps the environment until it finds a policy from its current belief and FSA state. After
finding the solution, the rover executes it and completes the campaign by picking up a sample
from region B.

The planning phase took 19.4 seconds to compute the policy on a system running Ubuntu
14.04 with Intel Core i7-6820HQ CPU @ 2.7 GHz. The product MDP graph had 393 vertices
with 2752 edges, and 15 Monte Carlo trials per transition were performed to estimate the tran-
sition probabilities. The used algorithms can be found at https://github.com/wasserfeder/
gdtl-firm/tree/dev-mars-fsa.
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5 Challenges and Future plans

First, we list a set of challenges encountered in this first round of friendly competition within
the stochastic modelling category:

• translating and encoding soft specifications, expressed in natural language, into formal
specifications, which are tailored to given models

• developing integrated modelling and verification tools, or a software providing an interface
(mathematically, a mapping) between different software tools

• addressing a number of mathematical challenges in modelling and in performing rare event
simulation of safety-critical Cyber Physical Human Systems (CPHS)

Second, we conclude this section by highlighting our future plans for the future rounds of
the competition in this category:

• developing a unified description language for stochastic (hybrid) models

• further developing theory supporting compositional modelling; further, defining specifi-
cations for large-scale modular systems

• including benchmarks, tools, or algorithmic advances from areas not currently represented:
e.g. work on rare-event estimation, or on agent-based simulations

• extending the barrier certificate technique for synthesising control policies – different
optimization techniques are needed for continuous and discrete input spaces

6 Conclusion and Outlook

This report presents the results on a first friendly competition for the formal verification of
stochastic models as part of the ARCH’18 workshop. The reports of other categories can be
found in the proceedings and on the ARCH website: cps-vo.org/group/ARCH.
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A Specification of Used Machines

A.1 MBarrier Certificates

• Processor: Intel(R) Core(TM) i5-4300U CPU @ 1.90GHz 2.50 GHz

• Memory: 8.00 GB

• Average CPU Mark on www.cpubenchmark.net: 3739

A.2 MFAUST2

• Processor: Intel Core i7-8550U CPU @ 1.80GHz × 8

• Memory: 8.00 GB

• Average CPU Mark on www.cpubenchmark.net: 8337

A.3 MFIRM-GDTL

• Processor: Intel Core i7-6820HQ CPU @ 2.7GHz

• Memory: 8.00 GB

• Average CPU Mark on www.cpubenchmark.net: 8784

A.4 MModest

• Processor: Intel Core i7-4790 @ 3.6-4.0 GHz (4 cores × 2 threads)

• Memory: 8.00 GB

• Average CPU Mark on www.cpubenchmark.net: 9994

A.5 MSDCPN & MC simulations

• Processor: Intel Core i5-2400 @ 3.10GHz

• Memory: 8.00 GB (7.88 GB usable)

• Average CPU Mark on www.cpubenchmark.net: 5949

A.6 MSReachTools

• Processor: Intel Xeon CPU @ 3.4GHz

• Memory: 32.00 GB

• Average CPU Mark on www.cpubenchmark.net:

100

www.cpubenchmark.net
www.cpubenchmark.net
www.cpubenchmark.net
www.cpubenchmark.net
www.cpubenchmark.net
www.cpubenchmark.net


ARCH-COMP18 Stochastic models Abate et. al.

References

[1] Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sastry. Probabilistic reachability
and safety for controlled discrete time stochastic hybrid systems. Automatica, 44(11):2724–2734,
2008.

[2] A Absalom and G Kenny. ‘paedfusor’ pharmacokinetic data set. British Journal of Anaesthesia,
95(1):110–110, 2005.

[3] Ali-akbar Agha-mohammadi, Suman Chakravorty, and Nancy Amato. FIRM: Sampling-based
feedback motion planning under motion uncertainty and imperfect measurements. International
Journal of Robotics Research (IJRR), 33(2):268–304, 2014.

[4] Henk AP Blom, Jaroslav Krystul, GJ Bakker, Margriet B Klompstra, and Bart Klein Obbink.
Free flight collision risk estimation by sequential mc simulation. Stochastic Hybrid Systems, pages
249–281, 2007.

[5] Olivier Bouissou, Eric Goubault, Sylvie Putot, Aleksandar Chakarov, and Sriram Sankara-
narayanan. Uncertainty propagation using probabilistic affine forms and concentration of measure
inequalities. In International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems, pages 225–243. Springer, 2016.

[6] Carlos E. Budde, Pedro R. D’Argenio, and Arnd Hartmanns. Better automated importance split-
ting for transient rare events. In Third International Symposium on Dependable Software Engi-
neering. Theories, Tools, and Applications (SETTA), volume 10606 of Lecture Notes in Computer
Science, pages 42–58. Springer, 2017.

[7] Carlos E. Budde, Pedro R. D’Argenio, Arnd Hartmanns, and Sean Sedwards. A statistical model
checker for nondeterminism and rare events. In 24th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), volume 10806 of Lecture Notes in
Computer Science, pages 340–358. Springer, 2018.

[8] Carlos E Budde, Christian Dehnert, Ernst Moritz Hahn, Arnd Hartmanns, Sebastian Junges, and
Andrea Turrini. Jani: Quantitative model and tool interaction. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages 151–168. Springer, 2017.

[9] Manuela L Bujorianu and John Lygeros. Toward a general theory of stochastic hybrid systems.
In Stochastic hybrid systems, pages 3–30. Springer, 2006.

[10] Nathalie Cauchi and Alessandro Abate. Benchmarks for cyber-physical systems: A modular model
library for buildings automation. In IFAC Conference on Analysis and Design of Hybrid Systems,
2018.

[11] Daniele Codetta-Raiteri. Modelling and simulating a benchmark on dynamic reliability as a
stochastic activity network. In 23rd European Modeling and Simulation Symposium (EMSS),
pages 545–554, 2011.

[12] Daniele Codetta-Raiteri and Andrea Bobbio. Evaluation of a benchmark on dynamic reliability
problems via fluid stochastic Petri nets. In 7th International Workshop on Performability Modeling
of Computer and Communication Systems (PMCCS), pages 52–55, 2005.

[13] Daniele Codetta-Raiteri and Andrea Bobbio. Solving dynamic reliability problems by means of
ordinary and fluid stochastic Petri nets. In European Safety and Reliability Conference (ESREL),
pages 381–389, 2005.

[14] Daniele Codetta-Raiteri and Luigi Portinale. Approaching dynamic reliability with predictive and
diagnostic purposes by exploiting dynamic Bayesian networks. Proceedings of the Institution of
Mechanical Engineers, Part O: Journal of Risk and Reliability, 228(5):488–503, 2014.

[15] Eric Cristofalo, Kevin Leahy, Cristian Ioan Vasile, Eduardo Montijano, Mac Schwager, and Calin
Belta. Localization of a Ground Robot by Aerial Robots for GPS-deprived Control with Temporal
Logic Constraints. In International Symposium on Experimental Robotics (ISER), pages 525–537,
Tokyo, Japan, October 2016. doi:10.1007/978-3-319-50115-4 46.

101

https://link.springer.com/chapter/10.1007%2F978-3-319-50115-4_46


ARCH-COMP18 Stochastic models Abate et. al.

[16] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A storm is coming:
A modern probabilistic model checker. In International Conference on Computer Aided Verifica-
tion, pages 592–600. Springer, 2017.

[17] Sadegh Esmaeil Zadeh Soudjani, Rupak Majumdar, and Tigran Nagapetyan. Multilevel monte
carlo method for statistical model checking of hybrid systems. In Nathalie Bertrand and Luca
Bortolussi, editors, Quantitative Evaluation of Systems, pages 351–367, Cham, 2017. Springer
International Publishing.

[18] Mariken HC Everdij and Henk AP Blom. Hybrid petri nets with diffusion that have into-mappings
with generalised stochastic hybrid processes. In Stochastic Hybrid Systems, pages 31–63. Springer,
2006.

[19] Mariken HC Everdij and Henk AP Blom. Hybrid state petri nets which have the analysis power
of stochastic hybrid systems and the formal verification power of automata. In Petri Nets Appli-
cations. InTech, 2010.

[20] Frederik F Foldager, Peter Gorm Larsen, and Ole Green. Development of a driverless lawn mower
using co-simulation. In International Conference on Software Engineering and Formal Methods,
pages 330–344. Springer, 2017.

[21] Victor Gan, Guy A Dumont, and Ian Mitchell. Benchmark problem: A pk/pd model and safety
constraints for anesthesia delivery. In ARCH@ CPSWeek, pages 1–8, 2014.

[22] Joseph D. Gleason, Abraham P. Vinod, and Meeko M. K. Oishi. Underapproximation of reach-
avoid sets for discrete-time stochastic systems via lagrangian methods. In IEEE Conference on
Decision and Control (CDC), pages 4283–4290, Dec 2017.

[23] Sofie Haesaert, Nathalie Cauchi, and Alessandro Abate. Certified policy synthesis for general
markov decision processes: An application in building automation systems. Performance Evalua-
tion, 117:75–103, 2017.

[24] Ernst Moritz Hahn, Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen. A composi-
tional modelling and analysis framework for stochastic hybrid systems. Formal Methods in System
Design, 43(2):191–232, 2013.

[25] Arnd Hartmanns and Holger Hermanns. The Modest Toolset: An integrated environment for
quantitative modelling and verification. In 20th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 8413 of Lecture Notes in Computer
Science, pages 593–598. Springer, 2014.

[26] SA Hill. Pharmacokinetics of drug infusions. Continuing education in anesthesia, critical care &
Pain, 4(3):76–80, 2004.

[27] Pushpak Jagtap, Sadegh Soudjani, and Majid Zamani. Temporal logic verification of stochastic
systems using barrier certificates. ArXiv e-prints, June 2018.

[28] Austing Jones, Mac Schwager, and Calin Belta. Distribution temporal logic: Combining correct-
ness with quality of estimation. In IEEE 52nd Conference on Decision and Control (CDC), pages
4719–4724, 2013.

[29] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal of
basic Engineering, 82(1):35–45, 1960.

[30] Shahab Kaynama. Scalable techniques for the computation of viable and reachable sets: Safety
guarantees for high-dimensional linear time-invariant systems. PhD thesis, University of British
Columbia, 2012.

[31] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of probabilistic
real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International Confer-
ence on Computer Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer,
2011.

[32] John N Maidens, Shahab Kaynama, Ian M Mitchell, Meeko MK Oishi, and Guy A Dumont. La-
grangian methods for approximating the viability kernel in high-dimensional systems. Automatica,
49(7):2017–2029, 2013.

102



ARCH-COMP18 Stochastic models Abate et. al.

[33] Marzio Marseguerra, Massimo Nutini, and Enrico Zio. Approximate physical modelling in dynamic
PSA using artificial neural networks. Reliability Engineering & System Safety, 45(1):47–56, 1994.

[34] Marzio Marseguerra and Enrico Zio. Monte Carlo approach to PSA for dynamic process systems.
Reliability Engineering & System Safety, 52(3):227–241, 1996.

[35] Cristian-Ioan Vasile Rohan Thakker Ali-akbar Agha-mohammadi Aaron D. Ames P. Nilsson,
S.Haesaert and Richard M. Murray. Toward specification-guided active mars exploration for co-
operative robot teams. In Conference on Robotics: Science and Systems, 2018.

[36] Cristian-Ioan Vasile Rohan Thakker Ali-akbar Agha-mohammadi Aaron D. Ames S.Haesaert,
P. Nilsson and Richard M. Murray. Temporal logic control of pomdps via label-based stochastic
simulation relations. In IFAC Conference on Analysis and Design of Hybrid Systems, 2018.

[37] S. Soudjani and A. Abate. Probabilistic reach-avoid computation for partially degenerate stochastic
processes. IEEE Transactions on Automatic Control, 59(2):528–534, Feb 2014.

[38] Sadegh Soudjani and Alessandro Abate. Probabilistic invariance of mixed deterministic-stochastic
dynamical systems. In ACM Proceedings of the 15th International Conference on Hybrid Systems:
Computation and Control, pages 207–216, Beijing, PRC, April 2012.

[39] Sadegh Esmaeil Zadeh Soudjani, Caspar Gevaerts, and Alessandro Abate. Faust2: Formal Ab-
stractions of Uncountable-STate STochastic processes. In TACAS, volume 15, pages 272–286,
2015.

[40] Sean Summers and John Lygeros. Verification of discrete time stochastic hybrid systems: A
stochastic reach-avoid decision problem. Automatica, 46(12):1951–1961, 2010.

[41] B. Tombuyses and T. Aldemir. Continuous cell-to-cell mmapping and dynamic PSA. In Interna-
tional Conference on Nuclear Engineering, volume 3, pages 431–438, 1996.

[42] Pietro Turati, Nicola Pedroni, and Enrico Zio. Advanced RESTART method for the estimation
of the probability of failure of highly reliable hybrid dynamic systems. Reliability Engineering &
System Safety, 154:117–126, 2016.

[43] Cristian-Ioan Vasile, Kevin Leahy, Eric Cristofalo, Austin Jones, Mac Schwager, and Calin Belta.
Control in Belief Space with Temporal Logic Specifications. In IEEE Conference on Decision and
Control (CDC), pages 7419–7424, Las Vegas, NV, USA, December 2016.

[44] Abraham P. Vinod, Joseph Gleason, and Meeko Oishi. Underapproximative verification and con-
troller synthesis for Automated Anesthesia Delivery system using SReachTools.

[45] Abraham P. Vinod, Baisravan HomChaudhuri, and Meeko M. K. Oishi. Forward stochastic reach-
ability analysis for uncontrolled linear systems using fourier transforms. In Proceedings of the 20th
International Conference on Hybrid Systems: Computation and Control, HSCC, pages 35–44,
April, 2017.

[46] Abraham P. Vinod and Meeko M. K. Oishi. Scalable underapproximation for the stochastic reach-
avoid problem for high-dimensional lti systems using fourier transforms. IEEE Control Systems
Letters, 1(2):316–321, Oct 2017.

[47] Abraham P. Vinod and Meeko M. K. Oishi. Scalable underapproximative verification of stochastic
lti systems using convexity and compactness. In Proceedings of the 21st International Conference
on Hybrid Systems: Computation and Control (Part of CPS Week), pages 1–10. ACM, April, 2018.

[48] Huilong Zhang, François Dufour, Yves Dutuit, and K. Gonzalez. Piecewise deterministic Markov
processes and dynamic reliability. Proceedings of the Institution of Mechanical Engineers, Part O:
Journal of Risk and Reliability, 222(4):545–551, 2008.

103


	Introduction
	Benchmarks
	Anaesthesia Delivery System Benchmark
	Model formulation
	Discrete-time stochastic hybrid system model
	Verification problem

	Building Automation System Benchmark
	CS1BAS: Model
	CS1BAS: Specification
	CS2BAS: Model
	CS2BAS: Specification

	Heated Tank Benchmark
	Continuous-time hybrid-state process model
	Version 1: Baseline
	Version 2: Mode-dependent Failure Rates
	Version 3: Controller Failure on Switching
	Version 4: Controller-Triggered Repairs
	Version 5: Temperature-Dependent Failure Rates
	Results from the Literature

	Lawn Mower Benchmark
	Dynamical model
	Controller mechanism
	Specification of interest

	Mars Rover Benchmark
	Scientific Mars Mission
	Introduction: A formal Belief space planning problem
	POMDPs modeling rover, helicopter, and environment
	Mission Specification in LTL


	Participating Tools & Frameworks
	Results
	Anaesthesia benchmark
	Verification and controller synthesis using SReachTools
	Verification using FAUST2

	Building Automation System benchmark
	CS1BAS: Results
	CS2BAS: Results

	Heated Tank benchmark
	Understanding of the Heated Tank benchmark versions
	 Formal modelling of the Heated Tank versions 
	Estimated probabilities for dryout and overflow 

	Lawn Mower benchmark
	Verification using Barrier Certificates
	Verification using FAUST2

	Mars Rover benchmark

	Challenges and Future plans
	Conclusion and Outlook
	Acknowledgments
	Specification of Used Machines
	MBarrier Certificates
	MFAUST2
	MFIRM-GDTL
	MModest
	MSDCPN & MC simulations
	MSReachTools


