
IFAC PapersOnLine 51-16 (2018) 271–276

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2018.08.046

© 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

10.1016/j.ifacol.2018.08.046 2405-8963

Temporal Logic Control of POMDPs via
Label-based Stochastic Simulation Relations

S. Haesaert ∗ P. Nilsson ∗ C.I. Vasile ∗∗ R. Thakker ∗∗∗

A. Agha-mohammadi ∗∗∗ A.D. Ames ∗ R.M. Murray ∗

∗ California Institute of Technology, Pasadena, CA 91125 USA
∗∗ Massachusetts Institute of Technology, Cambridge, MA 02139 USA

∗∗∗ Jet Propulsion Laboratory, Pasadena, CA 91109 USA

Abstract: The synthesis of controllers guaranteeing linear temporal logic specifications on partially
observable Markov decision processes (POMDP) via their belief models causes computational issues
due to the continuous spaces. In this work, we construct a finite-state abstraction on which a control
policy is synthesized and refined back to the original belief model. We introduce a new notion of label-
based approximate stochastic simulation to quantify the deviation between belief models. We develop a
robust synthesis methodology that yields a lower bound on the satisfaction probability, by compensating
for deviations a priori, and that utilizes a less conservative control refinement.
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1. INTRODUCTION

Emerging applications in robotics necessitate control systems
capable of autonomously performing complex tasks in a safe
manner. These systems are often deployed in (partially) un-
known environments where they have to maximize the prob-
ability of task completion. Temporal logics have emerged as
a principled formalism for expressing behavior together with
associated control synthesis techniques (Wongpiromsarn et al.,
2009). However, work to date in this area has mostly focused
on specifications expressed in terms of the system state; such
specifications are less suitable for expressing properties about
system uncertainty. For instance, in a Mars rover exploration
mission the accuracy of pose estimates must be of much higher
quality during the crucial sample extraction phase, as compared
to when the rover is traversing a “safe” area. In this work, we
develop a control synthesis technique that yields guarantees for
properties that quantify such notions of uncertainty.

For probabilistic temporal logic properties over finite-state
Markov decision processes (MDPs), there exist several tools for
policy synthesis and verification, such as PRISM (Kwiatkowska
et al., 2011) and Storm (Dehnert et al., 2017). However,
when the MDP state space is uncountable the characterization
of these properties cannot in general be attained analytically
(Abate et al., 2008). An alternative is to approximate these
models by simpler processes such as finite-state MDPs. By
quantifying the approximation accuracy via (approximate) sim-
ulation relations (Girard et al., 2010; Haesaert et al., 2017b,a)
guarantees on the resulting controller can be obtained.

Without full-state observations, control synthesis and verifica-
tion becomes more challenging. For finite-state partially ob-
servable Markov decision processes (POMDPs), verification
and policy synthesis has been considered for PCTL properties
(Norman et al., 2017; Chatterjee et al., 2015). For POMDPs
over continuous spaces, results have been focused on reacha-
� This research was carried out at JPL and Caltech under a contract with the
NASA and funded through the President’s and Director’s Fund Program.

bility and safety (Ding et al., 2013; Lesser and Oishi, 2014).
As in (Vasile et al., 2016; Jones et al., 2013), we consider
properties defined on the belief space of a POMDP—the space
of probability distributions over states. For the resulting belief
models, the inherent complexity of the belief space makes the
application of model simplification and quantification more dif-
ficult. Therefore, it is also more difficult to compute guarantees
for these synthesized control systems.

In this paper, we give a robust synthesis methodology tailored to
belief models that is guaranteed to be correct-by-construction.
The contributions of this paper are as follows: Firstly, we tai-
lor the notion of an approximate stochastic simulation relation
towards belief models by omitting distance measures on the
belief space and introducing non-determinism in the proposi-
tion labeling. Secondly, we propose a method to construct the
associated control refinement directly from the value function.
Thirdly, we explicitly compute this robust synthesis methodol-
ogy for non-stationary Kalman-filtered Linear Time-Invariant
(LTI) systems. The results are illustrated on a Mars exploration
scenario in which a finite environment POMDP is combined
with an LTI POMDP.

In the next section, belief models, POMDPs and the associated
temporal logic specifications are introduced. The computation-
ally intractable exact control synthesis is given in Sec. 3, before
introducing our robust synthesis method for abstractions in Sec.
4. This is clarified further for LTI Gaussian POMDPs in the
subsequent section. Finally an illustrative case study is given.

Notation: For a Polish 1 space Y, we denote by B (Y) its Borel
σ-field. Then P(Y) is the set of probability measures on the
Borel-measurable space (Y,B (Y)) whose elements P have
realizations denoted as y∼P. The indicator function of a set A
is written 1A(x) and is equal to 1 if x ∈ A, and to 0 otherwise.
For a relation R ⊂ X1 × X2, denote the associated mappings

1 A Polish space is a complete and separable metrizable space (Bogachev,
2007). All spaces in this work are assumed to be Polish.
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R(X1) := {x2 : x1Rx2, x1 ∈ X1} and R−1(X2) := {x1 :
x1Rx2, x2∈X2} for X1⊆X1 and X2⊆X2.

2. POMDPS AND TEMPORAL LOGIC SPECIFICATIONS

2.1 POMDPs and belief models

We define a Markov decision process as follows.
Definition 1. A discrete-time Markov decision process (MDP)
is a tuple M = (X, ρ, t,U) where X is a (Polish) state space with
states x ∈ X; ρ ∈ P(X) is an initial probability distribution;
U is a (Polish) input space with inputs u ∈ U; t : X × U ×
B(X) → [0, 1] is a Borel-measurable stochastic kernel that
assigns to each state x ∈ X and control u ∈ U a probability
measure t(· |x, u) over (X,B(X)). �

An execution of M is a state-input sequence (x0, u0)(x1, u1) . . .
where x0 ∼ ρ and xk+1 ∼ t(· |xk, uk) for inputs uk ∈
U. While MDPs capture uncertainty in state transitions, full
knowledge is assumed about the state of the system. We there-
fore augment MDPs with a model for partial observations.
Definition 2. A partially observable Markov decision process
(POMDP) MZ is an MDP M = (X, ρ, t,U) together with an
observation model (Z, r) where Z is a (Polish) output space
with outputs z ∈ Z, and r : X× B(Z) → [0, 1] is a conditional
stochastic observation kernel that assigns to each state x ∈ X a
probability measure r(· |x) ∈ (Z,B(Z)). �

An execution of the POMDP up to time K is a sequence
(x0, u0, z0)(x1, u1, z1) . . . (xK , uK , zK) (1)

where (x0, u0) . . . (xK , uK) is an execution of M and zk ∼
r(·|xk). In a POMDP, control actions uk can be chosen as a
function of the available information. For this purpose, define
the k-th information space as Ik := (Z × U)k × Z with
elements ik = (z0, u0, z1, u1, . . . , zk−1, uk−1, zk) referred to
as the k-th information vector. Based on the notion of in-
formation, an observation-based policy for MZ is a sequence
µ = (µ0, . . . , µK−1) such that for each k, µk(duk|ρ, ik) is a
universally measurable stochastic kernel on U given P(X) ×
Ik. We say that µ is non-randomized if for all ρ, k, and ik,
µk(·|ρ, ik) is a Dirac distribution. Given an observation-based
policy µ and an initial distribution ρ, there exists a unique prob-
ability measure Pµ

ρ over the space of executions (see theorem
by Ionescu Tulcea (Hernández-Lerma and Lasserre, 1996)).

The probability distribution bk(dx) = P(xk ∈ dx|ρ, ik) ∈
P(X) expresses the state knowledge at time k. This is referred
to as the belief state and is an element of the belief space
B ⊂ P(X). The state bk evolves based on the stochastic kernel

bk+1 ∼ tb(·|bk, uk), b0 ∼ ρb, (2)
for an initial belief ρb. Since (2) is completely observable, it
follows that a POMDP MZ can equivalently be expressed by

B(MZ) = (B, ρb, tb,U), (3)
an MDP over the belief space. For this we implicitly as-
sume that Borel measurability of the stochastic kernels is
preserved (Bertsekas, 1976). In the sequel we will omit
MZ and simply write B = B(MZ) for the belief model.
The information vector for B at time k is given as ik =
(b0, u0, b1, u1, . . . , bk−1, uk−1, bk). Thus a policy for B is a se-
quence µ = (µ0, . . . , µK−1) such that for all k, µk(duk|ρb, ik)
is a universally measurable stochastic kernel on U. We say
that a policy µ is a Markov policy if for each k it depends

only on the current state, i.e., µk(duk|ρb, ik) = µk(duk|bk).
Furthermore µ is also stationary if there exists a policy µ such
that µk(du|b) = µ(du|b) for all k and b.

2.2 Linear temporal logic for belief models

Similar to Jones et al. (2013), we construct specifications over
the belief space. Atomic propositions are the basic building
blocks from which temporal specifications (Pnueli, 1977) are
constructed. In this work we associate atomic propositions
pi to measurable subsets of the belief space B. While be-
lief spaces are generally infinite-dimensional, Gaussian dis-
tributions N (x̂, P ) are uniquely characterized by the mean
x̂ and variance P . Examples of atomic propositions over a
Gaussian belief space are: (1) a position-based proposition
p1 ⇔ x̂ ∈ A; (2) an uncertainty-based proposition p2 ⇔
det(P ) ≤ c with det() the determinant; (3) a proposition
p3 ⇔

∫
A
N (dx | x̂, P ) ≤ c.

Consider a set AP = {p1, . . . , pL} of atomic propositions; it
defines an alphabet Σ := 2AP where each letter π of the alpha-
bet is a subset of AP . An infinite string of letters is a word π =
π0π1π2 . . . ∈ ΣN. A labeling function L : B → Σ maps belief
states to letters in the alphabet, such that a belief trajectory
b = b0b1b2 . . . generates a word as π := L(b0)L(b1)L(b2) . . .
with respect to which system properties can be expressed. We
trivially require that L is measurable, i.e. that {b|p ∈ L(b)} ∈
B (B) for all p ∈ AP . Since Borel measurability is preserved by
standard linear operations (Azoff, 1974), the uncertainty-based
properties are also Borel-measurable.
Properties are formulas composed of atomic propositions and
operators. In the sequel, we focus on a fragment of linear tem-
poral logic (Belta et al., 2017).
Definition 3. Formulas in the syntactically co-safe LTL (scLTL)
fragment are constructed according to the grammar

ψ := � | p | ¬p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ψ1 U ψ2 | © ψ, (4)
where p ∈ AP is an atomic proposition.
Definition 4. The semantics of scLTL are defined recursively
over suffix sequences πi := πiπi+1πi+2 . . . as πi |= �;
πi |= p iff p ∈ πi; πi |= ψ1 ∧ ψ2 iff (πi |= ψ1) ∧ (πi |= ψ2);
πi |= ψ1 ∨ ψ2 iff (πi |= ψ1) ∨ (πi |= ψ2); πi |= ψ1 U ψ2

iff ∃j ≥ i s.t. (πj |= ψ2) and πk |= ψ1, ∀k ∈ {i, . . . j − 1};
πi |= ©ψ iff πi+1 |= ψ.

We say that a belief trajectory b = b0b1b2 . . . satisfies a
specification ψ, written b |= ψ, if the generated word π =
L(b0)L(b1)L(b2) . . . satisfies ψ, i.e. π |= ψ.

The objective of this work is to design a policy µ such that a
specification ψ is satisfied with a given probability.
Problem 1. Consider belief model B (3), labeling function L :
B → Σ and an scLTL formula ψ. Construct a policy µ such
that

Pµ
ρ (b |= ψ) ≥ p, (5)

where p is either given or to be maximized.

3. CONTROL SYNTHESIS FOR SCLTL FORMULAE

In this section, we give the exact, but intractable, computation
of policies over belief MDPs.
Definition 5. A deterministic finite-state automaton (DFA) is
a tuple A = (Q, q0,Σ, δA, Qf ), with Q a finite set of states,
q0 ∈ Q the initial state, Σ the input alphabet, δA : Q×Σ → Q
the transition function, and Qf ⊆ Q the accepting states.
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R(X1) := {x2 : x1Rx2, x1 ∈ X1} and R−1(X2) := {x1 :
x1Rx2, x2∈X2} for X1⊆X1 and X2⊆X2.

2. POMDPS AND TEMPORAL LOGIC SPECIFICATIONS

2.1 POMDPs and belief models

We define a Markov decision process as follows.
Definition 1. A discrete-time Markov decision process (MDP)
is a tuple M = (X, ρ, t,U) where X is a (Polish) state space with
states x ∈ X; ρ ∈ P(X) is an initial probability distribution;
U is a (Polish) input space with inputs u ∈ U; t : X × U ×
B(X) → [0, 1] is a Borel-measurable stochastic kernel that
assigns to each state x ∈ X and control u ∈ U a probability
measure t(· |x, u) over (X,B(X)). �

An execution of M is a state-input sequence (x0, u0)(x1, u1) . . .
where x0 ∼ ρ and xk+1 ∼ t(· |xk, uk) for inputs uk ∈
U. While MDPs capture uncertainty in state transitions, full
knowledge is assumed about the state of the system. We there-
fore augment MDPs with a model for partial observations.
Definition 2. A partially observable Markov decision process
(POMDP) MZ is an MDP M = (X, ρ, t,U) together with an
observation model (Z, r) where Z is a (Polish) output space
with outputs z ∈ Z, and r : X× B(Z) → [0, 1] is a conditional
stochastic observation kernel that assigns to each state x ∈ X a
probability measure r(· |x) ∈ (Z,B(Z)). �

An execution of the POMDP up to time K is a sequence
(x0, u0, z0)(x1, u1, z1) . . . (xK , uK , zK) (1)

where (x0, u0) . . . (xK , uK) is an execution of M and zk ∼
r(·|xk). In a POMDP, control actions uk can be chosen as a
function of the available information. For this purpose, define
the k-th information space as Ik := (Z × U)k × Z with
elements ik = (z0, u0, z1, u1, . . . , zk−1, uk−1, zk) referred to
as the k-th information vector. Based on the notion of in-
formation, an observation-based policy for MZ is a sequence
µ = (µ0, . . . , µK−1) such that for each k, µk(duk|ρ, ik) is a
universally measurable stochastic kernel on U given P(X) ×
Ik. We say that µ is non-randomized if for all ρ, k, and ik,
µk(·|ρ, ik) is a Dirac distribution. Given an observation-based
policy µ and an initial distribution ρ, there exists a unique prob-
ability measure Pµ

ρ over the space of executions (see theorem
by Ionescu Tulcea (Hernández-Lerma and Lasserre, 1996)).

The probability distribution bk(dx) = P(xk ∈ dx|ρ, ik) ∈
P(X) expresses the state knowledge at time k. This is referred
to as the belief state and is an element of the belief space
B ⊂ P(X). The state bk evolves based on the stochastic kernel

bk+1 ∼ tb(·|bk, uk), b0 ∼ ρb, (2)
for an initial belief ρb. Since (2) is completely observable, it
follows that a POMDP MZ can equivalently be expressed by

B(MZ) = (B, ρb, tb,U), (3)
an MDP over the belief space. For this we implicitly as-
sume that Borel measurability of the stochastic kernels is
preserved (Bertsekas, 1976). In the sequel we will omit
MZ and simply write B = B(MZ) for the belief model.
The information vector for B at time k is given as ik =
(b0, u0, b1, u1, . . . , bk−1, uk−1, bk). Thus a policy for B is a se-
quence µ = (µ0, . . . , µK−1) such that for all k, µk(duk|ρb, ik)
is a universally measurable stochastic kernel on U. We say
that a policy µ is a Markov policy if for each k it depends

only on the current state, i.e., µk(duk|ρb, ik) = µk(duk|bk).
Furthermore µ is also stationary if there exists a policy µ such
that µk(du|b) = µ(du|b) for all k and b.

2.2 Linear temporal logic for belief models

Similar to Jones et al. (2013), we construct specifications over
the belief space. Atomic propositions are the basic building
blocks from which temporal specifications (Pnueli, 1977) are
constructed. In this work we associate atomic propositions
pi to measurable subsets of the belief space B. While be-
lief spaces are generally infinite-dimensional, Gaussian dis-
tributions N (x̂, P ) are uniquely characterized by the mean
x̂ and variance P . Examples of atomic propositions over a
Gaussian belief space are: (1) a position-based proposition
p1 ⇔ x̂ ∈ A; (2) an uncertainty-based proposition p2 ⇔
det(P ) ≤ c with det() the determinant; (3) a proposition
p3 ⇔

∫
A
N (dx | x̂, P ) ≤ c.

Consider a set AP = {p1, . . . , pL} of atomic propositions; it
defines an alphabet Σ := 2AP where each letter π of the alpha-
bet is a subset of AP . An infinite string of letters is a word π =
π0π1π2 . . . ∈ ΣN. A labeling function L : B → Σ maps belief
states to letters in the alphabet, such that a belief trajectory
b = b0b1b2 . . . generates a word as π := L(b0)L(b1)L(b2) . . .
with respect to which system properties can be expressed. We
trivially require that L is measurable, i.e. that {b|p ∈ L(b)} ∈
B (B) for all p ∈ AP . Since Borel measurability is preserved by
standard linear operations (Azoff, 1974), the uncertainty-based
properties are also Borel-measurable.
Properties are formulas composed of atomic propositions and
operators. In the sequel, we focus on a fragment of linear tem-
poral logic (Belta et al., 2017).
Definition 3. Formulas in the syntactically co-safe LTL (scLTL)
fragment are constructed according to the grammar

ψ := � | p | ¬p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ψ1 U ψ2 | © ψ, (4)
where p ∈ AP is an atomic proposition.
Definition 4. The semantics of scLTL are defined recursively
over suffix sequences πi := πiπi+1πi+2 . . . as πi |= �;
πi |= p iff p ∈ πi; πi |= ψ1 ∧ ψ2 iff (πi |= ψ1) ∧ (πi |= ψ2);
πi |= ψ1 ∨ ψ2 iff (πi |= ψ1) ∨ (πi |= ψ2); πi |= ψ1 U ψ2

iff ∃j ≥ i s.t. (πj |= ψ2) and πk |= ψ1, ∀k ∈ {i, . . . j − 1};
πi |= ©ψ iff πi+1 |= ψ.

We say that a belief trajectory b = b0b1b2 . . . satisfies a
specification ψ, written b |= ψ, if the generated word π =
L(b0)L(b1)L(b2) . . . satisfies ψ, i.e. π |= ψ.

The objective of this work is to design a policy µ such that a
specification ψ is satisfied with a given probability.
Problem 1. Consider belief model B (3), labeling function L :
B → Σ and an scLTL formula ψ. Construct a policy µ such
that

Pµ
ρ (b |= ψ) ≥ p, (5)

where p is either given or to be maximized.

3. CONTROL SYNTHESIS FOR SCLTL FORMULAE

In this section, we give the exact, but intractable, computation
of policies over belief MDPs.
Definition 5. A deterministic finite-state automaton (DFA) is
a tuple A = (Q, q0,Σ, δA, Qf ), with Q a finite set of states,
q0 ∈ Q the initial state, Σ the input alphabet, δA : Q×Σ → Q
the transition function, and Qf ⊆ Q the accepting states.
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A word π = π0π1π2 . . . is accepted by the DFA if there exists a
sequence q0q1q2 . . . qf with qf ∈ Qf , that starts with the initial
state q0 and for which qk+1 = δA(qk, πk). Denote the set of
words accepted by a DFA A as Lang(A).
For every scLTL property ψ (4), there exists a DFA Aψ for
which π |= ψ if and only if π ∈ Lang(Aψ), see inter alia
(Belta et al., 2017). We can therefore reason about satisfaction
of probabilistic properties on B by analyzing its product MDP
B⊗Aψ (Tkachev et al., 2013).
Definition 6. Given belief model B (3), labeling function L :
B → Σ and DFA Aψ , the product of M and Aψ is an MDP

B⊗Aψ = (B×Q, ρ̄, t̄,U), (6)
where ρ̄(db, q) = ρb(db) if q = δA(q0, L(b)) and ρ̄(db, q) = 0
otherwise, and the transition kernel is similarly given as

t̄(db′ × {q′}|b, q, u) =
{
t(db′|b, u) if q′ = δA(q, L(b

′)),

0 otherwise.

Any policy µ for B ⊗ Aψ induces a policy for B. Thus
Problem 1 can be converted into the problem of constructing
a reachability-enforcing policy on B⊗Aψ . In the following we
review the reachability problem on MDPs.

Given policy µ for B ⊗ Aψ , define the time-dependent value
function VK

µ : B×Q → [0, 1] as

VK
µ (b, q) = Eµ

[
K∑
i=0

1Qf
(qi)

i−1∏
j=0

1Q\Qf
(qj)

∣∣∣∣(b0, q0) = (b, q)

]
.

(7)
Since VK

µ (x) expresses the probability that a trajectory gen-
erated by µ starting from (b, q) will reach the target set Qf

within a time horizon K (Abate et al., 2008), it also expresses
the probability that the ψ will be satisfied in the time horizon
K. Next express the associated Bellman operator Tµ as

Tµ(V)(b, q)=

∫

B
max

(
1Qf

(q′),V(b′, q′)
)
t(db′|b, µ(b, q)) (8)

with the implicit DFA transitions q′ = δA(q, L(b
′)), Consider

a policy µi = (µi+1, . . . µK) with time horizon K − i,
then it follows that VK−i+1

µi−1
= Tµi

VK−i
µi

. Thus if VK−i
µi

expresses the probability of reaching Qf within K − i steps,
then Tµi

VK−i
µi

expresses the probability of reaching Qf within
K− i+1 steps with policy µi−1. It follows that for a stationary
policy µ, the infinite-horizon value function can be computed
as V∞

µ = limK→∞ TK
µ V0 with V0 ≡ 0.

Instead of defining the recursions for a given policy µ, we can
also optimize with respect to the set Dµ of universally mea-
surable deterministic policies. This yields the policy-optimal
Bellman recursion as

T∗(V) = supµ∈Dµ
Tµ(V). (9)

From (Abate et al., 2008), we know that there exists a policy µ∗
optimizing the value functions (7), or equivalently, the reach-
ability recursions (8) that is a stationary, universally measur-
able, and deterministic policy. For the converged value function
V∞

∗ := limK→∞[T∗]
KV0, the probability of satisfaction is

sup
µ

Pµ
ρ (b �ψ)=

∫

B
max

(
1Qf

(q′),V∞
∗ (b0, q

′)
)
ρb(db0), (10)

and the associated policy µ∗ = (µ∗, µ∗, . . .) is defined for the
product MDP B ⊗ Aψ and maps a state (b, q) ∈ B × Q to a
control action, and can be translated to a non-stationary policy
for the original belief MDP B that uses Aψ as a memory model.

Even though this section outlines a solution method to Prob-
lem 1, the required recursions are in general computationally
intractable.

4. REFINEMENT-BASED APPROXIMATE CONTROL
SYNTHESIS

Let a belief model B and an abstract model B̃ be given. In
this section, we give a robust synthesis methodology tailored
to abstractions of belief models that yields a lower bound on
the satisfaction probability and we give a specification-based
policy refinement.

4.1 Approximate label-based stochastic simulation

Let B1,B2 be two sets for which the relation R ⊂ B1 × B2

is a set that captures pairwise similarity between x1 ∈ B1

and x2 ∈ B2, then also similarity between P1 ∈ P(B1) and
P2 ∈ P(B2) can be quantified as follows.
Definition 7. (δ-lifting (Haesaert et al., 2017b)). For a given re-
lation R ∈ B(B1 × B2), we say that P1 and P2 are in the
corresponding δ-lifted relation R̄δ , written P1R̄δP2, if there
exists a lifting W ∈ P(B1 × B2) such that
L1. for all X1 ∈ B(B1): W(X1 × B2) = P1(X1);
L2. for all X2 ∈ B(B2): W(B1 ×X2) = P2(X2);
L3. W (R) ≥ 1− δ, i.e., b1Rb2 with probability at least 1− δ.

For stochastic kernels, we add a measurability condition.
Definition 8. (δ-Lifting). Stochastic kernels t1(·|x) and t2(·|x),
as defined in Def. 1, are in a δ-lifted relation R̄δ , i.e.,
t1(·|x) R̄δ t2(·|x), if there exists a lifting Wt : X1 × X2 ×
B(X1 × X2) → [0, 1] that is Borel-measurable.

We next apply this lifting concept to quantify the difference be-
tween two belief models B̃ and B. To allow for approximate re-
lations where atomic proposition can be ambiguous, we newly
consider set-valued labelings B → 2Σ. For the belief model
B, define the set-valued extension of the labeling function as
L : B → 2Σ with L(b) = {L(b)}.
Definition 9. Consider a concrete belief MDP B = (B, ρ, tb,U)
and an abstract MDP B̃ = (B̃, ρ̃, t̃b, Ũ), with (set-valued)
labeling maps L and L̃. We say that B̃ is δ-stochastically
simulated by B with respect to (L̃,L), denoted as B̃ �δ

L̃,L B,

if there exists a Borel-measurable interface function Uv : Ũ ×
B̃ × B → P(U) and a Borel-measurable relation R ⊆ B̃ × B,
s.t. for all ũ ∈ Ũ and for all (b̃, b) ∈ R:

ρ̃bR̄δρb and t̃b(·|b̃, ũ) R̄δ tb(·|b,Uv(ũ, b̃, b)), (SR 1&2)

L(b) ⊆ L̃(b̃). (SRL)

Conditions (SR 1&2) enforce δ-probabilistic similarity be-
tween the initial distributions and the transition kernels, while
(SRL) guarantees that any label L ∈ L(b) of a concrete state
b is also present in the abstract label collection L(b̃). The sim-
ulation relation is transitive: if B1�δ1

L1,L2
B2 and B2�δ2

L2,L3
B3,

then B1�δ1+δ2
L1,L3

B3.

4.2 Robust policy synthesis

Given an approximate belief model B̃, we define a robust
quantification and policy synthesis for an scLTL property. We
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compensate for both non-determinism in the labeling function,
as well as the difference δ in probability. The former can be
dealt with by considering the worst-case resolution of non-
determinism in the Bellman operator (8) :

TL̃
µ (W)(b, q) =

∫

B
min

q′∈δA(q,L̃(b′))
max

(
1Qf

(q′),W(b′, q′)
)

× t(db′|b, µ(b, q)). (11)
The robust Bellman operator follows by compensating for the
difference in probability δ as

R(L̃,δ)
µ (W)(b, q) = max

(
0,TL̃

µ (W)(b, q)− δ
)
. (12)

The policy-optimal robust Bellman operator R
(L̃,δ)
∗ follows

analogously. The robustified optimal probability that an execu-
tion b̃ of B̃ satisfies ψ, is therefore given as
Prob

∗
ρ(b̃ � ψ; L̃, δ) = (13)∫

B min
q̄∈δA(q0,L̃(b0))

max
(
1Qf

(q̄),W∞
∗ (b0, q̄)

)
ρb(db0)− δ

with W∞
∗ := limK→∞[R

(L,δ)
∗ ]K(W0) and W0 ≡ 0, and with

the associated policy µ̃∗. Based on the following proposition,
the original belief model inherits these results as follows.
Proposition 10. (Haesaert et al. (2017a)). Suppose that B̃ �δ

L̃,L
B, then a control policy µ̃∗ for B̃ can be refined to a control
policy µ∗ for B such that

Prob
∗
ρ̃(b̃ � ψ; L̃, δ) ≤ Pµ∗

ρ (b � ψ). (14)

In Haesaert et al. (2017b), this refined policy is constructed via
composition of the conditional lifting (see Definition 8) and
the abstract policy µ̃∗. Here we improve this construction in
a way that is independent of the lifting but strongly dependent
on the value function. Given W∞

∗ and an abstract policy µ̃∗,
the refined concrete policy over the product MDP B ⊗ Aψ is
obtained as
µ∗(b, q) := Uv(µ̃∗(b̃

∗, q), b̃∗, b), b̃∗ := argmax
b̃∈R−1(b)

W∞
∗ (b̃, q).

(15)
The following theorem now summarizes this contribution.
Theorem 11. Given a finite-state abstraction B̃ for which
B̃ �δ

L̃,L B with interface Uv . Let W∞
∗ be the value function

associated to specification ψ and let µ̃∗ be a policy for the
abstract model. If the refined policy µ∗ is defined by (15), then
(14) holds.

Proof. At each time instant, finding a control action u is
associated to finding the state update for the abstract system
such as to find an abstract input that can be refined via the
interface in Definition 9. Based on proposition 10, we know
that for every policy µ̃∗ there exists a refined policy µ̃∗ such
that for all pairs of belief states (b̃, b) ∈ R, it holds that
W∞

∗ (b̃, q) ≤ V∞
ref (b, q), where V∞

ref (b, q) is the exact infinite-
horizon value of (7) for the refined policy starting from b.
The standard control refinement hinges on selecting the next
abstract state as a realization of the lifted kernel (c.f., Def. 8);
by instead selecting the next state as the maximizer of W∞

∗ a
strict improvement of the lower bound is achieved. �

In contrast to the work in Haesaert et al. (2017b,a) developed
for standard MDPs, this work newly facilitates working with
belief models as it incorporates non-determinism in the labeling
instead of leveraging a metric error. Furthermore, we have given
a different specification-dependent policy refinement.

5. ABSTRACTIONS FOR GAUSSIAN LTI POMDPS

Consider an LTI system
xk+1 = Axk +Buk + wk, wk ∼ N (0,W),

zk = Cxk + vk, vk ∼ N (0,V), (16)

we say that it defines POMDP with state space X ⊆ Rn, initial
distribution ρ := N (x̂ρ, Pρ), control inputs U ⊆ Rm, and tran-
sition kernel t(·|x, u) = N (Ax+Bu,W), together with obser-
vation model r(·|x) = N (Cx,V) generating measurements zk.
It is well known that the belief state (x̂k|k, Pk|k) for this type of
system evolves over the space of Gaussian distributions, and is
given by the Kalman filter equations (Bertsekas, 1976):
x̂k|k = Ax̂k−1|k−1 +Buk−1 + Lkek, ek ∼ N (0, Sk), (17)

Pk|k = (I−LkC)Pk|k−1, Pk|k−1=APk−1|k−1A
T+W, (18)

Lk = Pk|k−1C
TS−1

k , Sk = CPk|k−1C
T + V.

These equations define a belief model B. As a first abstraction,
we choose to reduce the complexity and dimensionality of the
dynamics by neglecting the variations of the covariance matrix
P . Therefore, abstract model B̃ is obtained by replacing the
stochastic transitions in Eq. (17) by

x̃k = Ax̃k−1 +Bũk−1 + P̃CT s̃k, (19)

with s̃k ∼ N (0, S̃inv) and a matrix S̃inv such that S̃inv � S−1
k

for all k, and where P̃ defines the steady state value of Pk|k−1,
i.e., the solution of the Kalman equations. We say that the MDP
B̃ has state space Bx. The next step is to show that there exists
a value δ such that B̃ �δ

L̃,L B. If this holds, then we can
grid Bx as in (Haesaert et al., 2017b,a) to obtain a finite-state
MDP B̃grid over which we can do the control synthesis. Via
transitivity of Def. 9, the latter finite-state MDP will also be
in a δ-approximate stochastic simulation with B. The details
of the gridding step can be found in (Haesaert et al., 2017a).
We restrict attention to simulation relations R between states
b = (x̂, P ) of B and states x̃ of B̃, and interfaces Uv , of the
forms
R=

{
(x̃, (x̂, P ))

∣∣(x̂− x̃)TM(x̂− x̃) ≤ ε2, P−� P �P+
}
,

Uv(ũ, x̃, x̂) = K(x̂− x̃) + ũ, (20)

for some matrices M,P−, P+ and K. Next, we specify this
relation, interface and the labeling such that they define a label-
based δ-stochastic simulation relation for B̃ and B.
Labeling requirement. We construct a set-valued labeling
function L̃ : Bx → 2Σ satisfying (SRL). For a position-based
proposition pi consider, without loss of generality, a labeling
Lpi : B → {{pi}, ∅} for the concrete belief MDP defined
by pi ∈ Lp ((x̂, P )) ⇔ x̂ ∈ A. The set-valued extension to
2{{pi},∅} for the abstract MDP is defined as

L̃pi(x̃) =

{ {{pi}} if ∀b ∈ R(x̃) : pi ∈ Lpi(b),
{∅} if ∀b ∈ R(x̃) : pi �∈ Lpi(b),
{{pi}, ∅} otherwise.

(21)

The labeling L̃pi
can be easily computed by shrinking or ex-

panding the set A, and the extension to multiple atomic propo-
sitions is straightforward. Similarly, for propositions involving
the variance of the current belief state any atomic property that
is monotonic 2 in P can be mapped to the abstract model.
However, atomic propositions that include probability require
caution since the quantification of the probability of an event is
2 Here monotonicity of a function in P is defined based on the preorder � for
the matrices P with A � B if xT (A−B)x ≥ 0∀x ∈ Rn.
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compensate for both non-determinism in the labeling function,
as well as the difference δ in probability. The former can be
dealt with by considering the worst-case resolution of non-
determinism in the Bellman operator (8) :

TL̃
µ (W)(b, q) =

∫

B
min

q′∈δA(q,L̃(b′))
max

(
1Qf

(q′),W(b′, q′)
)

× t(db′|b, µ(b, q)). (11)
The robust Bellman operator follows by compensating for the
difference in probability δ as

R(L̃,δ)
µ (W)(b, q) = max

(
0,TL̃

µ (W)(b, q)− δ
)
. (12)

The policy-optimal robust Bellman operator R
(L̃,δ)
∗ follows

analogously. The robustified optimal probability that an execu-
tion b̃ of B̃ satisfies ψ, is therefore given as
Prob

∗
ρ(b̃ � ψ; L̃, δ) = (13)∫

B min
q̄∈δA(q0,L̃(b0))

max
(
1Qf

(q̄),W∞
∗ (b0, q̄)

)
ρb(db0)− δ

with W∞
∗ := limK→∞[R

(L,δ)
∗ ]K(W0) and W0 ≡ 0, and with

the associated policy µ̃∗. Based on the following proposition,
the original belief model inherits these results as follows.
Proposition 10. (Haesaert et al. (2017a)). Suppose that B̃ �δ

L̃,L
B, then a control policy µ̃∗ for B̃ can be refined to a control
policy µ∗ for B such that

Prob
∗
ρ̃(b̃ � ψ; L̃, δ) ≤ Pµ∗

ρ (b � ψ). (14)

In Haesaert et al. (2017b), this refined policy is constructed via
composition of the conditional lifting (see Definition 8) and
the abstract policy µ̃∗. Here we improve this construction in
a way that is independent of the lifting but strongly dependent
on the value function. Given W∞

∗ and an abstract policy µ̃∗,
the refined concrete policy over the product MDP B ⊗ Aψ is
obtained as
µ∗(b, q) := Uv(µ̃∗(b̃

∗, q), b̃∗, b), b̃∗ := argmax
b̃∈R−1(b)

W∞
∗ (b̃, q).

(15)
The following theorem now summarizes this contribution.
Theorem 11. Given a finite-state abstraction B̃ for which
B̃ �δ

L̃,L B with interface Uv . Let W∞
∗ be the value function

associated to specification ψ and let µ̃∗ be a policy for the
abstract model. If the refined policy µ∗ is defined by (15), then
(14) holds.

Proof. At each time instant, finding a control action u is
associated to finding the state update for the abstract system
such as to find an abstract input that can be refined via the
interface in Definition 9. Based on proposition 10, we know
that for every policy µ̃∗ there exists a refined policy µ̃∗ such
that for all pairs of belief states (b̃, b) ∈ R, it holds that
W∞

∗ (b̃, q) ≤ V∞
ref (b, q), where V∞

ref (b, q) is the exact infinite-
horizon value of (7) for the refined policy starting from b.
The standard control refinement hinges on selecting the next
abstract state as a realization of the lifted kernel (c.f., Def. 8);
by instead selecting the next state as the maximizer of W∞

∗ a
strict improvement of the lower bound is achieved. �

In contrast to the work in Haesaert et al. (2017b,a) developed
for standard MDPs, this work newly facilitates working with
belief models as it incorporates non-determinism in the labeling
instead of leveraging a metric error. Furthermore, we have given
a different specification-dependent policy refinement.

5. ABSTRACTIONS FOR GAUSSIAN LTI POMDPS

Consider an LTI system
xk+1 = Axk +Buk + wk, wk ∼ N (0,W),

zk = Cxk + vk, vk ∼ N (0,V), (16)

we say that it defines POMDP with state space X ⊆ Rn, initial
distribution ρ := N (x̂ρ, Pρ), control inputs U ⊆ Rm, and tran-
sition kernel t(·|x, u) = N (Ax+Bu,W), together with obser-
vation model r(·|x) = N (Cx,V) generating measurements zk.
It is well known that the belief state (x̂k|k, Pk|k) for this type of
system evolves over the space of Gaussian distributions, and is
given by the Kalman filter equations (Bertsekas, 1976):
x̂k|k = Ax̂k−1|k−1 +Buk−1 + Lkek, ek ∼ N (0, Sk), (17)

Pk|k = (I−LkC)Pk|k−1, Pk|k−1=APk−1|k−1A
T+W, (18)

Lk = Pk|k−1C
TS−1

k , Sk = CPk|k−1C
T + V.

These equations define a belief model B. As a first abstraction,
we choose to reduce the complexity and dimensionality of the
dynamics by neglecting the variations of the covariance matrix
P . Therefore, abstract model B̃ is obtained by replacing the
stochastic transitions in Eq. (17) by

x̃k = Ax̃k−1 +Bũk−1 + P̃CT s̃k, (19)

with s̃k ∼ N (0, S̃inv) and a matrix S̃inv such that S̃inv � S−1
k

for all k, and where P̃ defines the steady state value of Pk|k−1,
i.e., the solution of the Kalman equations. We say that the MDP
B̃ has state space Bx. The next step is to show that there exists
a value δ such that B̃ �δ

L̃,L B. If this holds, then we can
grid Bx as in (Haesaert et al., 2017b,a) to obtain a finite-state
MDP B̃grid over which we can do the control synthesis. Via
transitivity of Def. 9, the latter finite-state MDP will also be
in a δ-approximate stochastic simulation with B. The details
of the gridding step can be found in (Haesaert et al., 2017a).
We restrict attention to simulation relations R between states
b = (x̂, P ) of B and states x̃ of B̃, and interfaces Uv , of the
forms
R=

{
(x̃, (x̂, P ))

∣∣(x̂− x̃)TM(x̂− x̃) ≤ ε2, P−� P �P+
}
,

Uv(ũ, x̃, x̂) = K(x̂− x̃) + ũ, (20)

for some matrices M,P−, P+ and K. Next, we specify this
relation, interface and the labeling such that they define a label-
based δ-stochastic simulation relation for B̃ and B.
Labeling requirement. We construct a set-valued labeling
function L̃ : Bx → 2Σ satisfying (SRL). For a position-based
proposition pi consider, without loss of generality, a labeling
Lpi : B → {{pi}, ∅} for the concrete belief MDP defined
by pi ∈ Lp ((x̂, P )) ⇔ x̂ ∈ A. The set-valued extension to
2{{pi},∅} for the abstract MDP is defined as

L̃pi(x̃) =

{ {{pi}} if ∀b ∈ R(x̃) : pi ∈ Lpi(b),
{∅} if ∀b ∈ R(x̃) : pi �∈ Lpi(b),
{{pi}, ∅} otherwise.

(21)

The labeling L̃pi
can be easily computed by shrinking or ex-

panding the set A, and the extension to multiple atomic propo-
sitions is straightforward. Similarly, for propositions involving
the variance of the current belief state any atomic property that
is monotonic 2 in P can be mapped to the abstract model.
However, atomic propositions that include probability require
caution since the quantification of the probability of an event is
2 Here monotonicity of a function in P is defined based on the preorder � for
the matrices P with A � B if xT (A−B)x ≥ 0 ∀x ∈ Rn.
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in general not monotonic with respect to variance.
Probability requirements. To show satisfaction of condition
(SR 1&2), we need to show that there exists a δ-lifting. First
we require that P+ (resp. P−) is an upper (resp. lower) bound
for Pk|k of the belief MDP (17)-(18). We say that P− is a
lower bound if it is a lower bound for the initial condition (see
above) and if it is monotonically increasing with respect to the
Riccati equations (Bitmead et al., 1985). For the upper bound,
we require, mutatis mutandis, a monotonically decreasing P+.
Consider a choice of noise sources s̃k+1 and s∆k+1, such that the
difference between the states in (17)-(19) evolves according to
x̂k+1|k+1 − x̃k+1 = (A+BK)(x̂k|k − x̃k)

+ Pk+1|kC
T s∆k+1 +∆k+1s̃k+1,

(22)

with ∆k+1 := (Pk+1|kC
T − P̃CT ), s̃k+1 ∼ N (0, S̃inv), and

s∆k+1 ∼ N (0, S−1
k+1 − S̃inv).

We can now quantify the δ-difference between B and B̃ by
verifying that for all (x̃k, x̂k|k) ∈ R, with probability at least
1 − δ it holds that (x̃k+1, x̂k+1|k+1) ∈ R. Furthermore, we
can bound the norm of the noise terms s∆k+1 and s̃k+1 using
probabilistic guarantees computed via inter alia the chi-square
distribution. The computation of the values of ε and the values
of the matrices in R and in the interface (20), can now be
performed as an optimization problem. Though we did not
explicitly write out the lifted probability space Wt of Def. 8,
it can easily be obtained from the probability measure induced
by joint evolution of (17) and (19) driven by noise sources s∆
and s̃.
Combined, these requirements constitute sufficient conditions
for the simulation relation to apply for a Kalman belief model
B and an abstraction B̃ on the form (19). As mentioned above, a
grid-based abstraction can then be constructed from B̃ to obtain
a finite abstraction B̃grid such that B̃grid �δgrid

L̃grid,L̃
B̃ �δ

L̃,L

B with δgrid = 0. While B is of dimension n + n2, B̃ is
of dimension n, therefore this intermediate step is crucial to
mitigate the curse of dimensionality in the gridding procedure.

6. CASE STUDY

We consider a rover tasked with identifying and collecting
scientific samples in a partially unknown Mars environment.

Rover model. We consider a simple rover modeled as a
point mass xk ∈ R2 affected by stochastic disturbances
and modeled as a partially-observable LTI system (16) with
(A,B,C,W,V) = (I, I, I,

[
.4 −.2
−.2 .4

]
, I). The corresponding

belief space model B is defined by the Kalman filter equations
(17)-(18) as in Section 5. We assume that initially the belief
distribution of x is N (x̂0, P0) with P0 =

[
0.74446 −0.2862
−0.2862 0.74446

]
.

Environment model. From the overhead imagery, we con-
sider two target regions T1 and T2 where the probability of
encountering a desired sample has been assessed as 0.5 and
0.6, respectively. In addition, there are two risk regions R1 and
R2 with probabilities of 0.9 and 0.7 that the rover can traverse
them safely, respectively. For both target and risk regions, we
assume that the true nature of the region can be determined via
measurements from on-board sensors when the rover is within
a certain distance of the regions. The regions are illustrated
in Fig. 3, along with the regions from where measurements
can be acquired (dashed lines). To each region we associate a
discrete belief state br ∈ {pr,0, 1, 0} where pr,0 are the belief

probabilities from satellite imagery.
With Benv as the combined environment model with state
(bT1

, bT2
, bR1

, bR2
), the overall system is B⊗ Benv . This prod-

uct is defined similarly to the product in Definition 6: B gives
inputs to Benv according to the position in the state space.
If the state estimate x̂ of B is inside a measurement region
(dashed lines in Fig. 3), a measurement is performed in the
corresponding environment MDP.
Specification. The objective is to collect a sample while avoid-
ing unsafe regions. This is expressed by the scLTL specification

ψ = ¬fail U sample, (23)
where the atomic proposition sample is true if the rover is in a
target region that contains a sample, and the atomic proposition
fail is defined as being true if the rover is in a risk region that
contains an obstacle.

0 0.1 0.2
0.8
1

1.2
1.4

δ

ε

Fig. 1. Trade-off between
state error ε from Eq.
(20) and probability er-
ror δ from Definition 9.

Solution. We first construct a finite abstraction of B as outlined
in the previous section; first we compute an approximate LTI
belief model and then we discretize the state space [−10, 10]2

with grids of width and height (0.76481, 0.64426). The input
space [−1, 1]2 is sampled with nine discrete inputs {0, 1,−1}2.
Fig. 1 illustrates the trade-off between the ε error in the relation
(20) and the δ-difference in Definition 9 for these choices of
discretization parameters. Combined with a relaxation of the
labeling as introduced in the previous subsection, we obtain an
abstract model B̃grid with the property that B̃grid �0.01

L̃grid,L
B.

The upper bound P+ and the lower bound P− on the uncer-
tainty have been selected based on the steady state Kalman gain
and on the initial covariance P0, respectively.

In order to analyze the combined system B ⊗ Benv , we cre-
ate B̃grid ⊗ Benv as a nondeterministic product and treat it
analogously to the nondeterminism in the connection between
an MDP and a DFA in Eq. (13). Effectively, when there is
uncertainty about whether a measurement of a region can be
expected, the worst-case is considered in the value iteration
which by Theorem 11 ensures that the obtained probabilities
are indeed lower bounds. With this method we compute a value
function and an associated control policy for B̃grid ⊗ Benv

and refine it to the concrete system. The resulting policy takes
inputs from B ×

∏4
i=1{p0,i, 0, 1}—the combined rover and

environment state—and has internal memory dynamics given
by the specification DFA. The value function is illustrated in
Fig. 2 for two different environment states. Observe that the
knowledge of a sample in T2 and an obstacle in R2 yields a
more polarized value function in the right figure.

The plots in Fig. 3 depict the evolution of the estimated position
for executions generated by the control policy, and the associ-
ated probability bounds. The probabilities reflect multiple fac-
tors: the probability of encountering samples, the probability of
encountering obstacles, and the probability of falling out of the
simulation relation (as captured by δ = 0.01). Positive jumps
in probability occur when samples are detected or regions are
deemed obstacle-free, and negative jumps result from not find-
ing samples in target regions, and from finding obstacles. As
can be seen, the policy synthesis technique elicits intelligent
behaviors where the agents explore the most promising regions
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V = 0

V = 1

V = 0.5

Fig. 2. Illustration of value function for two different
states of the environment (0.5, 0.6, 0.9, 0.7) [left] and
(0.5, 1, 0.9, 0) [right], with regions of interest plotted with
dashed lines.

R1

R2T1 T2

R1

R2T1 T2

10 20 30

0.2
0.4
0.6
0.8
1

t

P(ψ)

20 40 60

0.2
0.4
0.6
0.8
1

t

P(ψ)

Fig. 3. Above: regions of interest (red/blue), associated mea-
surement regions (dashed lines), and trajectories of noisy
state estimates starting at three different initial conditions.
Below: estimated probability to satisfy the specification
over time for the same trajectories. The left and right plots
illustrate two different configurations of the true environ-
ment. In both cases, a sample exists at T1 but not at T2,
and R1 cannot be traversed due to an obstacle. However,
in the left figure, R2 does not contain an obstacle, so the
rover can traverse R2 after confirming that it is safe. In the
right figure, both risk regions contain obstacles.

to satisfy the specification, while remaining robust to noise
effects.

7. CONCLUSIONS

In this paper, we have developed a robust control synthesis
methodology for POMDPs and specifications expressed over
the belief space of the POMDP. Our approach is based on
principled abstractions via a label-based type of stochastic sim-
ulation relation that is tailored to belief models. In addition,
we have introduced a specification-based way to refine control
policies. As a result, we have obtained policies with associated
guarantees on the probability of specification satisfaction. For
the special case of linear systems with Gaussian noise and
observation models, we have given a concrete abstraction con-
struction and an associated simulation relation.
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