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1 Introduction

In the last years, several classes of computing devicededdalsystems- were in-
troduced inspired from the cell architecture and functigniand vividly investigated
in the framework oimembrane computing general references will be given below.

Numerical P systems are a class of computing models insbotdfrom the cell
structure and from the economics: numerical variablesveviol the compartments
of a cell-like structure by means of so-callpabduction—repartition programsThe
variables have a given initial value and the production fiamcis usually a polyno-
mial, whose value for the current values of variables isriligted among variables
in certain compartments (close to the place where the palyelds evaluated — see
precise definitions in the next section) according to thedrétion protocol”. In this
way, the values of variables evolve; all values taken by &ifpd variable are said
to be computed by the P system.

These computing devices were introduced in [9], where twinputational com-
pleteness (equivalence with the computing power of Turiragmnes) was proven,
by making use of the characterization of Turing computabts sf numbers as the
positive values of polynomials with integer coefficienty, [The results in [9], as well
as further connections between membrane computing andedos, are recalled in
Chapter 23.6 of [10]. This Handbook provides an overall imafmembrane com-
puting at the level of year 2009; further details can be foun@], with the updated
information available at the website [16]. A simulator farmerical P systems, to-
gether with relevant examples, are presented in [1] and [3].

Note the important difference between numerical P systerdsall classes of P
systems usually investigated in membrane computing: ieiggmmultisets of symbol
objects are processed in the membranes, by means of biczdiBninspired rules,
while in numerical P systems we deal with numerical varigpeocessed in an alge-
braic way. At a more technical level, there also are seveharalifferences between
(the way of working of) numerical P systems and usual P systéinthe evolution
programs are used in [9 the sequential wayin each step, each membrane uses
only one program), while in the membrane computing the nmo&stigated seman-
tics is the maximally parallel one (at a given step one usesiléigat of rules which
is maximal in the inclusion sense), and (ii) the result of apatationis not de-
fined by halting but by collecting all values assumed by a specified varjablall
computations, with the computations not necessarily ralti

In [9] and [10] one uses the numerical P systems only in theiggimg mode.
However, numerical P systems were recently used in a sdnepers (see references
in [3]) for implementing controllers for mobile robots (adeia first mentioned in
[2]), and in this framework the P systems work in the computimode: an input is
introduced in the form of the values of some variables andudput is produced, as
the value of other variables. Clearly, the systems sholtid\ein a deterministic way
— another difference from the case of [9], where one deals thvé non-deterministic
case.

Furthermore, in the robot control context, the so-cabedymaticnumerical P
systems were introduced and used, [12], [13], [14]. Suctesys correspond tcat-
alytic P system#n the “general” membrane computing: a reaction takes pedy
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in the presence of a catalyst. Here, the catalyst (enzyneeyasiable attached to an
evolution program; the program is used only if the value @& #mzyme is strictly
greater than the smallest value of variables involved irptiogluction polynomial.

In the robot control context, the production-repartitiongrams are used in par-
allel — actually, in a way which will be called hesgdl-parallel: all programs in a
compartment of the membrane structure are used simultalyeatith each variable
participating in all programs where it appears. A variafdser to the maximal par-
allelism in membrane computing, is to select the progranisetased in parallel in
such a way that each variable participates in only one of llosen programs — we
call thisone-parallelevolution.

A large variety of classes of numerical P systems appeatismiay: (1) enzy-
matic or non-enzymatic, (2) deterministic or non-deteiisiio, (3) sequential, all-
parallel, one-parallel. Still, we can add: (4) generatoamputing, accepting (a num-
ber is introduced in the system, as the value of a variablé,itais accepted if a
certain condition is met, e.g., a specified variable getvéhee 0), and (5) selecting
as results only the positive values of the output variablaamepting all values, but
making sure that the output variable assumes only positgeg. This is a subtle
difference: in the first case, we just intersect the set aiemlof a variable witiN,
the set of natural numbers, in the second case we hpwepartyof the system. The
former case reminds of the Chomsky grammars and extende@tumayer systems,
where aterminal alphabet is used in order to squeeze theagedéanguage from the
language of sentential forms, but an important differesciat here “the terminal”
sets of numberdy, is fixed, is not at our choice, as in Chomsky grammars and L
systems.

A plethora of classes of numerical P systems appears, gditina systematic
investigation. We settle here only a few cases, but we britmthe stage some proof
techniques which will probably be useful in investigatingoeother cases.

Two are the main new ideas: (i) working in the deterministicd® even in the
generative case (and this is possible, because we do not deficessful computa-
tions by halting), and (ii) using register machines, [6]ttesstarting characterization
of Turing computable sets of numbers (instead of their altarization as sets of pos-
itive solutions of Diophantine equations); this proof sgy, of simulating register
machines, is widely used in membrane computing, but it isfitisé time used for
numerical P systems.

In all cases discussed here, we make an essential use ofzyreatic control. In-
teresting enough, when the enzymatic control is supplesdenith the maximal use
of productions, in the two variants of parallelism suggeéstbove, we can improve
the universality results from [9]: polynomials of degreeratst two for the determin-
istic all-parallel case and of degree one for the non-detestic one-parallel case
are sufficient.

Besides the study of the many classes of numerical P systdraseapower is
not characterized here, two important directions of redeaemain to be explored:
bringing to numerical P systems other notions from the gdmaembrane comput-
ing area (e.g., other ways to control the rule applicatiorways to also evolve the
membrane structure), and to find non-universal classesroérioal P systems (e.g.,
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with decidable properties). Of course, the usefulness ofi swmerical P systems,
with an enhanced structure, for the robots’ control, alsoaias to be examined.

2 Numerical P Systems

We do not recall here elements of membrane computing, tlderdéa assumed to
have some familiarity with this research area, from [7], [8D], but we introduce
formally the numerical P systems and then the enzymatid¢orecs§ them.

As basic notations, we uséto denote the s€i0,1,2,3,... } of natural numbers,
andNREthe family of computable sets of numbers, zero excluded (&&es from
“recursively enumerable”).

In order to define numerical P systems we need a series ofiegis.

The basic one is the cell-likmembrane structuréhierarchical, hence described
by a tree and represented mathematically by a well-formgdession of matching
labeled parentheses), with the membranes labeled in acemeet manner with ele-
ments of an alphabét. In the compartments of the membrane structure, we have
variables those from regiori are written in the fornx;;, j > 1. The value ok;; at
timet € N is denoted by; i(t). In general, these values can be real numbers, but here
we only work with integers, positive or negative.

In order to evolve the values of variables, we psegrams composed of two
components, g@roduction functionand arepartition protocol(to make the use of
programs more explicit, we separate the two components layraw, like in rewrit-
ing rules). The former can be any function with variablesrfra given region — here
we consider only polynomials with integer coefficients. ndssuch a function we
compute groduction valueof the region at a given time, depending on the values of
variables at that time. This value is distributed to vaeatfrom the region where the
program resides, and to variables in its upper and lower eotments (for a given
regioni, letvy, ..., v, be all these variables) according to the repartition piaitas-
sociated with the used production function. The repartipootocols are of the form

C1lVi+Co[Vo+ -+ -+ Cn Vi,

wherecy,...,Cy are natural numbers. The idea is that the coefficients..,cp,
specify the proportion of the current production valueriisted to each variable
Vi,..., V-

Formally, for a program (theh program from region)

FLi(YLis-->Yk,i) = CalVi+Ci2[Va+ - +C n |V, TOr {ys,...,¥k.i} € Van,

let
n;

Gi= ;Cus-

Fort > 0, we compute theroduction valueat timet

T, (t) =Ri(yLi(t), ..., Yi.i(t))
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and then o

T

QI,l (t) Cl,i .
The valueq(t) represents the “unitary portion” to be distributed to valés
V1,...,Vn proportionally withg 1,...,¢ . Thus,vs will receiveq i(t) - ¢ 5,1 <s<
n;. The variables involved in the production function are téseero after computing
the production value; a variable not involved in a produtfimction retains its value.
After repartition, the quantities assigned to each vaeiditdm the repartition proto-
col are added to the current value of these variables (sgantith O for the variables
which were reset by a production function).
Thus, anumerical P systerns a construct of the form

n = (m7 H 1) u’ (Var17 Prlvvarl(o))’ ) (Varm7 Prm7varm(0))’ on,io)’

wheremis the degree of the system (the number of membrakkes) an alphabet of
labels for membranes ip (when possible, we udé = {1,2,...,m}), u is a mem-
brane structure witim membranes labeled injectively by elementdivar; is the
set of variables from regianPr; is the set of programs from regiofall setsvar;, Pr;
are finite) Var; (0) is the vector of initial values for the variables in regipandx;, i,

is a distinguished variable (from a distinguished redinwhich provides the result
of computations.

Each program is of the form specified abope;; = (R i (Y1, ---,Yk,i) = C.1[vi+
Gl 2|V2+---+C ny |Vny ) denotes thé-th program from region where{yy ...,y i} €
Var; andvy,..., vy, are all variables from region the upper region, and the immedi-
ately inner regions.

Such a system evolves in the way informally described befaitally, the vari-
ables have the values specified\igri (0),1 < i < m. A transition from a configura-
tion at time instant to a configuration at time instabt- 1 is made by (i) choosing
non-deterministically one program from each region, @jnputing the value of the
respective production function for the values of local &bkes at time:, and then (jii)
computing the values of variables at time 1 as indicated by repartition protocols.
A sequence of such transitions forms a computation. For atationo, letN* (o)
be the set of positive values assumedxhyi, during the computatiow. (Note that
the computation may continue forever.) et (17) be the union oN* (o), for all
computationso in 1. (Also the result 0 can be considered, but we proceed here as
usual in language and automata theory, where the empty wanitted when com-
paring the power of two computing devices — this extends tmbrane computing
to omitting the number 0.)

A delicate problem concerns the issue whether the produetitue is divisible
by the total sum of coefficients; from the corresponding repartition protocol. In
this paper, we assume that this is the case, i.e., we onlyvd#alsystems whose
programs have this property — this corresponds taditiease in [9], but we do not
further specify the parameteliv in what follows. Variants were introduced in [9];
taking this aspect into consideration introduces one éurthassification criterion for
numerical P systems, besides those mentioned in the Irgtiodu

The family of sets of numbe™ (7) computed by numerical P systerfiswith
at mostm membranes, production functions which are polynomialsegirde at most
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n, with integer coefficients, with at mostvariables in each polynomial, is denoted
by N*Pyn(poly'(r),seq, m> 1 n > 0,r > 0, where the fact that we work in the
sequential mode (in each step, only one program is applieadh region) is indicated
by seq If one of the parameters, n,r is not bounded, then it is replaced by(Both
in N*(I7) and inN* Py (poly’(r), seq, the superscript indicates the fact that as the
result of a computation we only consider positive naturahbars, zero excluded. If
any value ok; i, is accepted, then we remove the superseript

We only recall here the following result from [9] (called @tary 4.1 there).

Theorem 1 NRE= N*Py(poly’(5),seq = N*P;(poly’(6),seq.

The proof is based on the characterization of recursivelyrarable sets of num-
bers as positive values of polynomials with integer coefits, [5]. It is formulated as
an open problem in [9] the question “whether or not the pesiialues of a variable
can be selected inside the system (changing in a minimal inagefinition), not by
means of an external condition.” In the next section we shlawthis question can be
affirmatively answered, by using enzymes in controllingabpelication of evolution
programs.

3 Enzymatic Numerical P Systems

Enzymatic numerical P systems (in short, EN P systems) ubesolution programs
as introduced above and programs of the form

FLi(YLis- -5 Yi.i)lejs = CLalVi 4 2[Va 4 - 4 €y [ Vi
whereeg;; is a variable fromvar, different fromys, ...,y i, and fromvy,... vy
Such a program can be applied at a titrenly if e;;(t) > min(yy;(t),...,Yk,i(t)).
(A slightly more complex definition is considered in [12] afigl] where:e; ;(t) >
min(|y.i(t)],..., |y, (t)]). Considering the absolute value of the variables, instéad o
their real values, simplifies the design of the membranettras used to compute
certain functions, such aosandsin, as power series, but here we work only with
the simpler case defined above. We also use here a notatfenedif from that in
[12], writing the enzyme in the same way as the promoters aitbew in multiset
rewriting rules, see [8].) Note that in order to apply thegyeom it is sufficient that
one variableinvolved in a production function has the current valueciirismaller
than the value of the enzyme variable. The enzyme cannote\myl means of the
associated program, but it can evolve by means of other @negjrand can receive
“contributions” from other programs and regions.

Because the enzymes are usual variables, playing a diffeslenonly “locally”,
in specified programs, we do not consider their set separadede the general writ-
ing of an enzymatic numerical P systems is the same as thatwharical P system
— only the form of programs can be different.

Using enzymes introduces a checking possibility in ouresyst(we compare the
value of the enzyme with the values of variables from the @aged program), and
this suggests the possibility of choosing the positive @slof the output variable
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“inside the system”. Indeed, the following result holdset(tor the non-deterministic
sequential casenzindicates the use of enzymes):

Theorem 2 NRE= NP(poly®(5),enzseq.

Proof We will modify the proof given in [9] to the previous Theoremtthe compu-
tations proceed in the same way, but at the end we use the ercaymtrol in order to
select as results only the positive values of the outpuatstei Specifically, following
[5], for each seQ € NREwe consider a polynomidly(Xy, . . ., Xn) with integer coef-
ficients such that € Qiff r = fo(ay,...,a,) NN for someay,...,a, € N. It is known
that polynomialsfqg exists of degree 5 using 5 variables (see, e.g., page 108pf [1
polynomials with other combinatiordegree — number of variablesn be chosen,
with a trade-off between the two parameters, but the poirg lenot the value of
parameters, but the fact that we can select the positivesaitithe output variable
in an internal way, not in an external one). Let us considehsupolynomialfg.

We construct the following enzymatic numerical P system {fie sake of the
readability, we also present it graphically, in Figure 1tenimn this figure the way the
initial values of variables are given in square bracketefmh variable):

M = (7,H, u, (Vars, Prs,Vars(0)), (Varg, Prg,Vary(0)),
(Vary,Prq,Vari(0)), (Varg, Pra,Vary(0)),. .., (Vars, Prs,Vars(0)),X20),
H={s0,1,2,...,5},
u= [s[o }0[1 ]1[2 ]2 s [5 ]5}5;
Vars = {X1s,X25s, .-, %55},
Prs = {— fQ(X1,57 XZ,S, . 7Xn,s) — 1‘X1’0},
Varg(0) = (0,0,...,0),
Varg = {X1,0,X2,0,€1,0,00},
Pro = {—X10le;o — 1IX20, X1,0— 1/Go, X20 — 1|go},
Varp(0) = (0,0,0,0),
Vari = {Xl,i}7
Pri = {Xl,i — 1|X17i, X1i+1— 1‘X17i7 X1 — 1‘X@75},
Var(0) = (0), foralli=1,2,...,5.

This system works as follows (we recall also a few detailsiffe]). All variables
starts from 0. In each membrane2l .. 5 there are three programs; the first one
leaves the local variable unchanged, the second one irwdéaby one, the third
program moves the value of the local variable to the cormeding variable from
compartmens. Specifically, compartmemprovides a value to variables, 1 <i <5.
By non-deterministically choosing the programs to applgompartments,®?,...,5
we can produce all vectofsy, ay, . ..,as) of natural numbers.

In each step, in compartmesitve compute a value of polynomid, therefore
we can compute such values for all vectors of natural numbéesrespective values
are immediately transferred to variablgy from compartment O, multiplied with-1.

The only enzymatic program is here. The valueegf is zero and it is never
changed. If the value ofy o is strictly smaller — which means thé(Xys, ..., Xs )
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S
o N
O/xl_’o[O],Xz,o[O],91,0[0]»90[0] \

—X10le0 — 1X20

X1,1 [0]

x1.0 — 1/do X1 1x1a
X11+ 1— 1|X1‘1
X2.0 = l|go

o J

X11 — 1\X1,s

X1s[0], ..., %55[0] X1,5(0]
X15 = 1X15

— fQ(X]_,S, - 7X5_’S) — 1|X1.0 X155+ 1— 1|X115

X115 — 1‘X575

. J

Fig. 1 The P system from the proof of Theorem 2

was strictly positive — then its value is transferred, agaithh a changed sign, to the
output variablec o. In the opposite case, the progragn — 1/go must be used, and
the value ofx; g is “lost” in the “garbage variabledjo. If this program is used also
for the case of having a positive value farp, then again the result is “lost”, nothing
wrong happens. Also the variabtgo should be reset to zero, and this is done again
with the help of variabley.

The work of the system continues forever, and variablg takes all positive
values offq, which means thal(17) = Q, henceQ € NP;(poly’(5),enzseq. This
concludes the proof. O

Starting from a polynomial of degree four (there are char@ations ofRE by
such polynomials, see [15]), the degree of the polynomiedlus the previous proof
can be decreased to four. However, if we pass to numericastersg working in a
parallel manner, then the maximal improvement (from thisipof view) can be ob-
tained: polynomials of degree one suffice. As expectedigluibtained at the expense
of increasing other parameters — in this case, the numbereaibranes (however,
pleasantly enough, we need only polynomials with at mostiar@bles).

4 Parallel EN P Systems

We continue to work in the “classic” setup (the non-deteistio generative mode),
but we introduce a change in the way of using the programsghamve consider
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the “standard” way in membrane computing, i.e., the maxipaahllelism: in each
membrane, at each step, we use a maximal set of programgsdpregre selected
non-deterministically, and a set of programs is applied ditlis maximal, no further

program can be added to it in such a way that the new set isgfillcable), with the

restriction that a variable can appear onlyoime production function of a program
which is applied.

In the enzymatic case, it is important to note that an enzyimelwcontrols the
use of a program can evolve at the same time by means of arptiggam (but not
by the program whose application it makes possible).

The functioning of such systems is the same as above: wefiiartthe initial
values of variables and we evolve them according to the progr the values as-
sumed by a distinguished variable during any computatiom fthe set computed
by the system. We denote as aboveNiy7) the set of numbers computed by a sys-
tem T and byNRy(poly'(r),enzoneP, m>1,n >0, r > 0, the family of sets of
numbersN(/T) computed by enzymatic numerical P systems working in theligr
mode described above, with at mestmembranes, production functions which are
polynomials of degree at mostwith integer coefficients, with at mostvariables in
each polynomial; if one of the parametensn,r is not bounded, then it is replaced
by *. (We no longer writeN " (17), because, as in Theorem 2, we can select inside the
system the positive values of the output variable.)

The following somewhat surprising result holds true:

Theorem 3 NRE= NP.(poly*(2),enzoneP.

Proof We start from the characterization of setsNIRE by means of register ma-
chines. Such a device is a constritt= (m,H, lo, I, 1), wherem is the number of
registersH is the finite set of instruction labelk, is the start label (associated with
an ADD instruction)),, is the halt label (assigned to instructiBALT), andl is the set
of instructions; each element bf labels only one instruction frorm thus precisely
identifying it. The instructions are of the following forms

— 1 : (ADD(r),1},lx) (add 1 to register and then go non-deterministically to one of
the instructions with labels, Iy),

— li - (SUB(r), I, lx) (if registerr is non-empty, then subtract 1 from it and go to the
instruction with label j, otherwise go to the instruction with lakig),

— Iy : HALT (the halt instruction).

A register machin® computes (generates) a numben the following way: we
start with all registers empty (i.e., storing the numbep}ene apply the instruction
with labellp and we proceed to apply instructions as indicated by lalaeld (hade
possible by the content of registers); if we reach the hattirction, then the number
n stored at that time in the first register is said to be compbtel. The set of all
numbers computed byl is denoted byN(M). It is known that register machines
compute all sets of numbers which are Turing computablecdnéimey characterize
NRE; moreover, machines with three registers suffice (see,[6]Y.

Without loss of generality, we may assume that in the haltiogfiguration, all
registers different from the first one are empty.
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Consider a register machifé = (m,H,lg, I, ). We construct an enzymatic nu-
merical P systenfil in the following way. Let us assume tHdt= {lg,l1,...,In}, for
somen > 1, and that, = I;,. The membrane structure bFf will be

H= [S['o ]|O[|1 ]|1 ~~-[|n ]In}s’

that is, we associate one membréne each label; € H (hence to each instruction in
I; these membranes are also calieadule$, all of them placed in the skin membrane,
labeled withs. Each membrank, 0 < i < n, simulates the corresponding instruction
in 1. To this aim, membrang contains so-calledegister variables(denoted byx
with subscripts) associated with the values of the threisterg ofM (for instance,
variablesx;, for r = 1,2,3, present in each membrahe0 <i < n, represent the
values of registers = 1,2,3 of M), enzymegdenoted bye with subscripts; each
membrane; contains a “trigger enzymesg), so-calleddummy variable¢denoted by
w andz with subscripts), andarbage variablgddenoted byg with subscripts). Also
the skin region contains register variables, enzymes, anthty variables. Initially,
all these variables are zero, with the exception of enzggn@rom membrandy),
which is equal to 1. In general, when the enzyenassociated with a membrahe
is 1, that membrane/moduleastive its rules can be applied and local variables can
evolve. Because the registersMftake only values imN, all variables of our system
will have values inN.

A general trick for using a program in the presence of an emzwith value 1
is to involve in the production function a dummy variable,igrhis always equal to
zero. In this way, as long as the enzyme is 0, the program tdrenased, but when
the enzyme becomes 1, the program can be applied.

After using a module (hence simulating an ADD or SUB instiar), all variables
are reset to zero, with the exception of the variablegthe register values), and of
one enzyme which determines the next instruction to siraulat

The modules communicate to each other by means of varialalescin the skin
region: if membrang needs to move;;, 1 <r < 3, to membrang;, then membrane
li first movex;; to X(t,j).s and from membrans this variables moves its value to
X j; simultaneouslyg increases a variablg s to 1, which moves its value te; in
membrané;, thus activating this membrane.

When the computation iM halts, we reach the membrane associated With
coming from an ADD or SUB module which moved the values of atiables¢,1 <
r <3, into membrané, (only xy ; is different from zero); in this wa; , — the output
variable — gets the value of the first registehbfiImmediatelyx; , is reset to 0.

With these explanations in mind, we give now formally theteys/1. (Note that
the values of the registers are always positive, hence weotlbave to take care of
selecting the positive values of the output variable.)

M = (n+2,H’, u, (Vars, Prs,Varg(0)), (Varg, Pro, Varg(0)),
(Vary,Prq,Vari(0)),..., (Varn, Pra,Varm(0)),X1n),
H = {S,|(),|;|_,|2,...,|n}7
H= [s[lo ]|0 [|1 ]'1"'['n ]In]s7
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Vars = {Xqiys Wys - 1<t <3,0<i<nju{gs: 0<i<n},
Prs = {Xti)s+ Weiysles = Lxi 1 1<t <3,0<i<n}
U{es—1lg : 0<i<n},
Vars(0) = (0,0,...,0),
Var = {X,w,; : 1<t<3}u{e,d,d z},forall0<i<n-1,
Vari(0) = (0,0,...,0), foralli=0,1,2,...,n— 1, with the exception of

€ = 17
Var, = {Xn : 1<r <3}U{en},
Prn = 0,

Vary(0) = (0,0,0,0),
with the programs in membrangsas follows:
1. Ifl; : (ADD(r),lj,lk), then

Pri = {e — 1€, & — 1|¢/,
Xrj 4 Wrj + 1|e|( = X j)s0 Xei + Wi+ l|e{/ = UXqrp.s)

U i +Weilg — 1IXj).s X +Whiler = LXeis - t€{1,2,3} —{r}}
U {€ = ejs, € — Llexs})
2. Ifl;: (SUB(r),|j,|k), then

Pri = {z+1|x, — 1€, xi +1|g — 1€, & = 1|g;,
Xrj +Wrj — 1|e|( = Xy j).st
U {xi +Weilg = LXe jys * te{1,2,3}—{r}}
U {%i + Wil = LXepys - 1<t <3}
U {g = 1ejs, € — Llexs}

The membrang associated with an ADD instructidn: (ADD(r), l;,lx) works as
follows. In each step, irrespective of the stage of the cdatmn, the programg —
1/¢/, & — 1|&’ can be used, but they change nothing as long as the vakiésafero.
When the module is activated, agdbecomes 1, by non-deterministically using one
of the above mentioned programs (and only one, as we worleiartaPmode), one
of the enzymes!, €’ becomes 1, and this makes possible the use of the subsequent
programs. Corresponding to the choicesobr €', the value ofx;, augmented with
1, passes tg j) s O to X k) s, respectively, and, at the same tiregs or g s becomes
1. Concomitantly, the variableg;,t € {1,2,3} — {r}, pass their values tg; ) s or
Xt k),s- From the skin region, these variables pass their valueset@arresponding
variables from membrandsg or l,. All variables of membrang, are reset to zero.
The ADD instruction is correctly simulated, only one enzyooatinues to have the
value 1, namely in that membramgl, where also the values of the registers were
moved.

For an easier reference, the module associated with a SUBidtien |; :
(SUB(r),l;,lx) is given also in a graphical form in Figure 2.
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Ii/ \
z+1x,; — 1| Xi+1e — 1€

e — 1gi

Xri + Wi — 1‘&{ — 1|X(r.j).s X i + Wi ‘ef’ — 1‘X(t.k).sv 1<t<3

Xei+Weilg = X j st 71

K e —1ejs e — 1lecs J

Fig. 2 The SUB module.

As long as bothx.; andg are zero, no rule can be applied in membrhn# x;;
becomes at least one, the rale- 1|y, — 1|€ can be used. Similarly, & becomes
1 and at the same timg;; = 0, then the rule; + 1| — 1|€/’ can be used. In this
way, the rules in membrarewritten in the first row in Figure 2 check whethaf;
is greater than zero or not; the left column of rules in thisifigcorresponds to the
casex.j > 0, and the right column corresponds to the cage= 0. In the first case,
the variable (enzymeg becomes 1, in the latter case the variagflebecomes 1.
Simultaneouslyg is returned to zero.

In the casex; > 0, we subtract 1 fronx,; (and move the result t&(r.j)’s), we
movex; for 1 <t <3t #r, to Xt,j).s and, simultaneouslg moves its value te; s
and it is reset to zero.

In the casej = 0 we simply move the variableg; to X i) s, for allt =1,2,3,
and we make s = 1, while returningg’ to zero.

The variables from the skin region move now their values &dbrresponding
variables from membrarig or |y.

The simulation of the SUB instruction is correct, we conéiras in a computation
of the register machine.

The combination of all these modules ensures the correatlafion of all com-
putations inM (if the computation irM does not halt, then the variable, remains
always zero), therefor®(M) = N(/7). The observation that we use only linear pro-
duction mappings involving at most two variables complétesproof. O

Starting the previous proof from a universal register maek{as given, e.g., in
[4]), the number of membranes can be bounded — finding a présimall) bound
remains as a research issue.

5 Deterministic EN P Systems

As mentioned in the Introduction, when used for robot cdnidl P systems should
work in the computing mode (certain parameters concerriegélations between



On the Power of Enzymatic Numerical P Systems 13

the robot and its environment, other robots included, aoziged as an input, and
the P system produces an output which is used for speciffi@gdabot action), and
this input-output passage is deterministic. The detesmiris obtained (e.g., in [12])
by two means: making use of the enzymatic control and maksegafi a “total par-
allelism” — all programs are used, with a variable which @sdn several programs
being used with its current value in all of them. The enzymatechanism assures
that each computational step is completely determined dytavious steps. The en-
zymes control the program flow, they are used in stop comditamd for synchroniza-
tion between membranes. The deterministic EN P systemsimedeused to design
and implement robot behaviors like obstacle avoidance aminetric localization
(see, e.g., [13] and [14]). Some robot behaviors were alsdeimented using clas-
sical numerical P systems with only one rule per membrarieb{8 the membrane
structures obtained were far more complicated and lessegffirom the computa-
tional point of view, compared to the ones modeled with EN ®teays. Anyhow, the
deterministic behavior of P systems is essential when theg to be implemented as
computer programs or robot controllers.

Let us useallP to indicate the use of evolution programs in the parallel enod
mentioned above (if two or more programs which are enabladcamputation step,
i.e., they satisfy the condition imposed by the associategraes, share variables in
their production functions, then they will all use the catrealues of those variables),
anddetto indicate that the systems we use are deterministic.

We prove now that EN P systems are universal (for productaynomials of
degree two) also for the deterministic case, when workinthéallP mode. Such
universality results are also interesting from the robattag points of view, as they
guarantee that any computer program or robot behavior campemented using
EN P systems.

Theorem 4 NRE = NPss4(poly?(253),enzallP,det).

Before proceeding to the proof of Theorem 4, we give two &axilhelpful re-
sults.

Lemma 1 Let f be a polynomial of degree n with k variables. The maximumber
of terms of f is g.1(n), given by the recurrence formula:

ax(n) = _iakl(i),where a(n)=1,neN.

Proof The general form of polynomidi is:

f= 35 Oy g0 XTh e K.
S+ TN

The first thing to note is that the problem can be simplified twysidering the poly-
nomialg with k+ 1 variables obtained frorfi by multiplying each term with a power
of the (k+ 1)-th variable such that each term has degrde this case, the powers of
the variables in each term gfmust satisfy a linear equality, i.e., their sum must be
n. Also, f can be recovered fromby noting thatf (xa,...,X) = g(x1, ..., X, 1). All
that is left is to count the maximum number of the termg.of
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The second important observation is that the coefficients, @nd thereforey,
are irrelevant to counting problem. They only have to be rers. Thus, we can
choosey = (X1 + - - - +X+1)". The recurrence formula follows immediately from the
binomial formula applied on:

n

n ) )
(X1—|--"+Xk+l)n:_%(i>(xl+'“+xk)l'XEJrIl' O
i=

The second result used in the proof of Theorem 4 concernsthedf the multi-
variate polynomialf.

Lemma 2 If f is a polynomial of degre® with 5 variables, then f can be putin the
following form:

m
f(x,...,X) = Z\Bi (@eiXe+ - +asiXs +ag)°,
=

where m= 252 and represents the maximum number of terms of f in the general
form, B are polynomial specific coefficients, ang are some constants.

Remark 1The maximum number of terms of a polynomfain the general form of
degree 5 with 5 variables is 252, computed using Lemma 1. Ehergl form of a
multivariate polynomial is given in the proof of Lemma 1.

Proof The transformation of polynomidl from the general form into the one in the
theorem is in fact a change of base in the vector spAY®, whereR s the set of real
numbers. The constaras; must satisfy the following condition, obtained by writing
polynomial f in both forms and identifying the coefficients of each term:

afly-..al oA cak || #o0.

&1 &m

For polynomials with 5 variables and degree 5 a matrix of tomsa;; was
found using Matlab. Moreover, non-negative integer vahgge been found for the
aj i constants. O

With the two lemmas above, we can now proceed to the proof ebiigm 4.

Proof As in the proof of Theorem 2 we will use the characterizatibnegursively

enumerable sets by polynomials of degree 5 with 5 varialildsraeger coefficients.
From Lemma 1 we know that polynomials of degree 5 with 5 vdesbhave at most
252 terms. Also, every multivariate polynomial can be eritas the sum of powers
of linear combinations of the polynomials variables. Thevjwus two lemmas can
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be used to construct the following EN P system (it is alsogme=d graphically in
Figure 3):

M = (254 H, u, (Vargenerate PrGeneratevarGenerate{O))
(Varcom pute Pfcompute Varcom putéo) ),
(Varpous, , Prrows, ; Vareows, (0)), - - .,
(Varpows,s,: Prrows,s,: Varpows,s,(0)),enumn),
H = {GenerateComputePow5;, . .., Powbys,},
H= [GenerateICOmpute[Povwﬁl ]Pov61 [Pom5252 ]PO\A5252]C0mputJGenerate’
Vargenerate= {Xi,€j,€%.€r,n,&,g,gc: 1<i<51<j<7,1<k<5},
Prgenerate= {n— 1|n, & — 1/gc,
1+x1]g — 1lery, —140|e, = 1|X1, 14+Nn+Xa|e, — Lx1}
U{j-gg—=1llejm1+(j—1la : 1<j<5}
U {l+Xle, > 1€z, 1—i+@aler, > 1x : 2<i <5}
U {g+(ez+erfi_1)|g — ller, 2—i+n+eale; = 1% : 2<i <5}

5
U {2+aler, — lexi +1|n, ers|e; — 1gc,
i

e — ller, 2-e7 — 1ler + 1€}
U{g+2-Xile, = Lxi+ 1] : 1<i <5},
Vargeneratd0) = (5,5,5,5,5,1,0,...,0,5,0,0,0),
Varcompute= {X,€,t, 9", fo,enum: 1<i<51<j<21<k<252,

5
Prcompute= {g"+2- <Zai,k'xic+a&k> |e‘13 = lsik+1spk @ 1<k< 252}
=

25D 2521 . 252 . w
U {252-€f = 3 llepi, 9" — > Betles — 1lfo,
k=1 k=1

—folg- — 1]enum enum4- fo + €5 — 1|gc}
Varcomputd0) = (0,0,...,0),
Varpows, = {S1k, 2k €0k © 1<i <3},
Preows, = {Z+S1k-Stklepy — 1ISLk: €PLk — 1|€P2k,
Z+S1k-Stklepy — LStk €2k — Llemk,
Z+S1k- Soklepy — 1tk ek — 1/€5},
Varpows, (0) = (0,0,...,0), forallk=1,2,...,252

The system has two parts: membraBenerategenerates all 5-tuples of natu-
ral numbers, in a deterministic way, and membr@uoenputecomputes the value of
polynomial fq for all generated 5-tuples. The generation of the 5-tudedone by
simulating a 5 positionx, . ..,Xs) countdown timer with automatic reset. However,
instead of resetting to the same initial state, the countdiinver resets all positions
to the next natural number. The initial state of the timgi5i$, 5,5,5) and when the
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@nerate \

xi[5],1<i<5,e[1],g[0,2<j<7ex0,1<k<5er[0,1<i<5

n[5],&[0],9[0],gcl0] @mpute \

n—1jn [0, 1<i<5€[0,1<j<2,

& — 1jge (0], 1 < k < 252 g*[0], fo[0], enunio)
1+Xile, — 1/€3,2<i<5

g +2- (5P q 8k X +ask) e — Lsik+Lsak
1<k<252

1+x1le, — 1len
—1+9le, = 1x1

] 252
1+n+xle = 1x 252-¢ = 3i%1 llepk

9" — 3123 Be-tleg — g

j-& = et (j-1la,l<j<5
—folg« — 1lenum

1-i+aler ; = 1x,1<i<5
enumy- fq +€§ — 1/gc

Powsy, 1 < k < 252 \

s1k[0],524[0],2[0],ep k[0],1 <i<3

g+ (ez+eri_1)|g — 1ler,2<i<5

2—i+n+ale; > 1x,2<i<5
2+@lers = Y21 1% +1n

ersle; — 1/gc

65 — 1le7 Z+ Stk Suklepy — LlSik

g+2-Xle, = X +1xE,1<i <5 €PLk = €2k

2-e7— ler + 1€ Z+ Sy Siklep — 1SLk
€k — €Mk
Z+ Sk S2klepyy — Ltk
emk— 1€

N - 2,

Fig. 3 The EN P system from the proof of Theorem 4

timer becomes zero, it resets(# 6,6, 6,6). In this way all 5-tuples of natural num-
bers are generated. This functionality is achieved by fastirig each position if it is
zero, then if it needs to be reset, and finally it is updatedredesed by one or reset.
This process is sequential, updating the position in ondenf; to xs. A 5-tuple is
generated every 7 time steps and transferred t€traputemembrane.

Specifically, the ordering of 5-tuples of natural numbemhéesfollowing: the ini-
tial tuple is(5,5,5,5,5), the next generated tuples 4&5,5,5,4), ..., (5,5,5,5,0),
(5,5,5,4,5), ..., (5,5,5,0,0), (5,5,4,5,5), ... and so on unti(0,0,0,0,0) is gen-
erated; the next tuple will b€, 6,6,6,6), and then(6,6,6,6,5), (6,6,6,6,4), ...,
(6,6,6,6,0), (6,6,6,5,6), ... are generated; when the generated tuple becomes again
(0,0,0,0,0), the next tuple will bg7,7,7,7,7). This process continues forever and
generates all 5-tuples of natural numbers in a determinigly. The initial tuple was
chosen(5,5,5,5,5) in order to activate the correct rules in the first computetlo
step of the P system (see Figure 3).
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The same tuple of numbers is generated arbitrarily manystitmg this entails no
problem (except the non-efficiency, but this is not of condeere): the result of the
computation is the set of all generated numbers, so the tedeanot matter.

The values offg are enumerated in the varialdaum

We will briefly show that all programs in all membranes satigfe divisibility
property which means that the unitary portion of the proiductalue at each execu-
tion step is an integer. First of all, the production funotof all rules are polynomials
with integer coefficients. Therefore, if the variables ia thembrane system are inte-
gers, then the production values are also integers. Fortdggams which only have
one variable in the repartition protocol the divisibilityoperty is trivially satisfied.
Next, we show that all the other programs satisfy the prgymit

— Generate

— programsj -ej — 1lej41+ (j—1)j&@ : 1< j <5 —in this case the uni-
tary portion is an integer and equalén because the sum of the repartition
coefficients isj and the production value is ;.

— programsg + 2 - Xile, — 1| +1|x* : 1 <i <5 — in these programs the
production value will always be even because the variglgealways 0 (has
initial value 0 and it is never changed). The sum of the régantcoefficients
is 2, therefore the unitary portion is an integer.

— program 2 e; — 1|e; + 1|€f — this case is similar to the one above, the pro-
duction value is always an even number and the sum of thetitdpacoeffi-
cientsis 2.

— program 2+ & ler, — Zi5:1 1% + 1jn — in this case, we have to take into
account when the program is applied. Because the systentasmisistic,
we know exactly the execution sequence of the programs.dardor the
unitary portion to be an integer we will show that the vargadlhas the value
4 when this program is applied. With this value the producttalue is 6
which is divisible by the sum of the repartition coefficiemtbich is also 6.
The program is executed when the enzyanggets the positive value 5. The
variableer; is produced by the program+ (ez + efi_1)|q — 1ler, fori=
5. However, this program is applied when enzyesds 1. In parallel, the
programj-ej — 1lej11+ (j —1)|&, for j =5, is also applied and distributes
the value 4 to variable.. The value of the variable is consumed by other
programs in that execution step. Therefagejs 4 when the program 2
&lers — Y21 1% + 1|nis applied.

— Compute

— programsy* +2- (3218 k- X + 8ek) leg — sy + Lok © 1< k<252 —
in this case the production value is always even becguggalways O (it is
initially 0 and it is not modified). The sum of the repartitioaefficients is 2,
therefore the unitary portion is an integer.

The P system was also simulated and tested usingith®simulator, described
in [11], and the simulation confirmed its correct functianifin particular, the fact
that it has the “divisibility property”, that is, it is afiv type).

The computation of the value of the polynomiky for the current 5-tuple is
done using only production functions of degree at most 2s s achieved by



18 Vasile et al.

first consideringfqg in the form from Lemma 2. First, the linear combinations are
computed and transferred to tRews, membranes. Then, the fifth power of the sums
apiX1+---+asjXs +as, is computed irPowsy, and the result is stored in the variables
tx. In the following step, the membra@mputecomputes the value df, as a linear
combination of the termig. It can be observed that polynomials of degree 2 are only
used inPowb, membranes. At the end of the computation, the values areefili@nd
only positive values are transferred to the output varieblem O

We are currently working on proving that the computationaler of cell-like
EN P systems with thallP parallel execution mechanism can be further improved to
the optimal degree of the polynomial production functioshsgree one). This would
be the best universality result from this point of view thahde obtained.

6 Final Remarks

Numerical P systems were only scarcely investigated fromnapaitational point of
view, but their usefulness in devising controllers for rsbmoth suggests new variants
(deterministic, with enzymatic control, working in the cputing mode) and motivate
further theoretical research.

These systems also raise interesting technical probleaisjywelated to the fact
that we do not use the halting condition in defining the restii computation; the
computations can go forever, and the values assumed by dispe@riable during
the computation form the generated set of numbers.

The present paper introduces a large numbers of classesnafriwal P systems:
deterministic — non-deterministic; enzymatic — non-enagio) generative, accepting,
computing; sequential, all-parallel, one-parallel; wathterminal” set of numbers or
without such a squeezing mechanism. Only a few of the mangscabtained by
combining these properties are investigated here.

In particular, we prove that enzymes improve the universadisults in terms of
the complexity of used polynomials, provided that the etiotuprograms are used in
a parallel manner (different types of parallelism were useithe non-deterministic
and the deterministic case).

Similar extensions of “general” notions in membrane corimguto numerical P
systems remain to be examined, and this is a rich researith Fap instance, other
ways of using the programs can be considered: minimallyllehraith bounded par-
allelism, asynchronously. Then, we can also consider foldsandling membranes,
such as membrane division and membrane creation. Thesatiopsrare the basic
tools by which polynomial solutions to computationally thgoroblems, typically,
NP-complete problems, are obtained in the framework of P syst&ith symbol ob-
jects, by a time-space trade-off. Is this possible also tonerical P systems? In the
previous investigations of numerical P systems, the coatjouits were not halting,
as usual in membrane computing; does the halting conditiakesany difference?
(Note that in the enzymatic case the halting is possiblevotuéon program can be
applied, because its associated enzyme forbids it.) Whattatwmerical P systems
used in the accepting mode?
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A current research issue in membrane computing is to findetasf P systems
which are not universal. This extends also to numerical Regys.

Of course, an important research topic is to further expiloeeuse of numerical
P systems in controlling robots or in other applications retfanctions from vectors
of numbers to vectors of numbers should be computed in anesgffiway.

And so on and so forth, a wealth of research ideas, which stgpor belief that
numerical P systems deserve further research efforts.
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