
Acta Informatica manuscript No.
(will be inserted by the editor)

On the Power of Enzymatic Numerical P Systems

Cristian Ioan Vasile · Ana Brânduşa Pavel ·
Ioan Dumitrache · Gheorghe P̆aun

Received: date / Accepted: date

Abstract We study the computing power of a class of numerical P systemsintro-
duced in the framework of autonomous robot control, namely enzymatic numerical
P systems. Three ways of using the evolution programs are investigated: sequential,
all-parallel and one-parallel (with the same variable usedin all programs or in only
one, respectively); moreover, both deterministic and non-deterministic systems are
considered. The Turing universality of some of the obtainedclasses of numerical P
systems is proved (for polynomials with the smallest possible degree, one, also intro-
ducing a new proof technique in this area, namely starting the universality proof from
the characterization of computable sets of numbers by meansof register machines).
The power of many other classes remains to be investigated.

Keywords Membrane computing· Numerical P System· Turing universality·
Register machine

C.I. Vasile, A.B. Pavel, I. Dumitrache
Department of Automatic Control and Systems Engineering
Politehnica University of Bucharest
Splaiul Independenţei 313, 060042 Bucharest, Romania
E-mail:{cvasile, apavel, idumitrache}@ics.pub.ro
{cristian.vasile, ana.pavel, ioan.dumitrache}@acse.pub.ro

Gh. P̆aun
Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania
E-mail: george.paun@imar.ro

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: gpaun@us.es

2 Vasile et al.

1 Introduction

In the last years, several classes of computing devices – called P systems– were in-
troduced inspired from the cell architecture and functioning, and vividly investigated
in the framework ofmembrane computing– general references will be given below.

Numerical P systems are a class of computing models inspiredboth from the cell
structure and from the economics: numerical variables evolve in the compartments
of a cell-like structure by means of so-calledproduction–repartition programs. The
variables have a given initial value and the production function is usually a polyno-
mial, whose value for the current values of variables is distributed among variables
in certain compartments (close to the place where the polynomial is evaluated – see
precise definitions in the next section) according to the “repartition protocol”. In this
way, the values of variables evolve; all values taken by a specified variable are said
to be computed by the P system.

These computing devices were introduced in [9], where theircomputational com-
pleteness (equivalence with the computing power of Turing machines) was proven,
by making use of the characterization of Turing computable sets of numbers as the
positive values of polynomials with integer coefficients, [5]. The results in [9], as well
as further connections between membrane computing and economics, are recalled in
Chapter 23.6 of [10]. This Handbook provides an overall image of membrane com-
puting at the level of year 2009; further details can be foundin [8], with the updated
information available at the website [16]. A simulator for numerical P systems, to-
gether with relevant examples, are presented in [1] and [3].

Note the important difference between numerical P systems and all classes of P
systems usually investigated in membrane computing: in general, multisets of symbol
objects are processed in the membranes, by means of biochemically inspired rules,
while in numerical P systems we deal with numerical variables, processed in an alge-
braic way. At a more technical level, there also are several other differences between
(the way of working of) numerical P systems and usual P systems: (i) the evolution
programs are used in [9]in the sequential way(in each step, each membrane uses
only one program), while in the membrane computing the most investigated seman-
tics is the maximally parallel one (at a given step one uses a multiset of rules which
is maximal in the inclusion sense), and (ii) the result of a computationis not de-
fined by halting, but by collecting all values assumed by a specified variable, in all
computations, with the computations not necessarily halting.

In [9] and [10] one uses the numerical P systems only in the generating mode.
However, numerical P systems were recently used in a series of papers (see references
in [3]) for implementing controllers for mobile robots (an idea first mentioned in
[2]), and in this framework the P systems work in the computing mode: an input is
introduced in the form of the values of some variables and an output is produced, as
the value of other variables. Clearly, the systems should behave in a deterministic way
– another difference from the case of [9], where one deals with the non-deterministic
case.

Furthermore, in the robot control context, the so-calledenzymaticnumerical P
systems were introduced and used, [12], [13], [14]. Such systems correspond tocat-
alytic P systemsin the “general” membrane computing: a reaction takes placeonly

On the Power of Enzymatic Numerical P Systems 3

in the presence of a catalyst. Here, the catalyst (enzyme) isa variable attached to an
evolution program; the program is used only if the value of the enzyme is strictly
greater than the smallest value of variables involved in theproduction polynomial.

In the robot control context, the production-repartition programs are used in par-
allel – actually, in a way which will be called hereall-parallel: all programs in a
compartment of the membrane structure are used simultaneously, with each variable
participating in all programs where it appears. A variant, closer to the maximal par-
allelism in membrane computing, is to select the programs tobe used in parallel in
such a way that each variable participates in only one of the chosen programs – we
call thisone-parallelevolution.

A large variety of classes of numerical P systems appears in this way: (1) enzy-
matic or non-enzymatic, (2) deterministic or non-deterministic, (3) sequential, all-
parallel, one-parallel. Still, we can add: (4) generating,computing, accepting (a num-
ber is introduced in the system, as the value of a variable, and it is accepted if a
certain condition is met, e.g., a specified variable gets thevalue 0), and (5) selecting
as results only the positive values of the output variable oraccepting all values, but
making sure that the output variable assumes only positive values. This is a subtle
difference: in the first case, we just intersect the set of values of a variable withN,
the set of natural numbers, in the second case we have apropertyof the system. The
former case reminds of the Chomsky grammars and extended Lindenmayer systems,
where a terminal alphabet is used in order to squeeze the generated language from the
language of sentential forms, but an important difference is that here “the terminal”
sets of numbers,N, is fixed, is not at our choice, as in Chomsky grammars and L
systems.

A plethora of classes of numerical P systems appears, waiting for a systematic
investigation. We settle here only a few cases, but we bring into the stage some proof
techniques which will probably be useful in investigating also other cases.

Two are the main new ideas: (i) working in the deterministic mode even in the
generative case (and this is possible, because we do not define successful computa-
tions by halting), and (ii) using register machines, [6], asthe starting characterization
of Turing computable sets of numbers (instead of their characterization as sets of pos-
itive solutions of Diophantine equations); this proof strategy, of simulating register
machines, is widely used in membrane computing, but it is thefirst time used for
numerical P systems.

In all cases discussed here, we make an essential use of the enzymatic control. In-
teresting enough, when the enzymatic control is supplemented with the maximal use
of productions, in the two variants of parallelism suggested above, we can improve
the universality results from [9]: polynomials of degree atmost two for the determin-
istic all-parallel case and of degree one for the non-deterministic one-parallel case
are sufficient.

Besides the study of the many classes of numerical P systems whose power is
not characterized here, two important directions of research remain to be explored:
bringing to numerical P systems other notions from the general membrane comput-
ing area (e.g., other ways to control the rule application, or ways to also evolve the
membrane structure), and to find non-universal classes of numerical P systems (e.g.,

4 Vasile et al.

with decidable properties). Of course, the usefulness of such numerical P systems,
with an enhanced structure, for the robots’ control, also remains to be examined.

2 Numerical P Systems

We do not recall here elements of membrane computing, the reader is assumed to
have some familiarity with this research area, from [7], [8], [10], but we introduce
formally the numerical P systems and then the enzymatic version of them.

As basic notations, we useN to denote the set{0,1,2,3, . . .} of natural numbers,
andNRE the family of computable sets of numbers, zero excluded (RE comes from
“recursively enumerable”).

In order to define numerical P systems we need a series of ingredients.
The basic one is the cell-likemembrane structure(hierarchical, hence described

by a tree and represented mathematically by a well-formed expression of matching
labeled parentheses), with the membranes labeled in a one-to-one manner with ele-
ments of an alphabetH. In the compartments of the membrane structure, we have
variables; those from regioni are written in the formx j,i , j ≥ 1. The value ofx j,i at
time t ∈ N is denoted byx j,i(t). In general, these values can be real numbers, but here
we only work with integers, positive or negative.

In order to evolve the values of variables, we useprograms, composed of two
components, aproduction functionand arepartition protocol(to make the use of
programs more explicit, we separate the two components by anarrow, like in rewrit-
ing rules). The former can be any function with variables from a given region – here
we consider only polynomials with integer coefficients. Using such a function we
compute aproduction valueof the region at a given time, depending on the values of
variables at that time. This value is distributed to variables from the region where the
program resides, and to variables in its upper and lower compartments (for a given
regioni, let v1, . . . ,vni be all these variables) according to the repartition protocol as-
sociated with the used production function. The repartition protocols are of the form

c1|v1+c2|v2+ · · ·+cni |vni ,

where c1, . . . ,cni are natural numbers. The idea is that the coefficientsc1, . . . ,cni

specify the proportion of the current production value distributed to each variable
v1, . . . ,vni .

Formally, for a program (thel th program from regioni)

Fl ,i(y1,i , . . . ,ykl ,i)→ cl ,1|v1+cl ,2|v2+ · · ·+cl ,ni |vni , for {y1,i , . . . ,ykl ,i} ⊆Vari ,

let

Cl ,i =
ni

∑
s=1

cl ,s.

For t ≥ 0, we compute theproduction valueat timet

τl ,i(t) = Fl ,i(y1,i(t), . . . ,ykl ,i(t))

On the Power of Enzymatic Numerical P Systems 5

and then

ql ,i(t) =
τl ,i(t)

Cl ,i
.

The valueql ,i(t) represents the “unitary portion” to be distributed to variables
v1, . . . ,vni proportionally withcl ,1, . . . ,cl ,ni . Thus,vs will receiveql ,i(t) · cl ,s,1≤ s≤
ni . The variables involved in the production function are reset to zero after computing
the production value; a variable not involved in a production function retains its value.
After repartition, the quantities assigned to each variable from the repartition proto-
col are added to the current value of these variables (starting with 0 for the variables
which were reset by a production function).

Thus, anumerical P systemis a construct of the form

Π = (m,H,µ ,(Var1,Pr1,Var1(0)), . . . ,(Varm,Prm,Varm(0)),x j0,i0),

wherem is the degree of the system (the number of membranes),H is an alphabet of
labels for membranes inµ (when possible, we useH = {1,2, . . . ,m}), µ is a mem-
brane structure withm membranes labeled injectively by elements ofH, Vari is the
set of variables from regioni, Pri is the set of programs from regioni (all setsVari ,Pri

are finite),Vari(0) is the vector of initial values for the variables in regioni, andx j0,i0
is a distinguished variable (from a distinguished regioni0), which provides the result
of computations.

Each program is of the form specified above:prl ,i =(Fl ,i(y1,i , . . . ,ykl ,i)→ cl ,1|v1+
cl ,2|v2+ · · ·+cl ,ni |vni) denotes thel -th program from regioni, where{y1,i , . . . ,ykl ,i}⊆
Vari andv1, . . . ,vni are all variables from regioni, the upper region, and the immedi-
ately inner regions.

Such a system evolves in the way informally described before. Initially, the vari-
ables have the values specified byVari(0),1≤ i ≤ m. A transition from a configura-
tion at time instantt to a configuration at time instantt +1 is made by (i) choosing
non-deterministically one program from each region, (ii) computing the value of the
respective production function for the values of local variables at timet, and then (iii)
computing the values of variables at timet +1 as indicated by repartition protocols.
A sequence of such transitions forms a computation. For a computationσ , let N+(σ)
be the set of positive values assumed byx j0,i0 during the computationσ . (Note that
the computation may continue forever.) LetN+(Π) be the union ofN+(σ), for all
computationsσ in Π . (Also the result 0 can be considered, but we proceed here as
usual in language and automata theory, where the empty word is omitted when com-
paring the power of two computing devices – this extends to membrane computing
to omitting the number 0.)

A delicate problem concerns the issue whether the production value is divisible
by the total sum of coefficientsc j from the corresponding repartition protocol. In
this paper, we assume that this is the case, i.e., we only dealwith systems whose
programs have this property – this corresponds to thediv case in [9], but we do not
further specify the parameterdiv in what follows. Variants were introduced in [9];
taking this aspect into consideration introduces one further classification criterion for
numerical P systems, besides those mentioned in the Introduction.

The family of sets of numbersN+(Π) computed by numerical P systemsΠ with
at mostmmembranes, production functions which are polynomials of degree at most

6 Vasile et al.

n, with integer coefficients, with at mostr variables in each polynomial, is denoted
by N+Pm(polyn(r),seq), m≥ 1,n ≥ 0, r ≥ 0, where the fact that we work in the
sequential mode (in each step, only one program is applied ineach region) is indicated
by seq. If one of the parametersm,n, r is not bounded, then it is replaced by∗. (Both
in N+(Π) and inN+Pm(polyn(r),seq), the superscript+ indicates the fact that as the
result of a computation we only consider positive natural numbers, zero excluded. If
any value ofx j0,i0 is accepted, then we remove the superscript+.)

We only recall here the following result from [9] (called Corollary 4.1 there).

Theorem 1 NRE= N+P8(poly5(5),seq) = N+P7(poly5(6),seq).

The proof is based on the characterization of recursively enumerable sets of num-
bers as positive values of polynomials with integer coefficients, [5]. It is formulated as
an open problem in [9] the question “whether or not the positive values of a variable
can be selected inside the system (changing in a minimal way the definition), not by
means of an external condition.” In the next section we show that this question can be
affirmatively answered, by using enzymes in controlling theapplication of evolution
programs.

3 Enzymatic Numerical P Systems

Enzymatic numerical P systems (in short, EN P systems) use both evolution programs
as introduced above and programs of the form

Fl ,i(y1,i , . . . ,ykl ,i)|ej,i → cl ,1|v1+cl ,2|v2+ · · ·+cl ,ni |vni ,

whereej,i is a variable fromVari different fromy1,i , . . . ,ykl ,i , and fromv1, . . . ,vni .
Such a program can be applied at a timet only if ej,i(t) > min(y1,i(t), . . . ,ykl ,i(t)).
(A slightly more complex definition is considered in [12] and[14] where:ej,i(t) >
min(|y1,i(t)|, . . . , |ykl ,i(t)|). Considering the absolute value of the variables, instead of
their real values, simplifies the design of the membrane structures used to compute
certain functions, such ascosandsin, as power series, but here we work only with
the simpler case defined above. We also use here a notation different from that in
[12], writing the enzyme in the same way as the promoters are written in multiset
rewriting rules, see [8].) Note that in order to apply the program it is sufficient that
one variableinvolved in a production function has the current value strictly smaller
than the value of the enzyme variable. The enzyme cannot evolve by means of the
associated program, but it can evolve by means of other programs, and can receive
“contributions” from other programs and regions.

Because the enzymes are usual variables, playing a different role only “locally”,
in specified programs, we do not consider their set separated, hence the general writ-
ing of an enzymatic numerical P systems is the same as that of anumerical P system
– only the form of programs can be different.

Using enzymes introduces a checking possibility in our systems (we compare the
value of the enzyme with the values of variables from the associated program), and
this suggests the possibility of choosing the positive values of the output variable

On the Power of Enzymatic Numerical P Systems 7

“inside the system”. Indeed, the following result holds true (for the non-deterministic
sequential case;enzindicates the use of enzymes):

Theorem 2 NRE= NP7(poly5(5),enz,seq).

Proof We will modify the proof given in [9] to the previous Theorem 1; the compu-
tations proceed in the same way, but at the end we use the enzyme control in order to
select as results only the positive values of the output variable. Specifically, following
[5], for each setQ∈ NREwe consider a polynomialfQ(x1, . . . ,xn) with integer coef-
ficients such thatr ∈ Q iff r = fQ(a1, . . . ,an)∩N for somea1, . . . ,an ∈ N. It is known
that polynomialsfQ exists of degree 5 using 5 variables (see, e.g., page 109 of [15];
polynomials with other combinationsdegree – number of variablescan be chosen,
with a trade-off between the two parameters, but the point here is not the value of
parameters, but the fact that we can select the positive values of the output variable
in an internal way, not in an external one). Let us consider such a polynomialfQ.

We construct the following enzymatic numerical P system (for the sake of the
readability, we also present it graphically, in Figure 1; note in this figure the way the
initial values of variables are given in square brackets foreach variable):

Π = (7,H,µ ,(Vars,Prs,Vars(0)),(Var0,Pr0,Var0(0)),

(Var1,Pr1,Var1(0)),(Var2,Pr2,Var2(0)), . . . ,(Var5,Pr5,Var5(0)),x2,0),

H = {s,0,1,2, . . . ,5},

µ = [s[0]0[1]1[2]2 . . . [5]5]s,

Vars = {x1,s,x2,s, . . . ,x5,s},

Prs = {− fQ(x1,s,x2,s, . . . ,xn,s)→ 1|x1,0},

Vars(0) = (0,0, . . . ,0),

Var0 = {x1,0,x2,0,e1,0,g0},

Pr0 = {−x1,0|e1,0 → 1|x2,0, x1,0 → 1|g0, x2,0 → 1|g0},

Var0(0) = (0,0,0,0),

Vari = {x1,i},

Pri = {x1,i → 1|x1,i , x1,i +1→ 1|x1,i , x1,i → 1|xi,s},

Vari(0) = (0), for all i = 1,2, . . . ,5.

This system works as follows (we recall also a few details from [9]). All variables
starts from 0. In each membrane 1,2, . . . ,5 there are three programs; the first one
leaves the local variable unchanged, the second one increases it by one, the third
program moves the value of the local variable to the corresponding variable from
compartments. Specifically, compartmenti provides a value to variablexi,s,1≤ i ≤ 5.
By non-deterministically choosing the programs to apply, in compartments 1,2, . . . ,5
we can produce all vectors(a1,a2, . . . ,a5) of natural numbers.

In each step, in compartments we compute a value of polynomialfQ, therefore
we can compute such values for all vectors of natural numbers. The respective values
are immediately transferred to variablex1,0 from compartment 0, multiplied with−1.

The only enzymatic program is here. The value ofe1,0 is zero and it is never
changed. If the value ofx1,0 is strictly smaller – which means thatfQ(x1,s, . . . ,x5,s)

8 Vasile et al.✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪

s

0
x1,0[0],x2,0[0],e1,0[0],g0[0]

−x1,0|e1,0 → 1|x2,0

x1,0 → 1|g0

x2,0 → 1|g0

1 x1,1[0]

x1,1 → 1|x1,1

x1,1+1→ 1|x1,1

x1,1 → 1|x1,s

. . .

5 x1,5[0]

x1,5 → 1|x1,5

x1,5+1→ 1|x1,5

x1,5 → 1|x5,s

x1,s[0], . . . ,x5,s[0]

− fQ(x1,s, . . . ,x5,s)→ 1|x1,0

Fig. 1 The P system from the proof of Theorem 2

was strictly positive – then its value is transferred, againwith a changed sign, to the
output variablex2,0. In the opposite case, the programx1,0 → 1|g0 must be used, and
the value ofx1,0 is “lost” in the “garbage variable”g0. If this program is used also
for the case of having a positive value forx1,0, then again the result is “lost”, nothing
wrong happens. Also the variablex2,0 should be reset to zero, and this is done again
with the help of variableg0.

The work of the system continues forever, and variablex2,0 takes all positive
values offQ, which means thatN(Π) = Q, henceQ∈ NP7(poly5(5),enz,seq). This
concludes the proof. ⊓⊔

Starting from a polynomial of degree four (there are characterizations ofRE by
such polynomials, see [15]), the degree of the polynomial used in the previous proof
can be decreased to four. However, if we pass to numerical P systems working in a
parallel manner, then the maximal improvement (from this point of view) can be ob-
tained: polynomials of degree one suffice. As expected, thisis obtained at the expense
of increasing other parameters – in this case, the number of membranes (however,
pleasantly enough, we need only polynomials with at most twovariables).

4 Parallel EN P Systems

We continue to work in the “classic” setup (the non-deterministic generative mode),
but we introduce a change in the way of using the programs, namely, we consider

On the Power of Enzymatic Numerical P Systems 9

the “standard” way in membrane computing, i.e., the maximalparallelism: in each
membrane, at each step, we use a maximal set of programs (programs are selected
non-deterministically, and a set of programs is applied only if it is maximal, no further
program can be added to it in such a way that the new set is stillapplicable), with the
restriction that a variable can appear only inoneproduction function of a program
which is applied.

In the enzymatic case, it is important to note that an enzyme which controls the
use of a program can evolve at the same time by means of anotherprogram (but not
by the program whose application it makes possible).

The functioning of such systems is the same as above: we startfrom the initial
values of variables and we evolve them according to the programs; the values as-
sumed by a distinguished variable during any computation form the set computed
by the system. We denote as above byN(Π) the set of numbers computed by a sys-
tem Π and byNPm(polyn(r),enz,oneP), m≥ 1, n ≥ 0, r ≥ 0, the family of sets of
numbersN(Π) computed by enzymatic numerical P systems working in the parallel
mode described above, with at mostm membranes, production functions which are
polynomials of degree at mostn, with integer coefficients, with at mostr variables in
each polynomial; if one of the parametersm,n, r is not bounded, then it is replaced
by ∗. (We no longer writeN+(Π), because, as in Theorem 2, we can select inside the
system the positive values of the output variable.)

The following somewhat surprising result holds true:

Theorem 3 NRE= NP∗(poly1(2),enz,oneP).

Proof We start from the characterization of sets inNRE by means of register ma-
chines. Such a device is a constructM = (m,H, l0, lh, I), wherem is the number of
registers,H is the finite set of instruction labels,l0 is the start label (associated with
an ADD instruction),lh is the halt label (assigned to instructionHALT), andI is the set
of instructions; each element ofH labels only one instruction fromI , thus precisely
identifying it. The instructions are of the following forms:

– l i : (ADD(r), l j , lk) (add 1 to registerr and then go non-deterministically to one of
the instructions with labelsl j , lk),

– l i : (SUB(r), l j , lk) (if registerr is non-empty, then subtract 1 from it and go to the
instruction with labell j , otherwise go to the instruction with labellk),

– lh : HALT (the halt instruction).

A register machineM computes (generates) a numbern in the following way: we
start with all registers empty (i.e., storing the number zero), we apply the instruction
with label l0 and we proceed to apply instructions as indicated by labels (and made
possible by the content of registers); if we reach the halt instruction, then the number
n stored at that time in the first register is said to be computedby M. The set of all
numbers computed byM is denoted byN(M). It is known that register machines
compute all sets of numbers which are Turing computable, hence they characterize
NRE; moreover, machines with three registers suffice (see, e.g., [6]).

Without loss of generality, we may assume that in the haltingconfiguration, all
registers different from the first one are empty.

10 Vasile et al.

Consider a register machineM = (m,H, l0, lh, I). We construct an enzymatic nu-
merical P systemΠ in the following way. Let us assume thatH = {l0, l1, . . . , ln}, for
somen≥ 1, and thatln = lh. The membrane structure ofΠ will be

µ = [s[l0
]l0
[l1

]l1
. . . [ln]ln]s,

that is, we associate one membranel i to each labell i ∈H (hence to each instruction in
I ; these membranes are also calledmodules), all of them placed in the skin membrane,
labeled withs. Each membranel i ,0≤ i ≤ n, simulates the corresponding instruction
in I . To this aim, membranel i contains so-calledregister variables(denoted byx
with subscripts) associated with the values of the three registers ofM (for instance,
variablesxr,i , for r = 1,2,3, present in each membranel i ,0 ≤ i ≤ n, represent the
values of registersr = 1,2,3 of M), enzymes(denoted bye with subscripts; each
membranel i contains a “trigger enzyme”ei), so-calleddummy variables(denoted by
w andz with subscripts), andgarbage variable(denoted byg with subscripts). Also
the skin region contains register variables, enzymes, and dummy variables. Initially,
all these variables are zero, with the exception of enzymee0 (from membranel0),
which is equal to 1. In general, when the enzymeei associated with a membranel i
is 1, that membrane/module isactive, its rules can be applied and local variables can
evolve. Because the registers ofM take only values inN, all variables of our system
will have values inN.

A general trick for using a program in the presence of an enzyme with value 1
is to involve in the production function a dummy variable, which is always equal to
zero. In this way, as long as the enzyme is 0, the program cannot be used, but when
the enzyme becomes 1, the program can be applied.

After using a module (hence simulating an ADD or SUB instruction), all variables
are reset to zero, with the exception of the variablesxr,i (the register values), and of
one enzyme which determines the next instruction to simulate.

The modules communicate to each other by means of variables placed in the skin
region: if membranel i needs to movexr,i ,1≤ r ≤ 3, to membranel j , then membrane
l i first movexr,i to x(r, j),s, and from membranes this variables moves its value to
xr, j ; simultaneously,ei increases a variableej,s to 1, which moves its value toej in
membranel j , thus activating this membrane.

When the computation inM halts, we reach the membrane associated withlh,
coming from an ADD or SUB module which moved the values of all variablesxr,i ,1≤
r ≤ 3, into membranelh (only x1,i is different from zero); in this way,x1,n – the output
variable – gets the value of the first register ofM. Immediately,x1,n is reset to 0.

With these explanations in mind, we give now formally the systemΠ . (Note that
the values of the registers are always positive, hence we do not have to take care of
selecting the positive values of the output variable.)

Π = (n+2,H ′,µ ,(Vars,Prs,Vars(0)),(Var0,Pr0,Var0(0)),

(Var1,Pr1,Var1(0)), . . . ,(Varn,Prn,Varn(0)),x1,n),

H ′ = {s, l0, l1, l2, . . . , ln},

µ = [s[l0
]l0
[l1

]l1
. . . [ln]ln]s,

On the Power of Enzymatic Numerical P Systems 11

Vars = {x(t,i),s, w(t,i),s : 1≤ t ≤ 3,0≤ i ≤ n}∪{ei,s : 0≤ i ≤ n},

Prs = {x(t,i),s+w(t,i),s|ei,s → 1|xt,i : 1≤ t ≤ 3,0≤ i ≤ n}

∪ {ei,s → 1|ei : 0≤ i ≤ n},

Vars(0) = (0,0, . . . ,0),

Vari = {xt,i ,wt,i : 1≤ t ≤ 3}∪{ei ,e
′
i ,e

′′
i ,zi}, for all 0≤ i ≤ n−1,

Vari(0) = (0,0, . . . ,0), for all i = 0,1,2, . . . ,n−1, with the exception of

e0 = 1,

Varn = {xr,n : 1≤ r ≤ 3}∪{en},

Prn = /0,

Varn(0) = (0,0,0,0),

with the programs in membranesl i as follows:

1. If l i : (ADD(r), l j , lk), then

Pri = {ei → 1|e′i , ei → 1|e′′i ,

xr,i +wr,i +1|e′i → 1|x(r, j),s, xr,i +wr,i +1|e′′i → 1|x(r,k),s}

∪ {xt,i +wt,i |e′i → 1|x(t, j),s, xt,i +wt,i |e′′i → 1|x(t,k),s : t ∈ {1,2,3}−{r}}

∪ {e′i → 1|ej,s, e′′i → 1|ek,s},

2. If l i : (SUB(r), l j , lk), then

Pri = {zi +1|xr,i → 1|e′i , xr,i +1|ei → 1|e′′i , ei → 1|gi ,

xr,i +wr,i −1|e′i → 1|x(r, j),s}

∪ {xt,i +wt,i |e′i → 1|x(t, j),s : t ∈ {1,2,3}−{r}}

∪ {xt,i +wt,i |e′′i → 1|x(t,k),s : 1≤ t ≤ 3}

∪ {e′i → 1|ej,s, e′′i → 1|ek,s}.

The membranel i associated with an ADD instructionl i : (ADD(r), l j , lk) works as
follows. In each step, irrespective of the stage of the computation, the programsei →
1|e′i , ei → 1|e′′i can be used, but they change nothing as long as the value ofei is zero.
When the module is activated, andei becomes 1, by non-deterministically using one
of the above mentioned programs (and only one, as we work in the onePmode), one
of the enzymese′i ,e

′′
i becomes 1, and this makes possible the use of the subsequent

programs. Corresponding to the choice ofe′i or e′′i , the value ofxr,i , augmented with
1, passes tox(r, j),s or tox(r,k),s, respectively, and, at the same time,ej,s or ek,s becomes
1. Concomitantly, the variablesxt,i , t ∈ {1,2,3}−{r}, pass their values tox(t, j),s or
x(t,k),s. From the skin region, these variables pass their values to the corresponding
variables from membranesl j or lk. All variables of membranel i , are reset to zero.
The ADD instruction is correctly simulated, only one enzymecontinues to have the
value 1, namely in that membranel j , lk where also the values of the registers were
moved.

For an easier reference, the module associated with a SUB instruction l i :
(SUB(r), l j , lk) is given also in a graphical form in Figure 2.

12 Vasile et al.

✬

✫

✩

✪

l i

zi +1|xr,i → 1|e′i xr,i +1|ei → 1|e′′i

ei → 1|gi

xr,i +wr,i −1|e′i → 1|x(r, j),s

xt,i +wt,i |e′i
→ 1|x(t, j),s, t 6= r

e′i → 1|ej,s

xt,i +wt,i |e′′i
→ 1|x(t,k),s,1≤ t ≤ 3

e′′i → 1|ek,s

Fig. 2 The SUB module.

As long as bothxr,i andei are zero, no rule can be applied in membranel i . If xr,i

becomes at least one, the rulezi +1|xr,i → 1|e′i can be used. Similarly, ifei becomes
1 and at the same time,xr,i = 0, then the rulexr,i +1|ei → 1|e′′i can be used. In this
way, the rules in membranel i written in the first row in Figure 2 check whetherxr,i

is greater than zero or not; the left column of rules in this figure corresponds to the
casexr,i > 0, and the right column corresponds to the casexr,i = 0. In the first case,
the variable (enzyme)e′i becomes 1, in the latter case the variablee′′i becomes 1.
Simultaneously,ei is returned to zero.

In the casexr,i > 0, we subtract 1 fromxr,i (and move the result tox(r, j),s), we
movext,i for 1≤ t ≤ 3, t 6= r, to x(t, j),s, and, simultaneously,e′i moves its value toej,s

and it is reset to zero.
In the casexr,i = 0 we simply move the variablesxt,i to x(t,k),s, for all t = 1,2,3,

and we makeek,s = 1, while returninge′′i to zero.
The variables from the skin region move now their values to the corresponding

variables from membranel j or lk.
The simulation of the SUB instruction is correct, we continue as in a computation

of the register machine.
The combination of all these modules ensures the correct simulation of all com-

putations inM (if the computation inM does not halt, then the variablex1,n remains
always zero), therefore,N(M) = N(Π). The observation that we use only linear pro-
duction mappings involving at most two variables completesthe proof. ⊓⊔

Starting the previous proof from a universal register machine (as given, e.g., in
[4]), the number of membranes can be bounded – finding a precise (small) bound
remains as a research issue.

5 Deterministic EN P Systems

As mentioned in the Introduction, when used for robot control, EN P systems should
work in the computing mode (certain parameters concerning the relations between

On the Power of Enzymatic Numerical P Systems 13

the robot and its environment, other robots included, are provided as an input, and
the P system produces an output which is used for specifying the robot action), and
this input-output passage is deterministic. The determinism is obtained (e.g., in [12])
by two means: making use of the enzymatic control and making use of a “total par-
allelism” – all programs are used, with a variable which occurs in several programs
being used with its current value in all of them. The enzymatic mechanism assures
that each computational step is completely determined by the previous steps. The en-
zymes control the program flow, they are used in stop conditions and for synchroniza-
tion between membranes. The deterministic EN P systems model was used to design
and implement robot behaviors like obstacle avoidance and odometric localization
(see, e.g., [13] and [14]). Some robot behaviors were also implemented using clas-
sical numerical P systems with only one rule per membrane, [3], but the membrane
structures obtained were far more complicated and less efficient from the computa-
tional point of view, compared to the ones modeled with EN P systems. Anyhow, the
deterministic behavior of P systems is essential when they have to be implemented as
computer programs or robot controllers.

Let us useallP to indicate the use of evolution programs in the parallel mode
mentioned above (if two or more programs which are enabled ata computation step,
i.e., they satisfy the condition imposed by the associated enzymes, share variables in
their production functions, then they will all use the current values of those variables),
anddetto indicate that the systems we use are deterministic.

We prove now that EN P systems are universal (for production polynomials of
degree two) also for the deterministic case, when working inthe allP mode. Such
universality results are also interesting from the robot control points of view, as they
guarantee that any computer program or robot behavior can beimplemented using
EN P systems.

Theorem 4 NRE= NP254(poly2(253),enz,allP,det).

Before proceeding to the proof of Theorem 4, we give two auxiliary helpful re-
sults.

Lemma 1 Let f be a polynomial of degree n with k variables. The maximumnumber
of terms of f is ak+1(n), given by the recurrence formula:

ak(n) =
n

∑
i=0

ak−1(i),wherea1(n) = 1,n∈ N.

Proof The general form of polynomialf is:

f = ∑
s1+···+sk≤n

αs1,...,sk ·x
s1
1 · . . . ·xsk

k .

The first thing to note is that the problem can be simplified by considering the poly-
nomialg with k+1 variables obtained fromf by multiplying each term with a power
of the(k+1)-th variable such that each term has degreen. In this case, the powers of
the variables in each term ofg must satisfy a linear equality, i.e., their sum must be
n. Also, f can be recovered fromg by noting thatf (x1, . . . ,xk) = g(x1, . . . ,xk,1). All
that is left is to count the maximum number of the terms ofg.

14 Vasile et al.

The second important observation is that the coefficients off , and thereforeg,
are irrelevant to counting problem. They only have to be non-zero. Thus, we can
chooseg= (x1+ · · ·+xk+1)

n. The recurrence formula follows immediately from the
binomial formula applied ong:

(x1+ · · ·+xk+1)
n =

n

∑
i=0

(

n
i

)

(x1+ · · ·+xk)
i ·xn−i

k+1. ⊓⊔

The second result used in the proof of Theorem 4 concerns the form of the multi-
variate polynomialf .

Lemma 2 If f is a polynomial of degree5 with 5 variables, then f can be put in the
following form:

f (x1, . . . ,x5) =
m

∑
i=1

βi · (a1,ix1+ · · ·+a5,ix5+a6,i)
5,

where m= 252 and represents the maximum number of terms of f in the general
form,βi are polynomial specific coefficients, and aj,i are some constants.

Remark 1The maximum number of terms of a polynomialf in the general form of
degree 5 with 5 variables is 252, computed using Lemma 1. The general form of a
multivariate polynomial is given in the proof of Lemma 1.

Proof The transformation of polynomialf from the general form into the one in the
theorem is in fact a change of base in the vector spaceRm/R, whereR is the set of real
numbers. The constantsa j,i must satisfy the following condition, obtained by writing
polynomial f in both forms and identifying the coefficients of each term:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

















a1,1 . . . a1,m
...

.. .
...

as1
1,1 · . . . ·a

sk
k,1 . . . as1

1,m · . . . ·ask
k,m

...
.. .

...
an

k,1 . . . an
k,m

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0.

For polynomials with 5 variables and degree 5 a matrix of constantsa j,i was
found using Matlab. Moreover, non-negative integer valueshave been found for the
a j,i constants. ⊓⊔

With the two lemmas above, we can now proceed to the proof of Theorem 4.

Proof As in the proof of Theorem 2 we will use the characterization of recursively
enumerable sets by polynomials of degree 5 with 5 variables and integer coefficients.
From Lemma 1 we know that polynomials of degree 5 with 5 variables have at most
252 terms. Also, every multivariate polynomial can be written as the sum of powers
of linear combinations of the polynomials variables. The previous two lemmas can

On the Power of Enzymatic Numerical P Systems 15

be used to construct the following EN P system (it is also presented graphically in
Figure 3):

Π = (254,H,µ ,(VarGenerate,PrGenerate,VarGenerate(0))

(VarCompute,PrCompute,VarCompute(0)),

(VarPow51,PrPow51,VarPow51(0)), . . . ,

(VarPow5252,PrPow5252,VarPow5252(0)),enum),

H = {Generate,Compute,Pow51, . . . ,Pow5252},

µ = [Generate[Compute[Pow51
]Pow51

. . . [Pow5252
]Pow5252

]Compute]Generate,

VarGenerate= {xi ,ej ,ezk,eri ,n,et ,g,gc : 1≤ i ≤ 5,1≤ j ≤ 7,1≤ k≤ 5},

PrGenerate= {n→ 1|n, et → 1|gc,

1+x1|e1 → 1|er1, −1+g|e1 → 1|x1, 1+n+x1|e1 → 1|x1}

∪ { j ·ej → 1|ej+1+(j −1)|et : 1≤ j ≤ 5}

∪ {1+xi |e1 → 1|ezi , 1− i +et |eri−1 → 1|xi : 2≤ i ≤ 5}

∪ {g+(ezi +eri−1)|ei → 1|eri , 2− i +n+et |eri → 1|xi : 2≤ i ≤ 5}

∪ {2+et |er5 →
5

∑
i=1

1|xi +1|n, er5|e6 → 1|gc,

e6 → 1|e7, 2·e7 → 1|e1+1|ec
1}

∪ {g+2·xi |e7 → 1|xi +1|xc
i : 1≤ i ≤ 5},

VarGenerate(0) = (5,5,5,5,5,1,0, . . . ,0,5,0,0,0),

VarCompute= {xc
i ,e

c
j , tk,g

∗, fQ,enum : 1≤ i ≤ 5,1≤ j ≤ 2,1≤ k≤ 252},

PrCompute= {g∗+2·

(

5

∑
i=1

ai,k ·x
c
i +a6,k

)

|ec
1
→ 1|s1,k+1|s2,k : 1≤ k≤ 252}

∪ {252·ec
1 →

252

∑
k=1

1|ep1,k, g∗−
252

∑
k=1

βk · tk|ec
2
→ 1| fQ,

− fQ|g∗ → 1|enum, enum+ fQ+ec
2 → 1|gc}

VarCompute(0) = (0,0, . . . ,0),

VarPow5k = {s1,k,s2,k,z,epi,k : 1≤ i ≤ 3},

PrPow5k = {z+s1,k ·s1,k|ep1,k → 1|s1,k, ep1,k → 1|ep2,k,

z+s1,k ·s1,k|ep2,k → 1|s1,k, ep2,k → 1|ep3,k,

z+s1,k ·s2,k|ep3,k → 1|tk, ep3,k → 1|ec
2},

VarPow5k(0) = (0,0, . . . ,0), for all k= 1,2, . . . ,252.

The system has two parts: membraneGenerategenerates all 5-tuples of natu-
ral numbers, in a deterministic way, and membraneComputecomputes the value of
polynomial fQ for all generated 5-tuples. The generation of the 5-tuples is done by
simulating a 5 position (x1, . . . ,x5) countdown timer with automatic reset. However,
instead of resetting to the same initial state, the countdown timer resets all positions
to the next natural number. The initial state of the timer is(5,5,5,5,5) and when the

16 Vasile et al.✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪

Generate

Compute

Pow5k,1≤ k≤ 252

xi [5],1≤ i ≤ 5,e1[1],ej [0],2≤ j ≤ 7,ezk[0],1≤ k≤ 5,eri [0],1≤ i ≤ 5

n[5],et [0],g[0],gc[0]

n→ 1|n

et → 1|gc

1+xi |e1 → 1|ezi ,2≤ i ≤ 5

1+x1|e1 → 1|er1

−1+g|e1 → 1|x1

1+n+x1|e1 → 1|x1

j ·ej → 1|ej+1+(j −1)|et ,1≤ j ≤ 5

1− i +et |eri−1 → 1|xi ,1≤ i ≤ 5

g+(ezi +eri−1)|ei → 1|eri ,2≤ i ≤ 5

2− i +n+et |eri → 1|xi ,2≤ i ≤ 5

2+et |er5 → ∑5
i=1 1|xi +1|n

er5|e6 → 1|gc

e6 → 1|e7

g+2·xi |e7 → 1|xi +1|xc
i ,1≤ i ≤ 5

2·e7 → 1|e1+1|ec
1

xc
i [0],1≤ i ≤ 5,ec

j [0],1≤ j ≤ 2,

tk[0],1≤ k≤ 252,g∗[0], fQ[0],enum[0]

g∗+2·
(

∑5
i=1 ai,k ·xc

i +a6,k
)

|ec
1
→ 1|s1,k+1|s2,k,

1≤ k≤ 252

252·ec
1 → ∑252

k=1 1|ep1,k

g∗−∑252
k=1 βk · tk|ec

2
→ 1| fQ

− fQ|g∗ → 1|enum

enum+ fQ+ec
2 → 1|gc

s1,k[0],s2,k[0],z[0],epi,k[0],1≤ i ≤ 3

z+s1,k ·s1,k|ep1,k → 1|s1,k

ep1,k → ep2,k

z+s1,k ·s1,k|ep2,k → 1|s1,k

ep2,k → ep3,k

z+s1,k ·s2,k|ep3,k → 1|tk

ep3,k → 1|ec
2

Fig. 3 The EN P system from the proof of Theorem 4

timer becomes zero, it resets to(6,6,6,6,6). In this way all 5-tuples of natural num-
bers are generated. This functionality is achieved by first testing each position if it is
zero, then if it needs to be reset, and finally it is updated, decreased by one or reset.
This process is sequential, updating the position in order from x1 to x5. A 5-tuple is
generated every 7 time steps and transferred to theComputemembrane.

Specifically, the ordering of 5-tuples of natural numbers isthe following: the ini-
tial tuple is(5,5,5,5,5), the next generated tuples are(5,5,5,5,4), . . . , (5,5,5,5,0),
(5,5,5,4,5), . . . , (5,5,5,0,0), (5,5,4,5,5), . . . and so on until(0,0,0,0,0) is gen-
erated; the next tuple will be(6,6,6,6,6), and then(6,6,6,6,5), (6,6,6,6,4), . . . ,
(6,6,6,6,0), (6,6,6,5,6), . . . are generated; when the generated tuple becomes again
(0,0,0,0,0), the next tuple will be(7,7,7,7,7). This process continues forever and
generates all 5-tuples of natural numbers in a deterministic way. The initial tuple was
chosen(5,5,5,5,5) in order to activate the correct rules in the first computational
step of the P system (see Figure 3).

On the Power of Enzymatic Numerical P Systems 17

The same tuple of numbers is generated arbitrarily many times, but this entails no
problem (except the non-efficiency, but this is not of concern here): the result of the
computation is the set of all generated numbers, so the repeats do not matter.

The values offQ are enumerated in the variableenum.
We will briefly show that all programs in all membranes satisfy the divisibility

property which means that the unitary portion of the production value at each execu-
tion step is an integer. First of all, the production functions of all rules are polynomials
with integer coefficients. Therefore, if the variables in the membrane system are inte-
gers, then the production values are also integers. For the programs which only have
one variable in the repartition protocol the divisibility property is trivially satisfied.
Next, we show that all the other programs satisfy the property div.

– Generate
– programsj · ej → 1|ej+1 + (j − 1)|et : 1 ≤ j ≤ 5 — in this case the uni-

tary portion is an integer and equal toej , because the sum of the repartition
coefficients isj and the production value isj ·ej .

– programsg+ 2 · xi |e7 → 1|xi + 1|xc
i : 1 ≤ i ≤ 5 — in these programs the

production value will always be even because the variableg is always 0 (has
initial value 0 and it is never changed). The sum of the repartition coefficients
is 2, therefore the unitary portion is an integer.

– program 2·e7 → 1|e1+1|ec
1 — this case is similar to the one above, the pro-

duction value is always an even number and the sum of the repartition coeffi-
cients is 2.

– program 2+ et |er5 → ∑5
i=11|xi + 1|n — in this case, we have to take into

account when the program is applied. Because the system is deterministic,
we know exactly the execution sequence of the programs. In order for the
unitary portion to be an integer we will show that the variableet has the value
4 when this program is applied. With this value the production value is 6
which is divisible by the sum of the repartition coefficientswhich is also 6.
The program is executed when the enzymeer5 gets the positive value 5. The
variableeri is produced by the programg+(ezi + eri−1)|ei → 1|eri , for i =
5. However, this program is applied when enzymee5 is 1. In parallel, the
program j ·ej → 1|ej+1+(j −1)|et , for j = 5, is also applied and distributes
the value 4 to variableet . The value of the variableet is consumed by other
programs in that execution step. Therefore,et is 4 when the program 2+
et |er5 → ∑5

i=11|xi +1|n is applied.
– Compute

– programsg∗+2 ·
(

∑5
i=1ai,k ·xc

i +a6,k
)

|ec
1
→ 1|s1,k+1|s2,k : 1≤ k ≤ 252 —

in this case the production value is always even becauseg∗ is always 0 (it is
initially 0 and it is not modified). The sum of the repartitioncoefficients is 2,
therefore the unitary portion is an integer.

The P system was also simulated and tested using theSimPsimulator, described
in [11], and the simulation confirmed its correct functioning (in particular, the fact
that it has the “divisibility property”, that is, it is ofdiv type).

The computation of the value of the polynomialfQ for the current 5-tuple is
done using only production functions of degree at most 2. This was achieved by

18 Vasile et al.

first consideringfQ in the form from Lemma 2. First, the linear combinations are
computed and transferred to thePow5k membranes. Then, the fifth power of the sums
a1,ix1+ · · ·+a5,ix5+a6,i is computed inPow5k and the result is stored in the variables
tk. In the following step, the membraneComputecomputes the value offQ as a linear
combination of the termstk. It can be observed that polynomials of degree 2 are only
used inPow5k membranes. At the end of the computation, the values are filtered and
only positive values are transferred to the output variableenum. ⊓⊔

We are currently working on proving that the computational power of cell-like
EN P systems with theallP parallel execution mechanism can be further improved to
the optimal degree of the polynomial production functions (degree one). This would
be the best universality result from this point of view that can be obtained.

6 Final Remarks

Numerical P systems were only scarcely investigated from a computational point of
view, but their usefulness in devising controllers for robots both suggests new variants
(deterministic, with enzymatic control, working in the computing mode) and motivate
further theoretical research.

These systems also raise interesting technical problems, mainly related to the fact
that we do not use the halting condition in defining the resultof a computation; the
computations can go forever, and the values assumed by a specified variable during
the computation form the generated set of numbers.

The present paper introduces a large numbers of classes of numerical P systems:
deterministic – non-deterministic; enzymatic – non-enzymatic; generative, accepting,
computing; sequential, all-parallel, one-parallel; witha “terminal” set of numbers or
without such a squeezing mechanism. Only a few of the many cases obtained by
combining these properties are investigated here.

In particular, we prove that enzymes improve the universality results in terms of
the complexity of used polynomials, provided that the evolution programs are used in
a parallel manner (different types of parallelism were usedin the non-deterministic
and the deterministic case).

Similar extensions of “general” notions in membrane computing to numerical P
systems remain to be examined, and this is a rich research topic. For instance, other
ways of using the programs can be considered: minimally parallel, with bounded par-
allelism, asynchronously. Then, we can also consider rulesfor handling membranes,
such as membrane division and membrane creation. These operations are the basic
tools by which polynomial solutions to computationally hard problems, typically,
NP-complete problems, are obtained in the framework of P systems with symbol ob-
jects, by a time-space trade-off. Is this possible also for numerical P systems? In the
previous investigations of numerical P systems, the computations were not halting,
as usual in membrane computing; does the halting condition makes any difference?
(Note that in the enzymatic case the halting is possible: no evolution program can be
applied, because its associated enzyme forbids it.) What about numerical P systems
used in the accepting mode?

On the Power of Enzymatic Numerical P Systems 19

A current research issue in membrane computing is to find classes of P systems
which are not universal. This extends also to numerical P systems.

Of course, an important research topic is to further explorethe use of numerical
P systems in controlling robots or in other applications where functions from vectors
of numbers to vectors of numbers should be computed in an efficient way.

And so on and so forth, a wealth of research ideas, which supports our belief that
numerical P systems deserve further research efforts.

Acknowledgements The work of Gh. P̆aun was supported by Proyecto de Excelencia con Investigador
de Reconocida Valı́a, de la Junta de Andalucı́a, grant P08 – TIC 04200.

Useful remarks by two anonymous referees are gratefully acknowledged.

References

1. Arsene, O., Buiu, C., Popescu, N.: SNUPS – A simulator for numerical membrane computing. Intern.
J. of Innovative Computing, Information and Control7 (6), 3509–3522 (2011)

2. Buiu, C.: Towards integrated biologically inspired cognitive architectures, keynote talk. In: Proc. of
the Int. Conf. on Electronics, Computers, and AI - ECAI’ 09, Pitesti, Romania,I , pp. 2–9 (2009)

3. Buiu, C., Vasile, C.I., Arsene, O.: Development of membrane controllers for mobile robots. Informa-
tion Sciences187, 33–51 (2012)

4. Korec, I.: Small universal register machines. TheoreticalComputer Sci.168, 267–301 (1996)
5. Matijasevitch, Y. (ed.): Hilbert’s Tenth Problem. MIT Press, Cambridge, London (1993)
6. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall (1967)
7. P̆aun, Gh.: Computing with membranes. Journal of Computer and System Sciences61 108–143

(2000)
8. P̆aun, Gh.: Membrane Computing - An Introduction. Springer-Verlag, Berlin (2002)
9. P̆aun, Gh., P̆aun, R.A.: Membrane computing and economics: Numerical P systems. Fundamenta

Informaticae73213–227 (2006)
10. P̆aun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Ox-

ford University Press (2010)
11. Pavel, A.B.: Membrane controllers for cognitive robots.Master’s thesis, Department of Automatic

Control and System Engineering, Politehnica University ofBucharest, Romania (2011)
12. Pavel, A.B., Arsene, O., Buiu, C.: Enzymatic numerical P systems - a new class of membrane com-

puting systems. In: The IEEE Fifth International Conferenceon Bio-Inspired Computing: Theories
and Applications (BIC-TA 2010) Liverpool, pp. 1331–1336 (2010)

13. Pavel, A.B., Buiu, C.: Using enzymatic numerical P systems for modeling mobile robot controllers.
Natural Computing (in press). Doi: 10.1007/s11047-011-9286-5

14. Pavel, A.B., Vasile, C.I., Dumitrache, I.: Robot controllers implemented with enzymatic numerical
P systems. Proceedings of Living Machines 2012, Lecture Notes in Artificial Intelligence7375, pp.
204–215, Springer-Verlag Berlin Heidelberg (2012)

15. Rozenberg, G., Salomaa, A.: Cornerstones of Undecidability. Prentice Hall. New York (1994)
16. The P Systems Web Page: http://ppage.psystems.eu (2012)

