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Abstract— We develop a novel framework to assess the risk of
misperception in a traffic sign classification task in the presence
of exogenous noise. We consider the problem in an autonomous
driving setting, where detection accuracy gradually improves as
the distance to traffic signs decreases due to improved resolution
and smaller impact from noise. The common accuracy measures
for classification often do not reveal the severity of the potential
cost from the misperception. Thus, for the estimated perception
statistics obtained using the standard classification algorithms,
we aim to quantify the risk of misperception to mitigate the
effects of inaccurate detection. By exploring perception outputs,
their expected high-level actions, and potential costs, we show
the closed-form representation of the conditional value-at-risk
(CVaR) of misperception. Moreover, we propose a discounted
accumulated CVaR-based risk that leverages the increasing
detection quality. Several case studies support the effectiveness
of our proposed methodology.

I. INTRODUCTION

“All humans are prone to make mistakes,” which are
especially crucial while performing safety-critical tasks such
as driving. Given the fact that nearly 94% of the accidents
are caused by human error [30], and more than 74% among
them are related to poor recognition and decision, the de-
velopment of autonomous driving technologies has gained
significant research attention in anticipation of improved
human safety [35]. However, due to the inevitable hardware
limitations, algorithmic errors as well as external factors
such as weather and illumination conditions, it is not rare to
see autonomous vehicles performing imperfect recognition
of the environment, surrounding vehicles, and making poor
decisions that lead to undesirable consequences [8, 3, 10].
For instance, as presented in [11], most autonomous vehicle-
related accidents are caused by poor recognition of the
environment or surrounding vehicles. Therefore, to maintain
the autonomous driving vehicle in a safe operating state in
a noisy environment, one must assess the reliability of the
noisy belief output.

We consider the motivational scenario when an au-
tonomous vehicle is driving towards a traffic sign, as depicted
in Fig. 1. The vehicle is equipped with an onboard camera,
which detects, and aims to classify the traffic sign with
one of the predefined labels. Due to the location and the
unpredictable environment change, the detected image may
suffer from various perturbations such as low resolution and
pixel-wise noise, which reshape the belief output into a
random variable. Our objective is to construct the notion of
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(a) The case when the belief output
is correct and there is no accident.

(b) The case when misperception oc-
curs and its corresponding accident.

Fig. 1: The above diagram depicts the possible outcomes of the
misperception.

“risk” of misperception for a given perception model and
its visual input, which can be merged into a planning [16]
and decision-making module for minimizing the chance of
systemic failures [18, 4, 12].

In the past decades, some well-known risk measures,
e.g., Value-at-Risk (VaR) [24] and Conditional Value-at-
Risk (CVaR) [25], have shown their significant advances in
revealing the uncertainty and reliability of random variables
given some harmful tail events. By treating the belief output
as a random variable, we use the CVaR measure for the
risk quantification, which evaluates the expected outcome
when the system has entered the undesired state of oper-
ations, e.g., inter-vehicle accidents. The CVaR measure also
reveals the severity [33] of the failure when the undesired
state is reached, which shows significant importance in our
motivational scenario1. Consequently, it becomes essential
to consider not only the chances of the potential systemic
failures but also their magnitudes in terms of costs [15, 21].

The risk quantification process begins with estimating
statistics of the belief outputs with a Dirichlet distribution
and using the concept of the Voronoi partitioning of the
belief space [20] to obtain the discrete distribution of the
noisy belief output into class labels. Then, based on the user-
defined cost metric for misperceiving each traffic sign, our
main result evaluates the risk of traffic sign misperception
regarding the severity of the potential accidents.

Our distinct contributions with respect to the existing liter-
ature are multi-fold. First, owing to the coherence property,
we adopt the Conditional Value-at-Risk (CVaR) measure and
propose a risk quantification framework that evaluates the
chances of misperception for a given noisy belief output.
Secondly, the proposed framework can be customized with
a user-defined cost metric and applied to most classification
problems when the belief output statistics are available.
Thirdly, the proposed approach is control agnostic; given the
traffic sign label corresponding to the minimum risk value,
our risk-quantification framework is amenable to any control

1Mis-perceiving the Speed-limit of 30 MPH sign as a Stop sign is more
dangerous than as a Speed-limit of 15 MPH sign.
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approach. Finally, the case studies demonstrate a significantly
improved performance in terms of safety when using the
misperception risk to make decisions under varying levels
of noise and resolution.

II. MATHEMATICAL NOTATIONS

The n-dimensional Euclidean space with elements z =
[z1, . . . , zn]

T is denoted by Rn, and R+ will denote the
positive orthant of R. The collection of all integers is denoted
by Z, where Z+ will denote the positive orthant of Z. We
represent the n × n identity matrix as In and the vector
of all ones as 1n, respectively. The dimension of a vector
z ∈ Rn is shown by dim(z) = n. The i’th element of
a vector x is shown by xi, and when the vector is time
indexed by t, the notation is adapted to xt,i. The (i, j)’th
entry of matrix A is represented by Aij . Let us define the
collection of all feasible belief vectors π, i.e., the belief
space, as Pn = {π ∈ Rn

+ | πT1n = 1}. We also define the
Gamma function as Γ(z) =

∫∞
0

xz−1e−xdx for Re(z) > 0,
and the corresponding Digamma function as Ψ(x) = Γ′(x)

Γ(x) .

III. PROBLEM STATEMENT

In this paper, we tackle risk evaluation associated with
(mis)perception of objects while an autonomous agent is
in motion to perform its mission. Objects are semantically
linked, and the agent’s detection performance depends on its
proximity to them.

For the remainder of the paper, let us consider the case
of an autonomous vehicle equipped with an onboard camera
traveling along a road with traffic signs with labels from
M = {1, . . . ,m}. The car travels at a constant velocity
towards a traffic sign that it will reach in T ∈ R+ time.
Within the time interval [0, T ], the car must take a high-level
action from a given set Λ to ensure conformance to traffic
rules [6] based on a finite set of observations yt, t ∈ [0, T ],
that, ideally, matches the ground truth sign label ℓ ∈ M. The
observations yt ∈ Rid represent images id = q1 × q2 from
the onboard camera in vector form.

We model the detection process as a belief-valued function
h(·) over the traffic labels M. Formally, we have pt = h(yt),
where the belief output pt ∈ Pm is the output of the detection
algorithm (see §V-A). The perception output is the value
of function argmax{pt} ∈ M for a given belief output
pt ∈ Pm. The functionality of argmax can be interpreted
as one of the simplest forms of inference in the context of
this work.

In most real-world scenarios, the onboard cameras suffer
from limited sensing range, resolutions, and noisy visual in-
put. As a result, the generated belief output can be potentially
inaccurate and pertaining to noise. The observation model of
the image yt ∈ Rid is given by2

yt = g(t,y0) + bt ξt, (1)

where y0 ∈ Rid denotes the high resolution and noise-free
image of the traffic sign. These types of perturbation are

2The observation can also be taken from other closed-loop system
dynamics, e.g., [7].

commonly considered in the research of adversarial attacks
of the image classification process using neural network
models, see [5, 9, 32].

The nonlinear function g : [0, T ] × Rid → Rid modifies
the image y0 with various resolutions together with the
exogenous disturbances ξt, which denotes the vector of pixel-
wise independent Brownian motions3 with a time-varying
diffusion coefficient bt. The detail of this modification is
further illustrated in §VII-B.

Definition 1. For a given belief output pt ∈ Pm, a misper-
ception occurs if

argmax{pt} ≠ ℓ, (2)

where ℓ ∈ M is the ground truth label of the sign.

The problem is to quantify the risk of misperception
as a function of the statistics of the noisy belief output
pt and the given confidence level. To reveal the severity
of the misperception, we incorporate the user-defined cost
metric with the CVaR measure, which connects the event
of misperception with the potential loss due to accidents.
Once the risk is assessed, the perceived outcome, which
corresponds to a traffic sign with the minimal risk level,
can be used with any controller of choice, e.g., low-level
controller, symbolic controller, or both [19, 16, 28].

IV. PRELIMINARIES

For the exposition of our main result, let us first introduce
some necessary results and definitions.

A. The Voronoi Partition of the Belief Space

All possible belief outputs pt belong to the belief space
Pm, which is a (m − 1)−simplex in Rm. The perception
model decides the label of the class is i ∈ M if and only
if pt,i > pt,j for all j ∈ M and j ̸= i. The argmax
classification criterion can be explicitly represented via the
Voronoi partitioning [17]. The Voronoi partitions of the belief
space Pm are given by V1, V2, . . . , Vm, where

Vi = {pt ∈ Pm | pt,i > pt,j , ∀j ̸= i} . (3)

The above partitioning is equivalent to the argmax criterion
since argmax{pt} = i if and only if pt ∈ Vi, see [20].

B. Conditional Value-at-Risk Measure

To quantify the uncertainty level and the expected outcome
encapsulated in belief outputs, we employ the notion of
Conditional Value-at-Risk (CVaR) measure [25]. The CVaR
indicates the severity of a random variable landing inside
an undesirable set of values that characterizes the dangerous
state of the system operation with specific confidence level,
i.e., Value-at-Risk (VaR). In probability space (Ω,F ,P), the
VaR of the random variable Y : Ω → R is defined as

Rε
V aR(Y ) = min{z | FY (z) ≥ 1− ε}, (4)

where the cumulative distribution function FY (z) = P{Y ≤
z}. Then, the CVaR is defined as follows.

3One may use other types of noise to model effects of uncertainties.
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Fig. 2: Ten traffic signs selected from the GTSRB dataset.

Fig. 3: The traffic sign perception process.

Definition 2. The Conditional-Value-at-Risk with the confi-
dence level (1 − ε) ∈ [0, 1] is the mean of the generalized
ε−tail distribution:

Rε
CV aR(Y ) =

∫ ∞

−∞
z dF ε

Y (z), (5)

where

F ε
Y (z) =

{
0, if z < Rε

V aR(Y )
FY (z)+ε−1

ε , if z ≥ Rε
V aR(Y )

. (6)

A smaller value of ε indicates a higher level of confidence
on random variable Y to stay below Rε

V aR(Y ). If Y has a
continuous distribution function, CVaR can be obtained as
the conditional expectation of Y subject to Y ≥ Rε

V aR(Y ).
In the case of discrete distributions, one may need to split a
probability atom, and CVaR may be obtained by averaging
a fractional number of scenarios, see [27].

V. TRAFFIC SIGN PERCEPTION MODEL

In this paper, we assume that an off-the-shelf detection
algorithm for sign detection is available, e.g., [14, 37, 34],
and it can be used to obtain a guess of the sign’s ground
truth label ℓ at every time t ∈ [0, T ]. For simplicity, we
assume that input images contain only the signs cropped
from the camera’s image. Example images of the traffic signs
are presented in Fig. 2. We use the German Traffic Sign
Recognition Benchmark (GTSRB) dataset4 to simulate the
perception of the vehicle while driving toward the traffic
sign. We modify the images from the GTSRB dataset with
time-varying resolution and pixel-wise noise, such that the
observed image yt is a random variable. Examples of the
modification are presented in §VII-B.

A. Perception Model

The noisy observation yt is fed into the perception model
as an image. In this paper, we consider the perception model
as a simple convolutional neural network (CNN) model, e.g.,
VGG-19 [29], such that pt = h(yt) can be rewritten as

pt = Softmax (CNN(yt) ) , (7)

4Other datasets, e.g., [23], can also be used with simple modifications.

in which belief outputs pt = (pt,1, · · · , pt,m) ∈ Pm are
generated for all continuous time instances within [0, T ], as
depicted in Fig. 3.

The focus of this work is not to improve the accuracy of
detection/recognition algorithms but rather to integrate them
with risk quantification to further strengthen the perception
module against misperception by reasoning about the severity
of the potential failure. For clarity, we choose a simple
detection model. However, with simple modifications, the
proposed approach applies to any detection model [13, 36].

B. Estimated Statistics of Belief Outputs

To quantify the risk, one must obtain or estimate the
statistics of the target random variable. Measuring the statis-
tics of belief output pt for the entire time-span [0, T ] is
inefficient due to the time-varying resolution and noise in (1).
To resolve this issue, we assume that the statistics of pt do
not change drastically in any sufficiently short time interval
[t − τ, t) ⊂ [0, T ], τ ∈ R+ and t ∈ [τ, T ], and we can only
obtain a finite number of observations in each time interval.
Let T τ

t ⊂ [0, T ] be the finite set of (uniform or non-uniform)
sampling times, and q = |T τ

t |, the cardinality of the set T τ
t .

Even for the interval [t − τ, t), quantifying the statistics of
pt from the q observations is not intuitive since the random
variable follows the constraint∑

i

pt,i = 1 and pt,i ≥ 0 for all i ∈ M, (8)

which falls within the belief space Pm. Unlike well-known
distribution fitting approaches for Gaussian random vari-
ables, we estimate the statistics of pt using a Dirichlet
distribution, for which the corresponding random variable
satisfies (8). A random variable z ∈ Pm with the Dirichlet
distribution D(z,α) has probability density function

fD(z1, ..., zm;α1, ..., αm) =
Γ(

∑m
i=1 αi)∏m

i=1 Γ(αi)

m∏
i=1

zαi−1
i , (9)

where Γ(·) denotes the Gamma function,
∑

i∈M zi = 1, and
zi ≥ 0 for all i ∈ M, and α ∈ Rm

+ is the concentration
parameter vector of the m-order Dirichlet distribution.

Let us consider q images, sampled and processed over a
time interval [t− τ, t), and their corresponding collection of
belief outputs is given as a q×m matrix Pt = [pT

t′ ]t′∈T τ
t
. We

use the fixed point approach proposed in [22] to estimate the
Dirichlet distribution, i.e., the concentration vector αt, from
a given set of belief outputs Pt. The method maximizes the
log-likelihood of the estimated distribution and the original
data. Considering the convex nature of the problem [26], the

3



Sign SL DP SS DE AT RR CO TL AO RO
SL 0 174 103 103 123 123 121 103 121 120
DP 117 0 105 105 117 117 119 105 97 113
SS 135 109 0 96 110 110 110 96 135 135
DE 117 117 99.5 0 117 500 117 117 117 117
AT 71 111.5 102 92 0 50 0 102 51 137.5
RR 144.5 168 82 82 50 0 50 140 168 258
CO 102 41.5 82 82 30 0 0 41 83 173
TL 97 97 77.5 77.5 39 73 73 0 73 163
AO 91 91 86.5 86.5 45.5 45.5 45.5 91 0 182
RO 83 83 165 165 41.5 41.5 41.5 63 200 0

TABLE I: The cost metric for traffic sign misperception (unit:
C1000).

likelihood is unimodal, and its maximum can be obtained
via a simple search [22].

Given an initial guess α̂t of αt, the estimated value of αt

is updated using the following result.

Lemma 1. For a given set of belief outputs Pt, there exists a
set of values of αt which maximizes the log-likelihood, and
αt can be updated element-wise using

Ψ(αnew
t,i ) = Ψ(

m∑
j=1

αold
t,j ) +

1

q

∑
t′∈T τ

t

log pt′,i, (10)

where Ψ(·) is the Digamma function, αt = (αt,1, ..., αt,m),
and i ∈ M.

The proof of the above result is omitted, and it can be
obtained from [22]. The above lemma provides the oppor-
tunity of estimating the statistics of belief outputs pt for
the time interval [t − τ, t) with a Dirichlet random variable
zt ∼ D(zt,αt), which allows us to compute the risk of
misperception in a closed form.

VI. RISK OF MISPERCEPTION

We introduce the cost for misperceiving traffic signs
followed by our main result of misperception risk.

A. Cost of Traffic Signs Misperception
Misperceiving traffic signs often leads to poor decisions

of autonomous vehicles, which are primarily associated with
high potential costs in real-world driving scenarios. Simply
interpreting the belief output as “correct” or “wrong” does
not provide adequate information for safe autonomous driv-
ing. The reason is that the high-level actions associated with
each traffic sign do not yield the same potential cost, e.g.,
misperceiving the “Speed-limit” sign as a “Stop” sign in-
duces a higher cost than misperceiving it as a “Construction”
sign.

Therefore, to explore the severity of the misperception
that is beyond correctness, we introduce a cost matrix of
misperceiving the traffic signs, C ∈ Rm×m. For each label
i ∈ M, we define the cost of misperceiving the label j ∈ M
as the label i as Cji. The correct perception incurs zero cost,
i.e., Cjj = 0. The cost value is user-specific, in this paper, we
used the cost metric shown in Table I, obtained by merging
the estimated cost for the traffic sign-related violations [2] for

Fig. 4: The above figure illustrates the evaluation of the risk profile
for each short time interval, using 6 time intervals as an example.

our selected traffic signs, such as potential fines and vehicle
damages.

B. Risk of Misperceiving Traffic Signs

The cost metric establishes the connection between the es-
timated belief output zt to the potential cost of misperception
given by the cost metric. For each traffic sign, there exist
m − 1 possible cases that the estimated perception output
argmax{zt} is incorrect. For a given estimated belief output
zt, one can deterministically define a family of nonlinear
functions ri(·)|i∈M that maps zt into the cost metric of
misperceptions. For label i, the function ri(·) takes value
in Cji|j∈M such that

ri(zt) = Cji if zt ∈ Vj . (11)

Then, the risk quantification can be adjusted to a family of
discrete random variables, ri(zt) for i ∈ M.

Given the fact that one or more instances of misperception
may obtain the same cost value, let us denote the ordered cost
vector as ci ∈ Rm′

i , where the integer m′
i ≤ m. The value

of m′
i denotes the number of unique values in all Cji|j∈M,

and the element of ci obtains the unique values of Cji in a
descending order such that

max
j∈M

Cji = (ci)1 > · · · > (ci)m′
i
= min

j∈M
Cji.

For the i’th label, there exist m′
i possible cost values for

ri(zt). Then, the corresponding discrete probability distribu-
tion of ri(zt) can be computed as follows.

Lemma 2. For each element of ordered cost vector ci, the
probability of P{ri(zt) = (ci)j} is given by

P{ri(zt) = (ci)j} = p̂t,j =
∑

k|Ck,i=(ci)j

P{zt ∈ Vk}, (12)

where

P{zt ∈ Vk} =

∫ ∞

0

∏
i ̸=k

(
γ(αt,i, x)

Γ(αt,i)

)
xαt,k−1 exp (−x)

Γ(αt,k)
dx,

(13)
and γ(α, x) is the lower incomplete gamma function.

The integral in (13) can be obtained numerically using
the approach proposed in [31] for computing the exceedance
probability in the Dirichlet distribution. With the knowledge
of the ordered cost vector ci|i∈M, the estimated statistics of
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Fig. 5: The high-level actions to be executed upon encountering a specific traffic sign.

belief outputs zt, and its corresponding cost output ri(zt),
the Conditional Value-at-Risk of traffic sign misperception
is shown in the following result.

Theorem 1. During the time interval [t − τ, t), given the
estimated belief output zt, the risk of misperception with the
i’th label is given by

Rε
t,i =

1

ε

 v∑
j=1

(ci)j p̂t,j + (ci)v+1

(
ε−

v∑
j=1

p̂t,j
) , (14)

where the value of v ∈ Z is computed by

v = sup
v≤m′

i

v∑
j=1

p̂t,j ≤ ε, (15)

the value of p̂t,j is obtained from (12), and the value of 1−ε
represents the confidence level.

The above theorem provides the closed-form represen-
tation of the risk of misperception when the statistics of
the belief output have a Dirichlet distribution. For a given
confidence level 1− ε, the magnitude of Rε

t,i quantifies the
severity of potential loss when perceiving the traffic sign as
the i’th label based on the statistics of zt.

At each discrete time step t, let us also denote the
collection of misperception risks for every label as the risk
profile of misperception, such that

Rε
t = [Rε

t,1,Rε
t,2, · · · ,Rε

t,m]T ∈ Rm, (16)

and the risk evaluation process is depicted in Fig. 4. The
risk output is again a label obtained via the argmin rule,
i.e., argmin{Rε

t} ∈ M.

C. Accumulated Risk

The risk of misperception is capable of assessing the
reliability of the belief output for a time interval [t − τ, t).
However, in the real-world environment, the input quality
is time-varying, and simply relying on the risk output for
one short time does not reveal the truth about the target
traffic sign. Thus, it also requires us to track the change of
the risk throughout time and consider both current and past
information. To this end, consider a weighted average of risk
values with a scaling factor µ ∈ (0, 1) which balances the
importance of the present and the past risk values

R̂ε
t,i =

1− µ

1− µK

K∑
k=1

µK−k Rε
kτ,i, (17)

where t = K · τ is the current time at step K ∈ Z+, Rε
kτ,i

is evaluated at each time t′ = kτ of step k ∈ {1, . . . ,K}
using (14), and µ ∈ (0, 1) is the user-specified scaling factor.
The corresponding risk profile can be stacked as R̂

ε

t using
the same lines of argument in (16).

The accumulated risk shows an evident advantage over the
real-time risk Rt,i since it is more inclusive. Moreover, it can
handle the situation when the observation changes drastically
and the recent observations are unreliable since it does not
solely rely on the most recent visual input. The accumulated
risk is also normalized to enable tracking of the changes in
the risk of misperception, i.e.,

∑K
k=1 µ

K−k = (1−µK)/(1−
µ)

Let us also introduce the critical risk threshold η ∈ R+ as
the user-defined maximum acceptable cost of the system. It
can be appropriately designed by carefully considering the
task and the environmental factors. Once the accumulated
risk value R̂ε

t,i becomes lower than η, the corresponding
accumulated risk output ot ∈ M is considered as the label,
i.e., it is the minimal element in the risk profile such that

ot = argmini∈M{R̂
ε

t}, and R̂ε
t,ot ≤ η. (18)

VII. CASE STUDY

In this case study, the perception model is trained with
the original GTSRB dataset, and the risk of misperception is
evaluated with the modified image. Let us consider τ = T

6
and split [0, T ] in to 6 intervals for all case studies. We
now define some notions used for evaluating the proposed
risk metric and then proceed with a detailed discussion on
simulations.

A. High-Level Actions and Time To Execution

We consider a set Λ of prescribed high-level actions
that allow the system to execute an appropriate maneuver
corresponding to the detected sign as depicted in Fig. 5. The
high-level actions are the abstractions of actuation commands
to the system.

Given the accumulated risk output ot, φ : M → Λ
provides an action λ ∈ Λ to be executed. In order to facilitate
the execution of the chosen high-level actions, our framework
maximizes the time to execution (texec) defined as follows:

texec = (T − t) · I(R̂
ε

t ≤ η), (19)

where I(·) is an indicator function and takes the value
1 whenever R̂

ε

t drops below the risk threshold η and is
0 otherwise. Thus, once the normalized accumulated risk
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(a) True label: Speed-limit (SL)
φ(SL) =Slow down

(b) True label: Do not enter (DE)
φ(DE) =Slow down &

Change direction

(c) True label: Construction (CO)
φ(CO) =Go slow & Caution

(d) True label: Roundabout (RO)
φ(RO) =Follow directions

Fig. 6: The accumulated risk profile of misperception for various traffic signs R̂ε

t . At each time step, the label corresponding to minimum
risk is shown in red, and the bar indicating ot is shown in magenta.

Fig. 7: Example images from the modified GTSRB dataset. Shown
for 6 time intervals.

crosses the acceptable cost η, a corresponding high-level
action can be chosen.

As this work focuses on strengthening perception-related
safety using risk quantification, we consider a simple map-
ping between the accumulated risk output ot to the action
space Λ. Developing risk-aware controllers is a topic for
future investigation.

B. Modified GTSRB Dataset

Since the images from the GTSRB dataset are static and
do not contain any specific types of noise, we apply the
following modifications to the dataset, which simulates the
scenarios of the vehicle approaching the traffic sign:

• The quality of the detected image is time-varying. The
resolution of the detected images increases when the
vehicle gets closer to the traffic sign, i.e., as t increases.

• The independent time-varying Gaussian noise is added
to each pixel of the image. The magnitude of the noise,
bt, decreases as the vehicle gets closer to the traffic sign,
i.e., as t increases.

We select 10 types of traffic signs from the dataset, and
examples of the modified image are shown in Fig. 7. The
above modification can be represented using (1), in which
we consider g(·) is the function that changes the resolution
w.r.t the time t, and bt is the time-varying noise magnitude.
For instance, our choices are dim(g(t,y0)) = t

T dim(y0)
and bt = 0.02T

t .

C. Simulations

1) Risk of Traffic Sign Misperception: Using the result
from Theorem 1, we evaluate the risk of misperceiving

(a) η = C1000. (b) η = C10000. (c) η = C50000.

Fig. 8: The distribution of T − texec with various η. Evaluated
among 100 trails.

specific signs, for which some examples are shown in Fig.
6. The tested images are taken from the modified GTSRB
dataset with η = C10000 and the confidence level is set by
letting ε = 0.1. Among all presented cases, the ground truth
labels of the sign ℓ ∈ M are associated with the accumulated
risk output ot by t = 6.

There are a few interesting observations that are worth
reporting: The label argmini∈M{R̂

ε

t} commonly occurs at
“CO” when the input image is noisy and with low resolution.
This phenomena is because the action related to “CO” is
“Go slow & Caution” (see Fig. 5), which is intuitively the
safest action when the visual input is not reliable. The sever-
ity of different instances of misperceptions depends on the
expected high-level actions to be executed, e.g., in Fig. 6c,
the high-level actions associated with “AT”, “RR”, and “CO”
are the same, and thus, their corresponding accumulated risks
lie within the same range of values. Therefore, the system
will not incur a penalty even in case of misperception. In Fig.
6d, the risk output ot is only obtained at t = 6, since the
potential loss of misperceiving the label “RO” is relatively
high, and the decision should only be made when the visual
input is reliable enough, i.e., R̂ε

t,ot ≤ η.
2) Critical Risk Threshold: Given different values of the

critical risk threshold η, it is expected to observe various
distributions of the time to execution texec, which is pre-
sented in Fig. 8. The result indicates that with the increase
of the threshold η, the autonomous vehicle could make
earlier decisions owing to the higher acceptable potential
cost. Thus, the distribution of texec is more concentrated
in higher values, or the distribution of T − texec is more
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(a) Example images with: 1) Fixed relative resolution (100%) with various
noise levels; 2) Fixed noise level bt = 0.04 with various resolution levels;

(b) Action Accuracy vs Noise.

(c) Action Accuracy vs Resolution.

Fig. 9: Action accuracy with various noise levels and resolutions.

concentrated toward lower values. Our result also reveals a
potential trade-off between η and texec as a smaller choice
of η may prevent autonomous vehicles from making early
decisions.

3) Risk Outputs vs Perception Outputs: The risk output
argmini∈M{Rε

t} exhibits a significant advantage com-
pared to the perception output argmax{pt} in the view
of preventing the potential losses5. We compare the ra-
tio of correct high-level actions, i.e., the action accuracy,
generated with both approaches with various noise and
resolution levels, as shown in Fig. 9. In both cases, the
risk output argmini∈M{Rε

t} outperforms the perception
output argmax{pt} by nearly 20% in the action accuracy.
It is because the consequences of each high-level action are
inclusively considered in the risk of misperception, which
exhibits the major difference between these two approaches.

VIII. CONCLUSION

In this work, we address the problem of mitigating the
effects of misperceiving traffic signs for autonomous driving
given noisy visual input. Using the well-known CVaR mea-
sure, we construct the framework that evaluates the risk of
misperception as a function of the estimated belief output
statistics and the user-specified cost metric that captures the
severity of potential failures to the system in the event of
misperception. Furthermore, leveraging the gradual improve-
ments in the detection accuracy due to gradually improving
sensing resolution and smaller effect of noise, we define
a discounted accumulated CVaR-based risk. The proposed
risk measure reveals the risk output and the accumulated
risk output that can be utilized for decision-making and

5The result is validated for a fixed time interval without using accu-
mulated risk to obtain the independent performance for each noise and
resolution level.

control with any controller of choice. The extensive case
studies demonstrate the effectiveness of the proposed risk-
quantification framework.

This work is the first step in incorporating the risk of
misperception into the perception-planning framework with
a focus on the perception module. The immediate natural
extension of the work is to design a risk-aware controller
to guarantee desirable properties such as system safety and
minimum time execution. It also enables the analysis of
the perception model from the view of the misperception
risk when the output statistics can be explicitly written as a
function of model parameters [1].
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