
Learning Signal Temporal Logic through Neural Network for
Interpretable Classification

Danyang Li1, Mingyu Cai2, Cristian-Ioan Vasile2, Roberto Tron1

Abstract— Machine learning techniques using neural net-
works have achieved promising success for time-series data
classification. However, the models that they produce are
challenging to verify and interpret. In this paper, we propose an
explainable neural-symbolic framework for the classification of
time-series behaviors. In particular, we use an expressive formal
language, namely Signal Temporal Logic (STL), to constrain
the search of the computation graph for a neural network.
We design a novel time function and sparse softmax function
to improve the soundness and precision of the neural-STL
framework. As a result, we can efficiently learn a compact STL
formula for the classification of time-series data through off-the-
shelf gradient-based tools. We demonstrate the computational
efficiency, compactness, and interpretability of the proposed
method through driving scenarios and naval surveillance case
studies, compared with state-of-the-art baselines.

I. INTRODUCTION

Binary classification is a standard task in Supervised
Machine Learning (ML). Many techniques such as K-Nearest
Neighbors (KNN), Supported Vector Machine (SVM), and
Random Forest can be employed. A particular version of
the procedure introduces data derived from the evolution of
dynamic systems, which are in the form of time-series data;
this task can still be challenging for the current state-of-the-art
ML algorithm.

In recent years, deep learning (DL) methods have achieved
great success in complex pattern recognition, with a variety
of architectures such as convolutional [1], recurrent [2],
etc. However, the common drawback of DL and other ML
techniques is the lack of human-interpretability of the learned
models. This property is very important in control and robotics
since it can support qualitative and quantitative analysis.
In this paper, we propose to use the rich expressivity of
Signal Temporal Logic (STL) [3] for training classification
of symbolic neural networks.

Signal Temporal Logic (STL) is a formal language designed
to express rich and human-interpretable specifications over
time series. Its quantitative satisfaction can be measured via
a recursive definition of robustness [3], which can be used in
control optimization problems [4] and sequential predication
task [5]. The task of learning STL formulas for classification
also leverages the robustness to formulate an optimization
problem. Previous attempts [6]–[8] for learning temporal
logic properties assumed fixed formula structures. Decision

1Danyang Li and Roberto Tron are with Mechanical Engi-
neering Department, Boston University, Boston, MA 02215, USA.
danyangl@bu.edu, tron@bu.edu

2M. Cai and C.I. Vasile are with the Department of Mechanical
Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
mingyu-cai@lehigh.edu, cvasile@lehigh.edu

tree based approaches [9]–[13] are proposed to learn both
operators and parameters via growing logic branches. The
branches growing of decision trees increases as the structure
of desired STL formula becomes more complicated. To the
best of our knowledge, the training time for the decision
tree based method is in order of minutes while the temporal
logic neural network can achieve order of seconds. To learn
temporal logic formulas from scratch, developing logic neural
networks [14], [15] attracts more attention. However, the
max/min operations in the computation of robustness are
not continuously differentiable. These operations cannot be
directly applied in a neural network since the network is not
able to learn with it.

Related works: Many works use STL for classification.
Some works [16]–[20] use the recursive definition of the STL
and the structure of multi-layer neural networks, allowing
to directly apply off-the-shelf gradient-based deep learning
software. This kind of work can be divided into two categories
i.e., template-free and template-based learning. Intuitively,
template-based learning [16]–[19] fixes the STL formula to be
learned from data and only learns some parameters. Whereas
template-free learning [20] learns the overall STL formula
including its structure from scratch. Our work uses this latter
category.

To address the non-smooth issues of the original STL
robustness [3], the differentiable versions of robustness
computation were proposed in [16], [18], which, however,
can not guarantee the soundness properties of STL and
the accuracy of satisfaction. The work [20] proposes an
alternative formulation that uses arithmetic-geometric mean
(AGM) STL robustness [21]. The AGM robustness is not
continuous and can not directly be backpropagated in a neural
network, resulting in problems of efficiency and adaptation
to gradient-based tools. In addition, both works [18], [20]
learn a weighted STL (wSTL) [22] that is harder for a user
to interpret if the complex weights are not manually omitted.

Contributions: First, we propose a template-free neural
network architecture with given fragments for the classifica-
tion of time-series signals. The network can be interpreted
as level-one STL formulae. Our proposed models rely on
novel activation functions, especially on two new components:
a compact way to represent time intervals for temporal
operators, and a sound, differentiable approximation to
the maximum operator. As an additional contribution, we
introduce a synthetic dataset containing prototypical behaviors
inspired by autonomous driving situations. We use this dataset
to evaluate the performance of our methods, showing that we
are able to achieve high efficiency and automatically extract

qualitatively meaningful features of the data. More broadly,
we hope this dataset will serve as a benchmark for future
work in the classification of time series.

II. PRELIMINARIES AND PROBLEM FORMULATION

We denote a d-dimensional, discrete-time, real-valued
signal as s = (s(0), s(2), ..., s(l)), where l ∈ N+ is the
length of the signal, s(τ) ∈ Rd is the value of signal s at
time τ .

A. Signal Temporal Logic

We use signal temporal logic (STL) to specify the behaviors
of time-series signals.

Definition 1: The syntax of STL formulae with linear
predicates is defined recursively as [3]:

ϕ ::= µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ♢[t1,t2]ϕ | □[t1,t2]ϕ, (1)

where µ is a predicate defined as µ := aT s(τ) ≥ b, a ∈ Rd,
b ∈ R. ϕ, ϕ1, ϕ2 are STL formulas. The Boolean operators
¬,∧,∨ are negation, conjunction and disjunction, respectively.
The temporal operators ♢,□ represent eventually and always.
♢[t1,t2]ϕ is true if ϕ is satisfied for at least one point τ ∈
[t1, t2], while □[t1,t2]ϕ is true if ϕ is satisfied for all time
points τ ∈ [t1, t2].

Definition 2: The quantitative semantics, i.e., the robust-
ness, of the STL formula ϕ over signal s at time τ is defined
as:

r(s, µ, τ) = aT s(τ)− b, (2a)
r(s,¬ϕ, τ) = −r(s, ϕ, τ), (2b)

r(s,∧Ni=1ϕi, τ) = min({r(s, ϕi, τ)}i=1:N), (2c)

r(s,∨Ni=1ϕi, τ) = max({r(s, ϕi, τ)}i=1:N), (2d)
r(s,□[t1,t2]ϕ, τ) = min

τ ′∈[τ+t1,τ+t2]
r(s, ϕ, τ ′), (2e)

r(s,♢[t1,t2]ϕ, τ) = max
τ ′∈[τ+t1,τ+t2]

r(s, ϕ, τ ′), (2f)

The signal s is said to satisfy the formula ϕ, denoted as
s |= ϕ, if r(s, ϕ, 0) > 0. Otherwise, s is said to violate ϕ,
denoted as s ̸|= ϕ.

Definition 3: The quantitative semantics in Definition 2
can be expressed in the form of indicator vectors:

r(s, µ, τ) = aT s− b, (3a)
r(s,¬ϕ, τ) = −r(s, ϕ, τ), (3b)

r(s,∧Ni=1ϕi, τ) = −f(−rc, c), (3c)

r(s,∨Ni=1ϕi, τ) = f(rd,d), (3d)
r(s,□wtϕ, τ) = −f(−rt,wt), (3e)
r(s,♢wtϕ, τ) = f(rt,wt), (3f)

where rc = stack({r(s, ϕi, τ)}i=1;N), rd = stack({r(s, ϕi,
τ)}i=1;N), rt = stack({r(s, ϕ, τ ′)}τ ′∈[0,l]). c, d and wt are
binary indicator vectors. wt =

[
wt0, ..., wti, ..., wtl

]
is based

on the time parameters in 2e, 2f. In other words, wti = 1 if
i ∈ [τ + t1, τ + t2], otherwise, wti = 0. f(r,w) = max{rs},
where rs is obtained from r using the indicator vector w
such that ri ∈ rs if wi = 1 and ri /∈ rs if wi = 0.

Definition 4 (Soundness): Let M denote an algorithm for
computing the robustness of an STL formula ϕ over signal
s. We say M is sound if M(ϕ, s) can provide a valid result
for evaluating STL satisfaction, i.e.,

s |= ϕ =⇒M(ϕ, s) > 0 (4a)
s ̸|= ϕ =⇒M(ϕ, s) ≤ 0 (4b)

B. Problem Statement

We consider a binary classification task on a labeled data
set S = {(si, ci)}Ni=1, where si ∈ Rl×d is the ith signal
labeled as ci ∈ C. C = {1,−1} is the set of classes.

Problem 1: Given S = {(si, ci)}Ni=1, find an STL formula
ϕ that minimizes the misclassification rate MCR defined as:

MCR =
|{si | (si |= ϕ ∧ ci = −1) ∨ (si ̸|= ϕ ∧ ci = 1)}|

N

C. Overview of Proposed Work

We propose a Temporal Logic Inference (TLI) method
based on neural network embedding of STL formulas. Using
our method, we can infer both the structure and parameters of
STL properties. The proposed Neural Network architecture for
TLI (NN-TLI) enables the use of high-performance training
methods and extraction of interpretable classifiers in the form
of STL formulas from networks’ weights. The NN-TLI maps
a time-series data point (a signal) s to its robustness value
of the learned formula with the sign of robustness defining
the predicted class of signal s. We restrict ourselves to an
expressive fragment of STL that allows the proposed efficient
encoding and that is easy to interpret. In the following, we
present the NN-TLI structure in Sec. III and its training
method in Sec. IV.

III. NEURAL NETWORK ARCHITECTURE

The overall architecture of NN-TLI consists of four layers.
The first layer is associated with the predicates of sub-
formulas. It takes signals as input and outputs robustness
values for all predicates at all times. The second layer takes
robustness values from the first layer and time variables as
input and applies temporal operators to generate sub-formulas.
The last two layers implement logical operators to combine
sub-formulas. In the following sections, we first introduce
the fragment of STL captured by NN-TLI formulas. Next,
we describe details of each layer of the NN-TLI architecture
and show how they implement the STL formula.

A. STL(1)

We define level-one STL, denoted by STL(1), as

ϕ := µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2,
ψ := ♢[t1,t2]ϕ|□[t1,t2]ϕ,

(5)

It is a proper fragment of STL without nested temporal
operators; it still retains rich expressivity as shown by the
following result.

Theorem 1: The STL fragment STL(1) is equal to its
Boolean closure [10].

Proof: [Sketch] It follows immediately from the dis-
tributivity properties of always and eventually with respect

t1, t2

π(s(0))

π(s(1))

...

π(s(l))

r0

r1

...

rl

g□1

g♢2

...

g□m−1

g♢m

r0

r1

...

rl

∧1

∧2

...

∧k

∨

s(0)

s(1)

s(l)

c11

cmk

d1

d2

dn

rχ

Fig. 1: The structure of NN-TLI. The temporal operators accept predicates r0, ..., rl and time variables t1, t2 as inputs. Here,
t1 and t2 are vectors containing the starting time variables and ending time variables for all temporal operators.

to Boolean operators, i.e., ♢I(ϕ1 ∨ ϕ2) = ♢Iϕ1 ∨ ♢Iϕ2,
□I(ϕ1 ∧ ϕ2) = □Iϕ1 ∧□Iϕ2, and ¬□Iϕ = ♢I¬ϕ.

Note, STL(1) captures the same fragment as DT-STL [10].
However, the representation of formulas is more compact
since we do not impose the decision tree structure with
primitive formula decision nodes.

In this work, we consider STL(1) formulas in the disjunc-
tive normal form (DNF), which can be expressed as

χ = (ψ11∧ψ12∧ ...∧ψ1p)∨ ...∨(ψn1∧ψn2∧ ...∧ψnq), (6)

where ψij := ♢[t1,t2]φij | □[t1,t2]φij , φij := µ | ¬µ. The
STL formula χ takes disjunction of n terms, p, ..., q are the
number of sub-formulas to take conjunction inside each term.

We use a matrix called conjunction-disjunction matrix M
to represent DNF in (6). The conjunction-disjunction matrix
is a binary matrix defined as:

M =

c1
c2
...

cm

 =

c11 c12 ... c1k
c21 c22 ... c2k

...
...

. . .
...

cm1 cm2 ... cmk

 ∈ {0, 1}m×k (7)

where m > n, k > max{p, ..., q}. ci is the indicator vector
in (3c). We can define the indicator vector d in (3d) based
on M as:

d =
[
d1, d2, ..., dm

]T
di =

{
0 if ci = 0,

1 otherwise.

(8)

The STL(1) formula can be easily constructed from the
conjunction-disjunction matrix. For example, we learn 5
sub-formulas ϕ1, ϕ2, ϕ3, ϕ4, ϕ5 and a conjunction-disjunction

matrix M =

1 1 0 0 0
0 1 1 1 0
0 0 0 0 0

, then the final STL(1)

formula is ψ = (ϕ1 ∧ ϕ2) ∨ (ϕ2 ∧ ϕ3 ∧ ϕ4). The architecture
of NN-TLI in the form of (6) is shown in Fig 1.

Theorem 2: A logical formula can be converted into an
equivalent DNF. [23]

Remark 1: The maximum size of the template is fixed,
whereas the exact size of the template is free to learn.

Remark 2: All level-one STL formulae can be encoded in
an NN-TLI of sufficient size.

B. First layer: Spatial Predicates

The first layer generates the predicates in the form:

µ = π(s(τ)) = aT s(τ)− b, (9)

where a or −a is an element of the standard basis of the
space Rd, b ∈ R. Note that a is fixed, and b is a variable. The
output of π(s(τ)) is the axis-aligned quantitative satisfaction
of signal s at time τ .

C. Second and third layer: temporal and logical operators

The second layer has 2 types of temporal operators,
”eventually” ♢[t1,t2] and ”always” □[t1,t2], where the time
variables t1, t2 are learned from data. The third layer includes
2 types of logical operators, conjunction ∧ and disjunction
∨. The quantitative semantics of these four operators are
defined in (2). However, (2c), (2d) are not differentiable with
respect to time variables t1, t2. Moreover, the gradient of
the min/max function in (2) is zero everywhere except for
the min/max point, thus, the neural network does not learn
through the back-propagation.

In this paper, we propose a novel definition of robustness
for operators □[t1,t2],♢[t1,t2],∧,∨; which are differentiable
with respect to variables t1, t2 and s. The activation functions
are defined as:

g□(r, t1, t2; η, β, h) = −F (−r, ft(t1, t2; η);β, h), (10a)

g♢(r, t1, t2; η, β, h) = F (r, ft(t1, t2; η);β, h), (10b)
g∧(r, cg;β, h) = −F (−r, p(cg);β, h), (10c)
g∨(r,d;β, h) = F (r,d;β, h), (10d)

where η, β, h are hyperparameters, F (·) is the sparse softmax
function (See III-D), ft(·) is the time function (See III-E), cg

and d are vectors from conjunction-disjunction gate matrix
(See III-F) and p(·) is the gate function (See III-F).

In the following sections, we will introduce details of the
operator layers and provide rigorous soundness analysis for
the proposed STL robustness.

D. Sparse softmax function

Since the standard robustness computation in Definition 2
including max and min is non-smooth and not differentiable,
the alternative solution is to use softmax for the approxima-
tion:

s(r,w;β) =

∑l
i=0 riwie

βri∑l
i=0 wieβri

=

l∑
i=0

riq
s
i , (11)

where r is an input vector, w is a weight vector, qsi =
wie

βri∑l
i=0 wieβri

. This function can also be used to approxi-

mate min by simply replacing the eβri with e−βri . Such
a calculation has been applied as activation functions of
temporal-logic-based neural networks in [16], [18]. However,
the softmax approximation always introduces errors in the
estimated robustness. As a result, soundness properties of STL
robustness might not be guaranteed [3], leading to inaccurate
results and erroneous STL interpretation. For example, for
a learned STL formula ϕ, the true robustness computed
from (2) given a signal s is r(s, ϕ) and the approximated
robustness using softmax function is r̃(s, ϕ). It is possible
to have r(s, ϕ) < 0 while r̃(s, ϕ) > 0, then the learned STL
formula cannot interpret the property of signal s correctly
since s ̸|= ϕ.

To address the issue, we present sparse softmax function
that can approximate the maximum of the subset of elements,
while still guaranteeing STL soundness properties. Our
sparse softmax function F (r,w;β, h) is defined through the
following sequence of operations:

r′i = riwi (12a)

rim =

{
|maxi(r

′
i)| if |maxi(r

′
i)| ≠ 0,

1 otherwise.
(12b)

r′′i =
hr′i
rim

, (12c)

qi =
eβr

′′
i∑

i e
βr′′i

, (12d)

F (r,w;β, h) =

∑l
i=0 riwiqi∑l
i=0 wiqi

=

l∑
i=0

riq
F
i , (12e)

where h ∈ R+ and β ∈ R are hyperparameters, qFi =
wiqi∑n
i=1 wiqi

, r contains elements to take for maximum, w is
the binary indicator vector defined in Definition 3, from which
we can obtain a subset of elements in r.

The approximated maximum F (r,w;β, h) in (12e) is the
weighted sum of r′is. We first select the elements to take
for maximum by zeroing out ri if wi = 0 in (12a). Next,
we scale r′i to r′′i in (12c). We transform the result into a
probability max function q in (12d).

Proposition 1: The sparse softmax function F (r,w;β, h)
defined in (12) is sound, i.e.,

f(r,w) ≤ 0 =⇒ F (r,w;β, h) ≤ 0, (13a)
f(r,w) > 0 =⇒ F (r,w;β, h) > 0, (13b)

−f(−r,w) ≤ 0 =⇒ −F (−r,w;β, h) ≤ 0, (13c)
−f(−r,w) > 0 =⇒ −F (−r,w;β, h) > 0, (13d)

if the hyperparameters β, h satisfies heβh > le−1

β , where
r ∈ Rl+1. f(r,w) is defined in (3).

Proof: First, note that qi is always positive and wi is
always non-negative. If w is a zero vector, from the property
of indicator vector, f(r,w) is an empty set, the robustness
is meaningless. Thus, we only focus on the cases when w is
a non-zero vector, then the denominator in (12e)

∑l
i=0 wiqi

is always positive.

We start from case (13a), from LHS, riwi ≤ 0, ∀i ∈ [0, l],
then from (12e), F (r,w;β, h) ≤ 0 is derived. Similarly, for
case (13d), from LHS, riwi ≥ 0, ∀i ∈ [0, l] and rjwj > 0,
∃j ∈ [0, l], from (12e), F (r,w;β, h) > 0 is derived.

For case (13b), we know that
∑l

i=0 wiqi > 0, from
(12e), we need

∑l
i=0 riwiqi > 0 to achieve soundness. Let

k = argmaxi riwi, from LHS of (13b), rkwk > 0, then
rk > 0, wk = 1. Since h

rim
is positive,

∑l
i=0 riwiqi >

0 ⇐⇒
∑l

i=0
hriwi

rim
qi ⇐⇒

∑l
i=0 r

′′
i qi > 0. We can get

r′′k = h from (12c),
∑l

i=0 r
′′
i qi = r′′kqk +

∑l
i=0,i̸=k r

′′
i qi =

r′′k eβr′′k +
∑l

i=0,i ̸=k r′′i eβr′′i∑l
i=0 eβr′′

i
. Since

∑l
i=0 e

βr′′i > 0, we need

r′′ke
βr′′k +

∑l
i=0,i̸=k r

′′
i e

βr′′i > 0 to achieve soundness. The
minimum of function g(x) = xeβx is − e−1

β , thus the

minimum value of r′′i e
βr′′i is − e−1

β , we have r′′ke
βr′′k +∑l

i=0,i̸=k r
′′
i e

βr′′i ≥ heβh − le−1

β > 0.

The proof for (13c) can be derived from case (13b) by
multiplying −1 on both sides of (13c) and replacing ri with
−ri in (13b).

Example 1: Let a signal s = 2, 1.1, 1, 0,−1. Consider
the specification ϕ = ♢[1,4](s > 1). The indicator vector
w =

[
0 1 1 1 1

]
from the time interval [1, 4]. The

sequence of robustness values of predicate µ = s − 1 is
r =

[
1 0.1 0 −1 −2

]
. The true robustness computed

from (2) is r(s, ϕ) = 0.1 > 0. Choosing β = 1, the
approximated robustness computed from traditional softmax
function in (11) is

s(r,w;β) =

4∑
i=1

xiq
s
i = −0.202 < 0 (14)

where qs =
[
0 0.43 0.38 0.14 0.05

]
.

The approximated robustness using our sparse softmax

function in (12) is

r′ =
[
0 0.1 0 −1 −2

]
,

r′′ =
[
0 1 0 −10 −20

]
,

qF =
[
0 0.73 0.27 1.2 · 10−5 5.5 · 10−10

]
F (r,w;β, h) =

l−1∑
i=0

xiq
F
i = 0.073 > 0,

(15)
with h = 1 to satisfy heβh > 4e−1

β . With the temporal
information from indicator vector w and the rescaling from
eqs. (12a) to (12c), our sparse softmax function can provide
valid robustness while the traditional softmax function cannot.
When it comes to classification, the algorithm using traditional
softmax function will classify the signal s as label −1,
whereas the signal s satisfies ϕ.

We can take advantage of the sparse softmax function from
the following aspects:

1) Soundness guarantees allow the learned STL formula of
NN-TLI to provide valid results, thus can improve the
accuracy and interpretability of the learned STL formula
for classifying time-series data.

2) The function is able to approximate the maxi-
mum/minimum of a subset of elements.

3) The function is differentiable and enables the application
of off-the-shelf machine learning tools. We can take
advantage of their large collection of optimization tools
and accelerate the training process by parallelizing
training.

E. Time function

Learning the time interval of an STL formula can be
challenging since the number of parameters of indicator vector
wt in (3) is linear in the length of the signal, despite the fact
that an interval is always specified by time indices. Moreover,
learning the independent time weight might produce multiple
time windows for one temporal operator, making it hard to
construct the final STL formula. Previous works used fixed
time windows [16], [18] or an autoencoder [20] to predict a
time interval for every signal; in the latter, the time window
(and hence the final formula) will, in general, differ on the
signal.

We propose a differentiable and efficient time function
to generate a binary indicator vector, called time vector, to
encode the time interval [t1, t2]. This time function can be
considered as a smooth indicator function and only requires
two parameters t1, t2 regardless of the length of the signal.
The time function ft is defined as:

ft(t1, t2; η)

=
1

η
min

((
ReLU(n− 1(t1 − η))− ReLU(n− 1t1)

)
,(

ReLU(−n+ 1(t2 + η))− ReLU(−n+ 1t2)
))
,

(16)

where

ReLU(x) =

{
x, if x > 0,

0, otherwise.
(17)

and n =
[
0, 1, ..., l

]
is a fixed vector containing l + 1

consecutive integers from 0 to l, 1 ∈ Rl+1, l is the length
of the signal, η ∈ {R − {0}} is a hyperparameter tuned for
the slope of the time function and can be used to adjust the
learning rate of the time function (see Fig 2 for an illustration).

The output of the time function can be used as an indicator
vector in (3e) and (3f):

wt = [w0, w1, ..., wl] ∈ Rl+1 (18)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Fig. 2: Time function with different η for a signal of length
12 with t1 = 4 and t2 = 8.

F. Activation Functions for Logical Operator

In this section, we discuss in detail the activation functions
(10c), (10d), the conjunction-disjunction gate matrix Mg and
the gate function p(·).

The conjunction-disjunction gate matrix Mg is a real-
valued matrix defined as:

Mg =

cg1
cg2
...

cgm

 =

cg11 cg12 ... cg1k
cg21 cg22 ... cg2k

...
...

. . .
...

cgm1 cgm2 ... cgmk

 ∈ Rm×k (19)

where m is the maximum number of terms of the learned
STL formula in DNF, k is the maximum number of temporal
operators.

We introduce the real-valued matrix Mg to generate the
binary conjunction-disjunction matrix M in (7). To obtain
the binary matrix M , the method from [24] is employed. We
introduce cgij as variables drawn from a Bernoulli distribution.
We consider cij as gate variables sampled from the Bernoulli
random variables cgij . The Bernoulli function is defined as:

bernoulli(cgij) =

{
1 if 0.5 ≤ cgij ≤ 1,

0 if 0 ≤ cgij < 0.5.
(20)

We learn the real-valued variables cgij instead of learning the
binary weight variables cij . We estimate the gradient of step
c ∼ bernoulli(cg) using the straight-through estimator [25].

To guarantee c falls in [0, 1], we pass c through a clip function
after performing the optimizer step. The clip function is:

clip(c) =

1 if c ≥ 1,

0 if c ≤ 0,

c otherwise.
(21)

The gate function p(cg) is defined as:

p(cg) = bernoulli(clip(cg)), (22)

which can be used to obtain the indicator vectors ci, i =
1, ...,m in (7):

ci = p(cgi) (23)

We can learn the logical operators by simply learning the
variables of the conjunction-disjunction gate matrix Mg . The
complexity of the neural network scales linearly with the
number of temporal operators, and also linearly with the
number of ”disjunction” logical operators. The NN-TLI can
efficiently learn highly complex STL formulas.

IV. LEARNING OF NN-TLI

We use Pytorch to build the NN-TLI and perform the back-
propagation. The code can be found at https://github.
com/danyangl6/NN-TLI.

A. Loss function

We label the two sets of data as 1 and -1, respectively.
The purpose of the learning process is to minimize the loss
function is defined as:

l = e−yrχ , (24)

where y is the label of the data, rχ is the robustness degree
of the learned STL formula.

B. Formula simplification

To obtain a compact STL formula, we introduce a method
to post-process the conjunction-disjunction matrix M after
the training procedure. The formula simplification algorithm
is shown in Algorithm 1. By leveraging this method, we can
remove the redundant sub-formulas from the STL formula
and extract the meaningful features of the data.

V. CASE STUDY

In this section, we first introduce a synthetic dataset
containing general behaviors under autonomous driving
scenarios. We use our proposed NN-TLI to classify these
behaviors and interpret the characteristic from the learned
STL formula. We compare our method with [18] to show the
benefits of our sparse softmax function. We also experiment
on a dataset of naval surveillance scenarios from [9] and
compare the results with existing methods [9], [12] in the
sense of MCR, efficiency, and interpretability.

Algorithm 1 Formula Simplification Algorithm
Require: The conjunction-disjunction matrix M , number of

terms m, number of temporal operators k, the misclassi-
fication rate MCR using M .

Ensure: Sparse conjunction-disjunction matrix M̃ .
1: M̃ ←M
2: for i = 1, 2, ...,m do
3: for j = 1, 2, ..., k do
4: M ′ ← M̃
5: M ′

ij ← 0
6: Compute the new misclassification rate MCR′

using M ′.
7: if MCR′ =MCR then
8: M̃ ←M ′

9: end if
10: end for
11: end for

A. Autonomous driving scanarios

We include six kinds of driving behaviors in three scenarios
in the driving scenario’s dataset. The signals are 2-dimensional
trajectories shown in Fig 3. In scenario 1, ”Go Forward”
vehicle keep going straight; ”Stop and Go” vehicle stop at the
stop sign for three time points and then go straight. In scenario
2, the vehicles first go forward, then make a left turn and enter
either lane 1 or lane 2. In scenario 3, ”Switch Lane” vehicles
first go forward in lane 1, then switch to lane 2 and end up
driving in lane 2, ”Overtake” vehicles initially go forward in
lane 1, then enter lane 2, drive back to lane 1 and end up
driving in lane 1. The autonomous vehicle is considered to
start at a random initial position with random velocities. For
each kind of behavior, we generate 2000 samples of length
40. The code for generating the dataset can be found here
https://github.com/danyangl6/NN-TLI.

We use the proposed NN-TLI to classify between two
combinations of these six behaviors, that is 30 test cases
in total. We compare our NN-TLI with the network using
activation functions based on the traditional softmax function.
We call it soft-NN for short reference. The parameter β in
activation functions is the same for both methods. We evaluate
these methods based on MCR and computation time. The
results are shown in Fig 4. The blue and red points with error
bar represent MCR of NN-TLI and soft-NN, respectively,
which indicates that compared to soft-NN, the proposed NN-
TLI can reach a lower mean MCR in a shorter time, thanks
to its soundness. The proposed NN-TLI is relatively stable,
with 10% difference between the maximum and minimum
MCR, as opposed to the 50% of soft-NN.

It is worth noting that temporal property is not necessary
when classifying some of the behaviors. For example, we can
classify ”Go forward” vs ”Turn left to lane 1” with a fixed
time interval [0, 40]. To address this, we intentionally pick the
results between behaviors requiring temporal characteristics
to classify, e.g. ”Go Forward” vs ”Stop and Go”. The results
are also shown in Fig 4. The green and magenta points

https://github.com/danyangl6/NN-TLI
https://github.com/danyangl6/NN-TLI
https://github.com/danyangl6/NN-TLI

STOP

𝑥

𝑦

(a) ”Go Forward” and ”Stop and Go”
𝑥

𝑦

Lane 1

Lane 2

(b) ”Left turn to lane 1” and ”Left Turn to lane 2”
𝑥

𝑦

Lane 1Lane 2

(c) ”Switch Lane” and ”Overtake”

Fig. 3: Examples of driving behaviors. The blue trajectories in (a), (b), (c) represent ”Go Forward”, ”Left turn to lane 1”
and ”Switch Lane”, respectively. The orange trajectories in (a), (b), (c) represent ”Stop and Go”, ”Left Turn to lane 2” and
”Overtake”, respectively.

0 5 10 15 20 25 30
time(s)

0

0.2

0.4

0.6

0.8

1

M
C

R

NN-TLI, all behaviors
NN-TLI, temporal behaviors
soft-NN, all behaviors
soft-NN, temporal behaviors

Fig. 4: Result comparisons between baselines NN-TLI and
soft-NN. Blue and green points represent the mean MCR of
NN-TLI. Red and magenta points represent the mean MCR
of soft-NN. The error bars represent the highest and lowest
MCR for each case.

with error bar represent MCR of NN-TLI and soft-NN,
respectively. The results show that the mean MCR of soft-
NN dramatically increases when classifying these behaviors
since the traditional softmax function is not able to properly
approximate the maximum within the specified time interval.

We can straightforwardly interpret the property of the data
from the STL formula learned by NN-TLI. For example, the
learned formula to classify ”Go forward” and ”Overtake”
with lane 1 between [−2, 2] and lane 2 between [−6,−2] is

□[0,39](x > −1.97) (25)

We can describe the property of ”Go forward” as ”the vehicle
always stays at lane 1 for all time.”

B. Naval surveillance scenario

To compare with the existing interpretable classification
methods [9], [12], we conduct experiments on the naval

Open
sea

Island

Harbor

Fig. 5: Naval surveillance scenario

surveillance scenario dataset from their paper. The naval
dataset is consisting of 2-dimensional trajectories representing
various vessel behaviors. As shown in Fig 5, the green
trajectories are normal behaviors, labeled as ”1”, representing
vessels from the open sea and heading directly to the harbor.
The blue and red trajectories are abnormal trajectories, labeled
as ”-1”. The blue trajectories show vessels veering to the
island and the red trajectories show vessels returning to the
open sea after approaching island. We use our proposed
NN-TLI to classify normal and abnormal behaviors and
compare with the results from boosted concise decision tree
method(BCDT) [12] and online learning method [9].

We provide the learned STL formula from our NN-TLI and
methods from [9], [12] in Table I. The learned STL formula
from our NN-TLI is

□[9,14](y > 23.37) ∧ ♢[60,60](x < 27.96) (26)

We can explain the characteristic of normal vessel behaviors
with human language using (26): The vessels eventually reach
the harbor in the end and always do not reach the island
between 9 seconds and 14 seconds. The learned STL formula
of NN-TLI is solid while compact. We compare the time

TABLE I: Comparison results between NN-TLI and other interpretable classification methods

Method MCR Time(min) STL formula

NN-TLI 0.0000 0.2 □[9,14](y > 23.37) ∧ ♢[60,60](x < 27.96)
soft-NN 0.0075 1.43 □[0,15](y > 23.72) ∧ ♢[60,60](x < 20.23)

BCDT 0.0100 33 ♢[28,53](x ≤ 30.85) ∧ □[2,26]((y > 21.31) ∧ (x > 11.10))
On-line learning 0.0885 16 ♢[0,38](□[21,27](y > 19.88) ∧ □[11,36](x < 34.08))

to reach the lowest MCR during the learning procedure, as
shown in Table I. The proposed NN-TLI can reach 0% MCR
at 12 seconds, which is 150× faster than boosted concise
decision tree method in [12] and 80× faster than on-line
learning algorithm in [9], which only reach 8.85% MCR.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present an interpretable neural network
to classify time-series data, which can be directly translated
into an STL formula. By leveraging the novel activation
functions, we can easily learn the STL formula from scratch
using off-the-shelf machine learning tools while guaranteeing
soundness. We demonstrate that our proposed method can in-
terpret the properties of data with high computation efficiency
and accuracy on a synthesis dataset based on autonomous
driving scenarios and a naval scenarios dataset. In the future,
we would like to extend this framework to represent more
complicated properties of time-series data.

REFERENCES

[1] U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, M. Adam, A. Gertych,
and R. San Tan, “A deep convolutional neural network model to classify
heartbeats,” Computers in biology and medicine, vol. 89, pp. 389–396,
2017.

[2] D. Tang, B. Qin, and T. Liu, “Document modeling with gated recurrent
neural network for sentiment classification,” in Proceedings of the 2015
conference on empirical methods in natural language processing, 2015,
pp. 1422–1432.

[3] O. Maler and D. Nickovic, “Monitoring temporal properties of
continuous signals,” in Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[4] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in 53rd IEEE Conference on Decision
and Control. IEEE, 2014, pp. 81–87.

[5] M. Ma, J. Gao, L. Feng, and J. Stankovic, “Stlnet: Signal temporal
logic enforced multivariate recurrent neural networks,” Advances in
Neural Information Processing Systems, vol. 33, pp. 14 604–14 614,
2020.

[6] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining
requirements from closed-loop control models,” in Proceedings of
the 16th international conference on Hybrid systems: computation and
control, 2013, pp. 43–52.

[7] A. Bakhirkin, T. Ferrère, and O. Maler, “Efficient parametric identifi-
cation for stl,” in Proceedings of the 21st International Conference on
Hybrid Systems: Computation and Control (part of CPS Week), 2018,
pp. 177–186.

[8] B. Hoxha, A. Dokhanchi, and G. Fainekos, “Mining parametric
temporal logic properties in model-based design for cyber-physical
systems,” International Journal on Software Tools for Technology
Transfer, vol. 20, no. 1, pp. 79–93, 2018.

[9] Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning and
detection of anomalous behavior,” IEEE Transactions on Automatic
Control, vol. 62, no. 3, pp. 1210–1222, 2016.

[10] G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A
decision tree approach to data classification using signal temporal
logic,” in Proceedings of the 19th International Conference on Hybrid
Systems: Computation and Control, 2016, pp. 1–10.

[11] S. Mohammadinejad, J. V. Deshmukh, A. G. Puranic, M. Vazquez-
Chanlatte, and A. Donzé, “Interpretable classification of time-series
data using efficient enumerative techniques,” in Proceedings of the
23rd International Conference on Hybrid Systems: Computation and
Control, 2020, pp. 1–10.

[12] E. Aasi, C. I. Vasile, M. Bahreinian, and C. Belta, “Classification
of time-series data using boosted decision trees,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2022, pp. 1263–1268.

[13] J.-R. Gaglione, D. Neider, R. Roy, U. Topcu, and Z. Xu, “Maxsat-based
temporal logic inference from noisy data,” Innovations in Systems and
Software Engineering, vol. 18, no. 3, pp. 427–442, 2022.

[14] T. Rocktäschel and S. Riedel, “End-to-end differentiable proving,”
Advances in neural information processing systems, vol. 30, 2017.

[15] F. Yang, Z. Yang, and W. W. Cohen, “Differentiable learning of logical
rules for knowledge base reasoning,” Advances in neural information
processing systems, vol. 30, 2017.

[16] K. Leung, N. Aréchiga, and M. Pavone, “Back-propagation through
signal temporal logic specifications: Infusing logical structure into
gradient-based methods,” in International Workshop on the Algorithmic
Foundations of Robotics. Springer, 2020, pp. 432–449.

[17] A. Ketenci and E. A. Gol, “Learning parameters of ptstl formulas with
backpropagation,” in 2020 28th Signal Processing and Communications
Applications Conference (SIU). IEEE, 2020, pp. 1–4.

[18] R. Yan and A. Julius, “Neural network for weighted signal temporal
logic,” arXiv preprint arXiv:2104.05435, 2021.

[19] N. Baharisangari, K. Hirota, R. Yan, A. Julius, and Z. Xu, “Weighted
graph-based signal temporal logic inference using neural networks,”
IEEE Control Systems Letters, vol. 6, pp. 2096–2101, 2021.

[20] G. Chen, Y. Lu, R. Su, and Z. Kong, “Interpretable fault diagnosis of
rolling element bearings with temporal logic neural network,” arXiv
preprint arXiv:2204.07579, 2022.

[21] N. Mehdipour, C.-I. Vasile, and C. Belta, “Arithmetic-geometric mean
robustness for control from signal temporal logic specifications,” in
2019 American Control Conference (ACC). IEEE, 2019, pp. 1690–
1695.

[22] ——, “Specifying user preferences using weighted signal temporal
logic,” IEEE Control Systems Letters, vol. 5, no. 6, pp. 2006–2011,
2021.

[23] B. A. Davey and H. A. Priestley, Introduction to lattices and order.
Cambridge university press, 2002.

[24] S. Srinivas, A. Subramanya, and R. Venkatesh Babu, “Training sparse
neural networks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, 2017, pp. 138–145.

[25] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,”
arXiv preprint arXiv:1308.3432, 2013.

	INTRODUCTION
	Preliminaries and Problem Formulation
	Signal Temporal Logic
	Problem Statement
	Overview of Proposed Work

	Neural Network Architecture
	STL(1)
	First layer: Spatial Predicates
	Second and third layer: temporal and logical operators
	Sparse softmax function
	Time function
	Activation Functions for Logical Operator

	LEARNING OF NN-TLI
	Loss function
	Formula simplification

	Case study
	Autonomous driving scanarios
	Naval surveillance scenario

	CONCLUSIONS AND FUTURE WORK
	References

