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Abstract— This paper explores continuous-time control
synthesis for target-driven navigation to satisfy complex high-
level tasks expressed in linear temporal logic (LTL). We propose
a model-free framework using deep reinforcement learning
(DRL) where the underlying dynamical system is unknown (an
opaque box). Unlike prior work, we consider scenarios where
the given LTL specification might be infeasible and therefore
cannot be accomplished globally. Instead of modifying the given
LTL formula, we provide a general DRL-based approach to
satisfy it with minimal violation. To do this, we transform
a previously multi-objective DRL problem, which requires
simultaneous automata satisfaction and minimum violation
cost, into a single objective. By guiding the DRL agent with
a sampling-based path planning algorithm for the potentially
infeasible LTL task, the proposed approach mitigates the myopic
tendencies of DRL, which are often an issue when learning
general LTL tasks that can have long or infinite horizons. This
is achieved by decomposing an infeasible LTL formula into
several reach-avoid sub-tasks with shorter horizons, which can
be learned in a modular DRL architecture. Furthermore, we
overcome the challenge of the exploration process for DRL
in cluttered environments by using path planners to design
rewards that are dense in the configuration space. The benefits
of the presented approach are demonstrated through testing on
various complex nonlinear systems and compared with state-
of-the-art baselines. The video demonstration can be found
here: https://youtu.be/DqesqBsja9k.

I. INTRODUCTION

Autonomous agents operating in complex environments
must often accomplish high-level tasks while subject to
various uncertainties. Possible uncertainties include dense
obstacles or targets, and impassable or unexpected terrain.
Additionally, a principled analytical model of the robot is
typically (partially) unknown or hard to obtain. Motivated by
these challenges, this work investigates model-free control of
an autonomous system for satisfying a potentially infeasible
high-level task with minimal violation while operating in a
complex cluttered environment.

In the field of model-free navigation control, Reinforcement
Learning (RL) is a popular unsupervised technique that
optimizes long-term expected rewards to learn desired
behaviors [1]. Recently, Deep Reinforcement Learning (DRL)
techniques, such as the actor-critic method [2], have been
shown to be capable of learning continuous controllers for
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unknown (opaque-box) dynamics.To investigate complex
navigation tasks, Linear Temporal Logic (LTL) is a
formal language that has gained attention in recent
years for expressing high-level, interpretable robotics tasks.
Specifications have been shown to be effective at directing
RL agents to learn desired policies. Typically, a discrete
robot system is abstracted as a discrete Markov Decision
Process (MDP) model and composed with an automaton
representing the desired LTL formula to create a product
automaton for learning or planning [3]–[5]. For general
continuous control subject to LTL satisfaction over infinite
horizons, prior works [6], [7] proposed a modular architecture
by decomposing the task into sub-tasks using automata
states. Crucially, to our knowledge, no previous work has
investigated infeasible LTL tasks for continuous control. In
this work, we focus on the problem jointly including two
aspects: infeasible LTL tasks and cluttered environments using
DRL for model-free continuous control.

Related works: Minimum violation of LTL specifications
over finite horizons has been considered in [8]–[13]
using sampling-based methods, graph-based optimization
algorithms, and dynamic programming to solve the
corresponding motion planning problem. For LTL
specifications over infinite horizons, general violation
measurements are proposed in [14] by quantitatively revising
LTL automata. The approaches are applied in [15], [16],
where they build product structures and encode potentially
conflicting parts of a specification as a soft constraint.
However, the prior literature generally assumes known
dynamical systems with abstracted navigation controllers and
only focuses on motion planning problems [8]–[11], [13],
[15]. Our work improves on this by directly synthesizing a
low-level controller for unknown dynamics in a model-free
manner that minimally violate LTL satisfaction over both
finite and infinite horizons.

Previous work [17], [18] has tackled RL while considering
infeasible tasks in discrete state-action spaces. In particular,
authors in [17] account for the infeasible solution case by
visiting the automaton accepting sets as much as possible
(if at all). But many LTL formulas only have one accepting
state and this strategy often fails to generalize to those cases.
The learning objectives in [18] ensure satisfaction of the
automata acceptance condition and, thus, LTL formulae, and
reduce the violation cost, resulting in a multi-objective RL
(MORL) problem. However, providing minimum-violation
performance guarantees for MORL continues to be an open
problem [19].

Commonly in the literature for navigation in cluttered
environments, motion planning algorithms are first used to
find possible paths, and then path-tracking controllers are
employed to follow that path [20]–[22]. This approach
decomposes into a goal-reaching control problem and can
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be easily adapted for LTL satisfaction [23], [24]. Classic
approaches however require known dynamic models and
may be computationally expensive for nonlinear and high-
dimensional systems. This fundamentally motivates our focus
on employing model-free control techniques.
Contributions: In this paper, we translate the MORL problem
first analyzed in [18] into a standard DRL problem and apply
model-free geometric motion planning to guide the learning
process. The generated trajectories are shown to minimally
violate a given infeasible LTL specification. By learning
a controller to reach waypoints in a geometric path, our
approach automatically obtains an optimal control policy
for minimally-violating the infeasible LTL task specification.
This paper’s main contributions are: (i) To the best of
our knowledge, this is the first model-free learning-based
continuous control for potentially infeasible LTL satisfaction
with minimum-violation objectives. Such objectives facilitate
meaningful action for infeasible LTL tasks, and the framework
also generalizes discrete systems; (ii) Our framework can learn
continuous control in cluttered environments and mitigates the
myopic tendencies of DRL by decomposing the global task
into sub-tasks, which can be trained compositionally; (iii) We
demonstrate the benefits by comparing with several baselines
in two nonlinear systems: a Dubins car and quadrotor.

II. PRELIMINARIES

Agent: We consider the general evolution of a continuous-
time dynamical system S that is assumed to be unknown,
starting from an initial state s0 ∈ S0 is given by

ṡ = f (s, a) , (1)

where s ∈ S ⊆ Rn is the state vector in the compact set S,
a ∈ A ⊆ Rm is the control input. We assume the flow field
f : Rn × Rm → Rn is uniformly continuous in time and
Lipschitz continuous in s for fixed a. Under these assumptions
there exists a unique solution of S for a given a, providing
trajectories of the system [25].

Definition 1. For a robot operating in an environment Env,
the geometric workspace can be represented by a compact
subset X ⊂ Rd, d ∈ {2, 3}. The relation between dynamics S
and workspace X is defined by the projection Proj : S � X .

The space X contains regions of interest that are labeled by
a set of atomic propositions AP , with the labeling function
LX : X � 2AP . Let L : S � 2AP be a labeling function
over S i.e., L(s) = LX(Proj(s)).
Reinforcement Learning: The interactions between a robot
with dynamics S and an environment Env can be captured
as a continuous-labeled Markov Decision Process (cl-MDP).
A cl-MDP is a tuple M = (S, S0, A, pS , R, γ, L), where
S ⊆ Rn is a continuous state space, S0 is a set of initial
states, A ⊆ Rm is a continuous action space, and pS
captures the unknown system dynamics as a distribution.
The distribution pS : B (Rn) × A × S � [0, 1] is a Borel-
measurable conditional transition kernel, s.t. pS ( ·| s, a) is a
probability measure of the next state given current s ∈ S and
a ∈ A over the Borel space (Rn,B (Rn)), where B (Rn) is
the set of all Borel sets on Rn. R : S × A × S � R is the
reward function, and γ ∈ (0, 1) is the discount factor. L is
the labeling function in Def. 1.

Since the dynamics S are an opaque-box, the transition
relation pS ( ·| s, a) for any state-action pair is unknown.

Actor-critic RL algorithms [2] have been demonstrated as
promising tools to solve continuous-control problems for
the cl-MDP model, where each valid transition of cl-MDP
follows f defined in (1) that is zero-order hold model for a
continuous-time action.
Remark 1. Note it’s intractable to explicitly construct the cl-
MDP model with continuous state and action space to apply
standard model-checking algorithm [26]. Inspired by prior
work [6], we track it on-the-fly vie a deep neural network.

Let Π denote the set of all policies for a cl-MDP, and
π ∈ Π denote a stochastic policy π : S × A � [0, 1], that
maps states to distributions over actions. The objective is to
learn an optimal policy π∗(a|s) that maximizes the expected

discounted return J(π) = Eπ

[ ∞∑
k=0

γk ·R(sk, ak, sk+1)

]
.

Linear Temporal Logic (LTL): LTL is a formal language
to describe complex properties and high-level specifications
of a system. LTL formulae are built inductively from atomic
propositions by applying Boolean and temporal operators to
subformulae. The syntax in Backus-Naur form is given by:

ϕ ::= ⊤ | µ | ϕ1 ∧ ϕ2 | ¬ϕ1 | #ϕ | ϕ1Uϕ2 | ♢ϕ | □ϕ,

where µ ∈ AP is an atomic proposition, true ⊤, negation
¬, and conjunction ∧ are propositional logic operators, and
next # and until U are temporal operators [26]. Alongside
the standard operators introduced above, other propositional
logic operators, such as false, disjunction ∨, and implication
→, and temporal operators, such as always □ and eventually
♢, are derived from the standard operators.

The semantics of an LTL formula are interpreted over
words, where a word is an infinite (continuous) sequence
o = o0o1 . . ., with oi ∈ 2AP for all i ≥ 0, where 2AP

represents the power set of AP . The satisfaction of an LTL
formula ϕ by the word o is denoted o |= ϕ. The detailed
semantics of LTL can be found in [26]. In this paper, we
are interested in continuous-time control policies. The next
operator is not always meaningful since it may require an
immediate execution switch in the synthesized plans space.
We can either exclude the next operator as is common in
related work [23] or properly design practical LTL tasks [6]
in continuous scenarios.

III. PROBLEM FORMULATION

Consider a cl-MDP M = (S, S0, A, pS , R, γ, L). The
induced path under a policy π over M is sπ∞ =
s0 . . . sisi+1 . . ., where pS(si+1|si, ai) > 0 if π(ai|si) > 0.

We extend the labeling function to traces such that
L (sπ∞) = o0o1 . . . is the sequence of labels associated with
sπ∞. We denote the satisfaction relation of the induced trace
with respect to ϕ by L(sπ∞) |= ϕ. The probability of satisfying
ϕ under the policy π, starting from an initial state s0 ∈ S0,
is defined as

Pr πM (ϕ) = Pr πM (L(sπ∞) |= ϕ
∣∣ sπ∞ ∈ Sπ

∞),

where Sπ
∞ is the set of admissible paths from the initial state

s0, under the policy π [26].
Definition 2. Given a cl-MDP M, an LTL task ϕ is fully
feasible if and only if there exists a policy π s.t. Pr πM (ϕ) > 0.

Note that according to Def. 2, an infeasible case means no
policy exists that satisfies the task, which can be interpreted
as Pr πM (ϕ) = 0,∀π ∈ Π.
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Fig. 1. The figure shows the example described in Example 1, where the
given LTL task is infeasible since some regions of interest, e.g., G3,G4 of
(a). (a) The illustration that learning navigation using DRL is challenging in
complex cluttered environments. (b) Demonstration of the effective design
reward in Section IV-C.

Definition 3. Given a cl-MDP M, the expected discounted
violation cost with respect to a given LTL task ϕ under the
policy π is defined as

JV (Mπ, ϕ) = Eπ

[
∞∑

k=0

cV (si, ai, si+1, ϕ)

]
, (2)

where cV (s, a, s
′, ϕ) is formally defined in Def. 8 as the

violation cost of a transition (s, a, s′) with respect to ϕ, and
ai is the action generated based on the policy π(si).

Problem 1. Given a robot with unknown dynamics S in
an Env with workspace X containing regions of interest, a
navigation task in the form of an LTL task ϕ over AP , their
interactions can be captured as a cl-MDP. The DRL objective
is to find an optimal policy π∗ with the following capabilities:
(i) if ϕ is feasible, Pr π

∗

M (ϕ) > 0; (ii) if ϕ is infeasible s.t.
Pr πM (ϕ) = 0,∀π ∈ Π, satisfy ϕ with minimum violation
cost via minimizing JV (Mπ, ϕ).
Example 1. In Fig. 1, consider an autonomous vehicle
with unknown dynamics deployed in a complex, cluttered
environment containing a set of labeled goal regions,
APG = {G1,G2, . . . ,G5}, and labeled obstacles O.
The LTL specification is given by ϕ = □¬O ∧
□((♢G1 ∧ ♢(G2 ∧ ♢. . . ∧ ♢G5)). We observe that some goal
regions are surrounded by obstacles such that ϕ is infeasible.

For LTL specifications, discrete goal-reaching may enable
the automaton transitions, which is one requirement to receive
sparse automata-based rewards [6], [27]. However, in cluttered
environments such as those depicted in Fig. 1, it can be
difficult for noisy policies to explore the sparse rewards and
reach regions of interest at all during learning.

IV. SOLUTION
In section IV-A, we develop an automaton model with

relaxed constraints to address infeasible tasks. In section IV-B,
we show how to synthesize a model-free plan with minimum
violation cost in continuous space. Finally, in section IV-C,
we propose a novel DRL design to learn optimal policies that
solve Problem 1.
A. Relaxed Product Automaton for Infeasible LTL

Let dist : X × X → [0,∞) define a metric function
that computes the geometric Euclidean distance between
two states. Prior work [7] introduced a transition system for
an unknown dynamical system to capture the interactions
between geometric space X and Env.

Definition 4. A generalized weighted transition system (G-
WTS) of Env is a tuple T = (X,x0,→T , AP ,LX , CT ),
where X is the configuration space of Env, x0 is the initial
state of the robot; →T ⊆ X ×X is the geometric transition
relation s.t. x →T x′ if dist(x, x′) ≤ η and the straight line
σ connecting x to xnew is collision-free; AP is the set of
atomic propositions that label regions; LX : X → 2AP is the
labeling function that returns an atomic proposition satisfied at
location x; and CT : (→T ) → R+ is the geometric Euclidean
distance, i.e.; CT (x, x

′) = dist(x, x′),∀(x, x′) ∈→T .
Let τT = x0x1x2 . . . denote a valid run of T . As opposed

to the standard WTS [23] which includes dynamic state
space S and explicit dynamics f(s, a) in transitions, only the
geometric relations are available in our framework.

An LTL formula ϕ can be converted to a Non-deterministic
Büchi Automaton (NBA) to evaluate satisfaction.
Definition 5. [28] An NBA over 2AP is a tuple B =
(Q,Q0,Σ,→B, QF ), where Q is the set of states, Q0 ⊆ Q
is the set of initial states, Σ = 2AP is the finite alphabet,
→B⊆ Q× Σ×Q is the transition relation, and QF ⊆ Q is
the set of accepting states.

A valid infinite run τB = q0q1q2 . . . of B is called accepting,
if it intersects with QF infinitely often. Infinite words τo =
o0o1o2 . . . ,∀o ∈ 2AP generated from an accepting run satisfy
the corresponding LTL formula ϕ. We use Bϕ to denote the
NBA of LTL formula ϕ.

A common approach for synthesizing a geometric plan
satisfying LTL formula ϕ is to construct the product Büchi
automaton (PBA) between the G-WTS T and the NBA B [7],
[23]. This approach assumes the given ϕ is feasible. Inspired
by [14], [15] to handle infeasible cases, we introduce a relaxed
PBA and define corresponding violation costs.
Definition 6. Given the G-WTS T and the NBA Bϕ, the
relaxed PBA is a tuple P = T × B = (QP , Q

0
P ,→P

, QF
P , cP , LP ,Σ), where

• QP = X ×Q is the set of infinite product states, Q0
P =

x0 ×Q is the set of initial states, QF
P = X ×QF is the

set of accepting states, and Σ = 2AP .
• →P⊆ QP × QP is the transition function such that

qP = (x, q) →P q′P = (x′, q′) is a valid transition if and
only if the following two conditions hold: x →T x′ and
∃σAP ∈ Σ s.t. q σAP→Bϕ q′,

• cP : (→P ) → R+ is the geometric cost function defined
as the cost in the configuration space, e.g., cP (qp =
(x, q), q′p = (x′, q′)) = CT (x, x

′),∀(qP , q′P ) ∈→P ,
• LP : QP → Σ is the labelling function s.t. LP (qP ) =
LX(x),∀qP = (x, q),

• cV : (→P ) → R+ is the violation cost function for each
transition with respect to the associated LTL formula ϕ.

The major novelty of the relaxed PBA is replacing the
transition constraint q

LX(x)→Bϕ
q′ of a standard PBA [26] with

∃σAP ∈ Σ s.t. q σAP→Bϕ q′, to construct a more connected
product graph. Next, we define the computation of the
violation function cV .

Suppose AP = {µ1, µ2, . . . , µM} and consider an
evaluation function Eval : Σ � {0, 1}M , where Σ = 2AP and
M = |AP |. Eval(σ) = [vi]

M
i=1 and vi is a binary variable s.t.

vi = 1 if µi ∈ σ and vi = 0 if µi /∈ σ, where i = 1, 2, . . . ,M
and σ ∈ Σ. To quantify the difference between two elements
in Σ, consider ρ (σ, σ′) = ∥v − v′∥1 =

∑M
i=1 |vi − v′i| ,
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where v = Eval (σ), v′ = Eval (σ′), σ, σ′ ∈ Σ, and ∥·∥1
is the L1 norm. The distance from σ ∈ Σ to a set X ⊆ 2Σ

is then defined as DV (σ,X ) = min
σ′∈X

ρ (σ, σ′) if σ /∈ X , and

DV (σ,X ) = 0 otherwise.
Definition 7. In a relaxed PBA, the violation cost of the
transition qP = (x, q) →P q′P = (x′, q′) imposed by ϕ can
be computed with cV (qP , q

′
P ) = DV (LP (qP ),X (q, q′)),

where X (q, q′) =
{
σAP ∈ Σ | q σAP→Bϕ

q′
}

is the set of input
symbols enabling the transition from q to q′ in Bϕ.

Based on that, we can also measure the violation cost
imposed on the dynamic system S as follows.
Definition 8. Given a transition (s, a, s′) of dynamics and
current automata state q, the next automata state q′ can
be generated on-the-fly as q

L(s)→Bϕ q′. The violation cost
of the transition with respect to ϕ can be obtained as
cV (s, a, s

′, ϕ) = DV (L(s),X (q, q′)).
Remark 2. Note that directly applying cV (s, a, s

′, ϕ) into
reward design for LTL satisfaction formulates a multi-
objective DRL problem. T The optimality performance of
multi-objective DRL as a nonlinear regression process is hard
to control. Instead, we use path planning over workspace X
for DRL guidance.

Given a valid trace τP = q0P q
1
P q

2
P . . . of a PBA, the

total violation cost can be computed with WV (τP ) =
∞∑
i=0

cV (q
i
P , q

i+1
P ). The trace τP = q0P q

1
P q

2
P . . . satisfies the

acceptance conditions if it intersects with QF
P infinitely often.

Its corresponding words are obtained as τo = o0o1o2 . . .,
∀oi = LP (q

i
P ) Now, the LTL satisfaction according to the

accumulated violation cost can be measured as follows:
Lemma 1. [14] The words τ∗o of an optimal trace τ∗P satisfy
the corresponding potentially infeasible LTL specification ϕ
with minimum-violation guarantees if and only the following
two conditions hold: (i) τ∗P satisfies the acceptance condition
and (ii) WV (τ

∗
P ) has the minimum total violation cost, i.e.,

τ∗P = argmin
τP∈τ∞

WV (τP ), where τ∞ denotes the set of all

valid traces in the relaxed PBA P .
The word τ∗o of τ∗P satisfies ϕ exactly if WV (τ

∗
P ) = 0. Let

proj|X : QP → X denote a projection s.t. proj|X(qp) =
x, ∀qP = (x, q). We use this operator to extract the geometric
trajectory τ∗T = proj|X(τ∗P ) for minimally-violating LTL
satisfaction from the optimal trace τ∗P .
Remark 3. This work considers unknown dynamic systems
so that the generated path τ∗T is only optimal in the sense of
geometric relations e.g., shortest euclidean distance.
B. Minimum-violation Synthesis and Decomposition

Minimum-violation Synthesis: Since this work considers
continuous control and the geometric space X of T is also
continuous, it’s impossible to explicitly construct the relaxed
PBA, P , and find the optimal trace τ∗P . Instead of discretizing
space, we apply Temporal Logic Rapidly-Exploring Random
Trees (TL-RRT*) [23], which is abstraction-free and builds
a tree in the configuration space incrementally. This
technique has the same properties as RRT* [24], [29]: it
can generate probabilistically complete and asymptotically
optimal solutions.

Formally, let τF denote any accepting run of PBA P .
TL-RRT* leverages the fact that an accepting run τF is a
lasso-type sequence with a prefix-suffix structure, i.e., τF =

τpreP [τsufP ]ω, where the prefix part τpreP = q0P q
1
P . . . qKP is

only executed once, and the suffix part τsufP = qK+1
P . . . qK+l

P

with qK+1
P = qK+l

P loops infinitely. Following this idea, we
build the prefix and suffix optimal trees, respectively. To
ensure the acceptance condition, the set of goal states of
the prefix tree Gpre

P = (V pre
P , Epre

P ) is defined as Qpre
goal =

{qP = (x, q) ∈ Xfree ×Q ⊆ QP | q ∈ QF }, where Xfree

is the collision-free configuration space. The optimal goal
states of the prefix tree are Q∗

goal = V pre
P ∩ Qpre

goal that is
regarded as the roots of suffix tree Gsuf

P = (V suf
P , Esuf

P ).
The destination states of the suffix tree are

Qsuf
goal(q

∗
P ) = { qP = (x, q) ∈ Xfree ×Q ⊆ QP |

qP →P q∗p = (x∗, q∗),∀q∗p ∈ Q∗
goal } .

We refer readers to [23] for more details.
Unlike [23], we consider infeasible cases where rapidly-

exploring random trees should be built incrementally based on
the relaxed PBA and our optimization objective includes both
violation and geometric cost. To guarantee total minimum-
violation, let the weight between any two product states in the
tree be wP (qP , q

′
P ) = cP (qP , q

′
P ) + β · cV (qP , q′P ), where

we select β ≫ 1 to ensure the violation cost cV has higher
priority than geometric distance cP . Finally, we can find the
minimum-violation path in the form of τ∗P = τ∗pre[τ

∗
suf ]

ω,
which can be projected into the configuration space τ∗T =
proj|X(τ∗P ) = τ∗T ,pre[τ

∗
T ,suf ]

ω .
Optimal decomposition: Since directly applying the

whole geometric path τ∗T = proj|X(τ∗P ) with long or infinite
horizons as guidance for DRL suffers from myopic tendencies
(gathering intermediate rewards rather than reaching the
desired region), we can decompose τ∗ into several sub-paths.
To do so, we rewrite τ∗P = τ∗0 τ

∗
1 . . . τ∗K [τ∗K+1 . . . τ

∗
K+l]

ω

such that ∀i ∈ {0, 1, . . .K + l}, τ∗i is a sub-trajectory and
the product states of each τ∗i have the same automaton
components i.e., q = qi,∀qP = (x, q) ∈ τ∗i . Each segment
τ∗i can be projected into workspace as τ∗T ,i, and we have

τ∗T = proj|X(τ∗P ) = τ∗T ,0τ
∗
T ,1 . . . τ

∗
T ,K [τ∗T ,K+1 . . . τ

∗
T ,K+l]

ω.

Let proj|Q : QP → Q denote a projection s.t.
proj|Q(qp) = q,∀qP = (x, q) to extract the automaton
components, and we have

τ∗Q = proj|Q(τ∗P ) = q∗0q
∗
1 . . . q

∗
K [q∗K+1 . . . q

∗
K+l]

ω. (3)

As a result, we can define each segment τ∗T ,i as a reach-
avoid path Ri(Gi,O), where Gi is its goal region and O is
a set of all obstacles. The lasso-type geometric reach-avoid
path can be written

RT = (R0R1 . . .RK)(RK+1 . . .RK+l)
ω. (4)

For each reach-avoid task Ri, let xR,i denote the
destination state, which is also the last state of the segment
τ∗T ,i. From definition 7, we can obtain:

Lemma 2. For a relaxed PBA, for a continuous
trace τP = q0P q

1
P q

2
P . . . satisfying the acceptance

condition, we can extract an automaton trace
τQ = proj|Q(τP ) = q0q1 . . . qK [qK+1 . . . q

∗
K+l]

ω. that
satisfies the acceptance condition of the NBA. The
total violation cost WV (τP ) =

∞∑
k=0

cV (qkP , q
k+1
P ) can

be transformed into the finite discrete form using its
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Fig. 2. (Left) NBA B of the LTL formula ϕg1 = □♢G1∧□♢G2∧□♢G3

for ϕ = □¬O ∧ ϕg1 ; (Right) Decomposed reach-avoid paths (sub-tasks)
that minimally violates ϕ, where G3 is not reachable.

automaton trace as
K−1∑
k=0

DV (LX(xR,k+1),X (qk, qk+1))

+β ·
K+l−1∑
k=K

DV (LX(xR,k+1),X (qk, qk+1)).

Lemma 2 states that we can measure the total violation
cost of an infinite continuous path using a finite discrete
form. The structure of RT can enable a modular structure of
distributedly solving each Ri with shorter horizons. Note that,
the above process generates the asymptotically minimally-
violating plan that is probabilistically complete.
Example 2. Fig. 2 shows an example of the optimal
decomposition for the infeasible case. The LTL task is
ϕ = □¬O ∧ ϕg1 = □♢G1 ∧ □♢G2 ∧ □♢G3 over infinite
horizons, whereas the goal regions G3 is not accessible. The
resulting NBA and decomposed trajectories of TL-RRT*
minimally-violating ϕ are shown in Fig. 2 (left) and (right),
respectively, where decomposed reach-avoid paths (sub-tasks)
are expressed as RT = Rred(RblueRbrown)

ω .

C. Reward Design and Distributed DRL

Reward design: According to the optimal compositional
plan RT , this section designs a reward function for each
Ri that is dense in the configuration space to overcome
the challenge of the complex environment. We can train
every reach-avoid Ri navigation control in the same way
distributively. Even if we can straightforwardly use the
geometric sub-path for reward design, there exist three issues:
(a) without considering actual dynamical systems, controllers
cannot strictly track the geometric path; (b) the robot may
linger around previous waypoints resulting in sub-optimal
solutions; (c) the waypoints might overlap with obstacles. We
address them in the following descriptions, and the intuition
of the reward design is shown in Fig. 1 (b), where the robot
just needs to move towards the goal and is not required to
strictly follow the geometric path.

(a): Each geometric path of Ri is a sequence of waypoints
τ∗T ,i = xi,0xi,1 . . . xi,N . We construct an r-norm ball for
each state xi,j ∈ τ∗T ,i,∀j = 0, 1 . . . , N , as Ballr(xi,j) =
{x ∈ X | dist(x, xi,j) ≤ r}. These balls allow the robot to
pass them and move towards the goal as guidance, which we
use to design a reward function. The consecutive balls can
be regarded as a tube which is popular in the robust control
community [30] to handle path tracking infeasibility.

(b): The intuitive approach is to track the minimum
distance of the visited balls to the destination so far and
utilize it as a constraint in the reward design. Since TL-
RRT* is an extension of RRT* [29], it also provides the
optimal distance function in the tree from each state to the
global final destination denoted as Cost(x). For a sub-path
τ∗T ,i = xi,0xi,1 . . . xi,N , we compute the distance from each

state xi,j ∈ τ∗T ,i to the destination xi,N as Dist(xi,j) =
Cost(xi,j)− Cost(xi,N ). We return the necessary distance
information as:

D(x) =

{
Dist(xi|x∗) if x ∈ Ballr(xi|x∗)
∞ otherwise

(5)

During each episode of training, a state-action sequence
s0a0s1ai . . . st up to current time t is split into the state and
action sequences st = s0s1 . . . st and at = a0a1 . . . at−1,
respectively. We develop a progression function Dmin to
identify whether the next state is getting closer to the goal
region as Dmin(st) = min

s∈st

{D(Proj(s))}.

The learning objective is to push Dmin to decrease at
each time-step. We design a constrained reward for each
time t of an episode as R(s×t ) = r+ > 0 if D(Proj(st)) <
Dmin(st−1). Such a design also alleviates the first issue (a),
since the RL agent is not required to visit every waypoint.

(c): We design the reward in different priorities such that
if the RL-agent collides with obstacles, it will always return
the negative reward and ignore other conditions. In summary,
our reward design is the following with decreasing priorities:

R(st) = r− < 0, if Proj(st) ∈ XO,
R(st) = r++ > 0, if D(Proj(st)) = 0,
R(st) = r+ > 0, if D(Proj(st)) < Dmin(st−1),
R(st) = 0, otherwise,

. (6)

Theorem 1. If there exists at least one policy π∗
R,i satisfying

the reach-avoid task Ri, by selecting r++ to be sufficiently
larger than r+, i.e., r++ ≫ r+, any algorithm that optimizes
the expected return J(π) is guaranteed to find such an optimal
policy π∗

R,i.
Proof. The detailed proof can be found in [31].

Note that even though training deep neural networks to
optimize policies is a nonlinear regression process, we can use
neural network verification techniques to certify and improve
the learned policy π∗

R,i for a reach-avoid task.
Remark 4. Employing Dmin(st) to design a reward function
results in a non-Markovian property, since it relies on the past
history st, whereas the reward function (6) only depends on
current state. To address this, we can leverage the structure
of the product MDP [7], [26], and augment the current state
st with the index of the closest visited waypoint, to construct
a product state to recover the Markovian property.

Distributed DRL: For each Ri, we can apply the above
approach to an existing off-the-shelf DRL algorithms, e.g.,
SAC [2], to train the optimal policy π∗

R,i. The process can
be repeated for all Ri,∀i ∈ {0, 1, . . .K + l} of RT =
(R0R1 . . .RK)(RK+1 . . .RK+l)

ω in a distributed manner.
We then concatenate them as the globally optimal policy

π∗
ϕ = (π∗

R,0π
∗
R,i . . . π

∗
R,K)(π∗

R,K+1 . . . π
∗
R,K+l)

ω, (7)

where π∗
ϕ is the global policy satisfying LTL task ϕ and

containing a set of neural network parameters. Note that if
we train each reach-avoid task Ri individually, we need to
randomize the initial velocity and acceleration conditions of
state S, since the ending condition of completing a policy
π∗
R,i results in different starting states for the next policy

π∗
R,i+1. This enables a smooth concatenation instead of re-

training the whole global policy π∗
θ .

Theorem 2. If for all i ∈ {0, 1, . . .K + l}, π∗
R,i satisfies

its corresponding reach-avoid task Ri of RT in (4) under
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Fig. 3. Baselines comparison of the infeasible task ϕ1,inf for a 2D Dubins
car in the Pybullet environment with cluttered obstacles.

any initial states (velocities, accelerations), then their
concatenation π∗

ϕ in (7) satisfies the LTL task ϕ with minimum-
violation guarantees.
Proof. The intuition is to prove that every admissible path
path s

π∗
ϕ

∞ ∈ S
π∗
ϕ

∞ under the optimal policy π∗
ϕ satisfies the LTL

specification ϕ with minimum total violation cost. The proof
is based on the decomposition property in Section IV-B.

First, the geometric projection of every admissible path
s
π∗
ϕ

∞ ∈ S
π∗
ϕ

∞ satisfies the lasso-type reach-avoid RT in (4),
which is associated with a lasso-type automaton path τ∗Q
as (3). From Lemma 2 and the optimality of TL-RRT* [23],
τ∗Q satisfies the acceptance condition of the NBA of LTL
formula ϕ and has the minimum total violation cost.
Remark 5. Due to the conclusion of minimally-violating the
LTL task from Theorem 2, our framework generalizes to both
feasible and infeasible cases for a given LTL task.

V. EXPERIMENTAL RESULTS

We implement the framework on two different nonlinear
dynamical systems for various LTL tasks over both finite and
infinite horizons. The algorithm test focuses on infeasible
cases and cluttered environments, where dense cluttered
obstacles are randomly sampled. We show that the framework
can complete feasible LTL tasks exactly. We apply SAC [2]
as a state-of-art DRL algorithm for all baselines.

Baseline Approaches: From the learning perspective, we
refer to our distributed framework as "RRT*" or "D-RRT*",
and compare it against three baselines: (i) The relaxed TL-
based multi-objective rewards in [6], [18] referred to as "TL",
for the single LTL task; (ii) For the goal-reaching task ϕ, the
baseline referred to as "NED" designs the reward based on the
negative Euclidean distance between the robot and destination;
(iii) For a complex LTL task, instead of decomposition, this
baseline directly applies the reward scheme (6) for the global
trajectory τ∗F = τ∗pre[τ

∗
suf ]

ω referred to as "G-RRT*".
From the perspective of infeasible LTL tasks, we compare

with the work [17] of visiting as many automaton accepting
sets as possible, and we empirically show the improvement
over our prior work [7] that assumes the feasible cases.

Autonomous Vehicle We first implement the Dubins car
model in the Pybullet physics engine shown in Fig. 3. We
consider the surveillance LTL task ϕ1,inf = □¬O∧□♢(G1∧
♢(G2 ∧♢(G3 ∧♢(Ginit))) that requires sequentially visiting
regions labeled as G1,G2,G3, and the robot’s initial position
infinitely often. Its finite-horizon version can be expressed
as ϕ1,fin = □¬O ∧ ♢(G1 ∧ ♢(G2 ∧ ♢(G3 ∧ ♢(Ginit))) by
removing the always operator □. Both tasks are infeasible
since the region G2 is surrounded by obstacles. Fig. 3 shows
the learning curves of task ϕ1,inf compared with different

Fig. 4. Baselines comparison of the infeasible task ϕ2,inf in the 3D
complex cluttered environment.

q0start q1 q2 q3 F = {q3}

qsink

G1

¬ (G1 ∨ O)

O

G2

¬ (G2 ∨ O)

O

G3

¬ (G3 ∨ O)

O

G3

True

Fig. 5. LDGBA of the LTL formula ϕ1,fin = □¬O ∧ ♢(G1 ∧ ♢(G2 ∧
♢(G3)) with only one accepting set F = {q3}.

baselines, and ϕ1,fin has the same comparison results. We can
observe that our framework can provide better performance
than other baselines under the challenge of complex cluttered
environments.

Quadrotor Model We test our algorithms in a 3D
environment with Quadrotor dynamics shown in Fig. 4.
It demonstrates that our model-free framework is capable
of handling complex cluttered environments with high
dimensions. The LTL specification is given as ϕ2,inf =
□¬O∧□♢G1∧□♢G2∧□♢G3, which requires the quadrotor
to navigate regions of G1,G2,G3 infinitely often without
specific orders. Its finite version can also be defined as
ϕ2,fin = □¬O∧♢G1 ∧♢G2 ∧♢G3. These two task are also
infeasible and, their comparisons of learning performances are
the same. Due to page limitation, we only show the learning
results for the task ϕ2,inf in Fig 4.

Feasibility Generalization According to theorem 2,
the advantage of minimally violating a given task allows
generalization of feasible cases. To show the metric, we
remove the highlighted obstacles for the region G2 in both
environments, and implement our algorithms. The feasible
experimental results shown in the video demo demonstrate
that our framework can satisfy feasible tasks exactly.

5.5 Infeasibility Analysis For each environment and
dynamical system, we increase the task complexity by
randomly sampling 12 obstacle-free goal regions in both
environments and set the specifications as ϕ3,fin = □¬O ∧
((♢G1 ∧ ♢(G2 ∧ ♢. . . ∧ ♢G12)), and ϕ3,inf = □¬O ∧
□♢G1∧□♢G2 . . .∧□♢G12. We repeat the random sampling
for 50 trials and record the success rates of generating
valid plans for two environments. The results for these task
ϕ3,fin, ϕ3,inf compared with our prior work [7] referred to
as "feasible" are shown in Fig. 6 (a). Due to the random
process, the target regions may be surrounded by obstacles,
and the baseline returns no solutions, whereas our framework
always finds minimally-violating trajectories.

From the aspect of automaton-based rewards, the work [18]
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Fig. 6. (a) Success rates of random goal regions compared with [7]. (b)
Training time for each reach-aviod task compared with distributed baseline
"NED" referred as "D-NED".

directly applies a linear combination of violation cost and
automaton acceptance reward to formulate a MORL process,
with no guarantees on satisfaction and violation. Our proposed
framework leveraging planning methods as guidance improves
the performance. This seen in the learning comparisons in
Fig. 3 and Fig. 4. Moreover, we also compare the work [17]
that addresses infeasible cases for discrete MDP model. It
finds the policy that satisfies the given LTL tasks as much
as possible by intersecting with the maximum number of
automaton accepting sets. However, the LDGBAs of some
LTL formulas only have one accepting set. As an example,
Fig. 5 shows the LDGBA of ϕ1,fin = □¬O∧♢(G1∧♢(G2∧
♢(G3)) for an autonomous vehicle that has only one accepting
set {q3}. The same case also applies to the LTL formula
ϕ1,inf , ϕ3,fin. In such cases, the work [17] returns no solution
since the only accepting set is not accessible.

5.6 Training efficiency We record the training time for
each reach-avoid sub-task for the finite-horizon LTL tasks
i.e., ϕ1,fin, ϕ2,fin, ϕ3,fin in two environments. We compared
with the baseline "NED" that distributedly solves each reach-
avoid sub-task using distance based rewards. The results in
Fig. 6 (b) shows that our framework is more efficient.

VI. CONCLUSION

This article proposes a model-free framework using DRL
to learn continuous controllers for completing complex LTL
navigation tasks. We overcome the challenge of infeasible
LTL specifications in complex cluttered environments. To
minimally violate the LTL task, we apply geometric path
planning methods as guidance of DRL that can guarantee
minimal total violation cost, which can decompose the task
into sub-reach-avoid missions. Based on the advantage of
minimal violation, our work generalizes both feasible and
infeasible cases. Future work will explore safety-critical
exploration and bridge the gap of sim-to-real to deploy the
framework in real-world robots.
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