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Abstract— This paper considers the safety-critical navigation
problem with Signal Temporal Logic (STL) tasks. We developed
an explicit reference governor-guided control barrier func-
tion (ERG-guided CBF) method that enables the application
of first-order CBFs to high-order linearizable systems. This
method significantly reduces the conservativeness of the existing
CBF approaches for high-order systems. Furthermore, our
framework provides safety-critical guarantees in the sense
of obstacle avoidance by constructing the margin of safety
and updating direction of safe evolution in the agent’s state
space. To improve control performance and enhance STL
satisfaction, we employ efficient gradient-based methods for
iteratively learning optimal parameters of ERG-guided CBF.
We validate the algorithm through both high-order linear and
nonlinear systems. A video demonstration can be found on:
https://youtu.be/ZRmsA2FeFR4

I. INTRODUCTION

Control design for safety-critical systems subject to state
constraints has become an important research direction
in robotic applications. Furthermore, robots are frequently
tasked with complex assignments, which can be expressed
in Signal Temporal Logic (STL) [1], a formal language
interpreted over continuous-time signals used to formulate
tasks with time windows and deadlines. Recent research
employs STL to learn rules of autonomous control systems
from data for interpretable reasoning [2]–[4].

Control Barrier Functions (CBFs) [5] have recently drawn
considerable interest for safety-critical applications. By con-
structing a forward invariant safe set via the barrier functions
and solving for the control input using quadratic program-
ming, CBFs ensure that the system remains within the safe
set. CBFs provide a highly effective tool for designing prov-
ably safe controllers that are computationally efficient [5].
In [6], time-varying CBFs were used to enforce a fragment of
STL specifications for first-order systems. For systems with
a relative degree greater than one, [7] introduces High-Order
Control Barrier Functions (HOCBFs). However, HOCBFs
are typically conservative, which could render the problem
infeasible when the safe set is restricted [8].

Moreover, constructing CBFs involves hand-designing
their structures and fine-tuning their parameters with signifi-
cant impacts on performance. Learning CBF parameters from
expert demonstrations using an optimization-based approach
was explored in [9]. A differentiable learning framework
for class K functions for exponential CBFs was developed
in [10] that facilitates generalization to novel environments.
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The neural controller BarrierNet [8] was proposed to re-
duce conservativeness for HOCBFs. It is used to learn the pa-
rameters of STL specifications [11] to improve performance.
Another work [12] proposed first-order CBFs for a safe set
in velocity space and applied for velocity tracking using the
control Lyapunov functions (CLF) to ensure safety-critical
navigation. However, the approach requires designing CLF
parameters to enable sufficiently fast tracking performance.

Model Predictive Control (MPC) [13] is a well-established
method to address constraint control. Control input in MPC
is obtained from an optimization problem over a fixed time
horizon at each time step. Its ability to handle various
constraints has been proven successful in numerous real-
world applications [14]. However, the heavy reliance of MPC
on online optimization often results in greater computational
burden. The integration of STL and MPC is discussed in [15],
[16], which involves the construction of demanding mixed-
integer linear programs.

To overcome these challengers, the explicit reference
governor (ERG) was introduced in [17]. The methodology
first constructs a dynamic safety margin (DSM) based on
the zero order safety set, followed by defining a navigation
field (NV) to indicate the direction of adjustment for the
reference governor. However, the construction of DSM and
NV can be complex, often depending on specific models
and constraints. In [18], the authors construct the DSM
for feedback-linearizable control-affine nonlinear systems for
safe navigation using the barrier function, while the governor
update direction is defined by projection to a predefined
reference.

This paper proposes ERG-guided CBFs for STL satisfac-
tion with safety guarantees, which enables the application
of first-order CBFs to feedback linearizable systems with
high relative degrees. We employ a first-order linear system
as a reference governor and construct the dynamic safety
margin based on [18]. Then the navigation field is developed
using time-varying CBFs to ensure that the high-order system
navigates safely through narrow passages and maximizes the
satisfaction of STL tasks. In addition, we apply a gradient-
based method for auto-tuning the parameters of feedback
control gain to improve the performance of satisfying STL
specifications.

II. PRELIMINARY

Consider the nonlinear control affine system:

ẋ = f(x) + g(x)u (1)

where x ∈ Rn is the state of the system and u ∈ U ⊂ Rm

is the control input, f ∶ Rn → Rn and g ∶ Rn → Rn×m are
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locally Lipschitz continuous functions, U is a box constraint,
i.e., umin ≤ u ≤ umax.

We assume system (1) is feedback linearizable [19] and
results in a linear time-invariant dynamical system:

ẋ = Ax +Bu
y = Cx (2)

where y ∈ Rp is the system output.

A. Signal Temporal Logic (STL)

Signal Temporal Logic [1] is a predicate logic defined
over signals x ∶ R+ → Rn. Let µ ∶∶= h(x) ≥ 0 represent a
predicate, where h ∶ Rn → R is an evaluation function of a
state x ∈ Rn.

We consider the following fragment of STL:

ψ ∶∶= ⊺∣µ∣¬µ ∣ ψ1 ∧ ψ2

ϕ ∶∶= G[a,b]ψ ∣F[a,b]ψ∣ψ1U[a,b]ψ2 ∣ ϕ1 ∧ ϕ2

where ψ,ϕ1, ϕ2 are STL formulas. The temporal eventu-
ally, always, and until operators with time interval I are ◊I ,
◻I and UI , respectively.

The semantics of STL are evaluated over trajectories x(t):

(x, t) ⊧ µ ⇔ h(x(t)) ≥ 0
(x, t) ⊧ ¬ϕ ⇔ ¬((x, t) ⊧ ϕ)
(x, t) ⊧ ϕ1 ∧ ϕ2 ⇔ (x, t) ⊧ ϕ1 ∧ (x, t) ⊧ ϕ2
(x, t) ⊧ ϕ1 UI ϕ2 ⇔ ∃t1 ∈ t + I s.t. (x, t1) ⊧ ϕ2

∧ ∀t2 ∈ [t, t1] , (x, t2) ⊧ ϕ1
(x, t) ⊧ ◊Iϕ ⇔ ∃t1 ∈ t + I s.t. (x, t1) ⊧ ϕ
(x, t) ⊧ ◻Iϕ ⇔ ∀t1 ∈ t + I, (x, t1) ⊧ ϕ.

B. Time-varying CBF for STL

CBFs are often used to design safe controllers by ensuring
that a safe set is forward invariant: a system that starts in the
safe set stays in the safe set [5]. The controller is obtained
through an efficient quadratic program (QP). In [6], the time-
varying CBF b(x, t) given by

min u⊺Qu

sup
u∈U

∂b(x, t)⊺

∂x
(f(x) + g(x)u) +

∂b(x, t)

∂t
≥ −α(b(x, t))

(3)

are used to ensure the satisfaction of formulas from a
fragment of STL, where α is a class K function. If (3) holds
for all x(t) and b(x(0),0) > 0 then the system is positively
forward invariant, i.e., b(x(t), t) ≥ 0 ∀t.

In [6], CBF is designed according to predicates of the STL
formula. These CBFs are combined to achieve complex tasks
involving conjunction and temporal operators. For example,
the CBF for ϕ = ϕ1 ∧ϕ2 ∧ . . .∧ϕn uses an approximation of
the minimum and is given by

bϕ(x(t), t) = − ln
n

∑
i=1

exp(−bϕi(x(t), t)). (4)

Therefore if bϕ(x(t), t) > 0, then ∀i, bϕi(x(t), t) > 0.

C. Explicit Reference Governor

The explicit reference governor (ERG) [17] is an efficient
control design technique for constraint handling. Given the
dynamics in (2), a defined desired reference r(t) ∶ R → Rp,
and the constraints function c(x(t), r(t)) ∶ Rn×Rp → R that
requires:

c(x(t), r(t)) ≥ 0 (5)

The ERG framework generates the auxiliary reference g(t) ∶
R→ Rp such that the constraint c(x(t), g(t)) ≥ 0 is satisfied
for all t ≥ 0. The auxiliary reference is updated as:

ġ =∆(x, g)ρ(r, g), (6)

where ∆(x, g) ∈ R is called dynamic safety margin (DSM)
and ρ(r, g) ∈ Rp is called the navigation field (NV).

Let x̄g ∶ Rp → Rn be a continuous mapping that denotes
a corresponding desired state to x associated with reference
g.

Definition 1. [17] For a fixed reference g, a continuous
function ∆ ∶ Rn ×Rp → R is a dynamic safety margin if

1) ∆(x, g) > 0⇒ c(x(t), g) > 0, for all t ≥ 0;
2) ∆(x, g) ≥ 0⇒ c(x(t), g) ≥ 0, for all t ≥ 0;
3) ∆(x, g) = 0⇒∆(x(t), g) ≥ 0, for all t ≥ 0;
4) For all δ > 0, there exists ϵ > 0 such that c (x̄g, g) ≥

δ⇒ ∆ (x̄g, g) ≥ ϵ.
The dynamic safety margin guarantees the satisfaction of

constraints. Specifically, larger values of DSM indicate the
system is safer with respect to the constraints. δ can be seen
as the static safety margin. Next, the navigation field specifies
the direction of system updates for safe tracking.

Definition 2. [17]A piecewise continuous function ρ(r, g) ∶
Rp×Rp → Rp is a navigation field if for any initial condition
g(0) satisfying the constraint (5), the system

ġ = ρ(r, g) (7)

is such that
1) sup

(r,g)∈H ∥ρ(r, g)∥ is finite for each compact set H .
2) For any piecewise continuous reference r(t) ∈ Rp, the

result g(t) satisfies c (x̄r, g(t)) ≥ δ.
3) For any constant reference r such that c (x̄r, r) ≥ δ,

the equilibrium point g = r is asymptotically stable and
admits {g ∶ c (x̄g, g) ≥ δ} as a basin of attraction.

The navigation field characterizes the asymptotic stability
while admitting the reference {g ∶ c(x, g) ≥ δ} as a basin of
attraction.

Theorem 1. [17] Consider the prestabilized system in (2)
and constraint in (5). Given the initial condition x(0), g(0)
at t = 0 satisfying c(x(0), g(0)) > 0. The update law of the
governor in (6) has the properties:

1) For any piecewise continuous reference signal r(t) ∈
Rp, constraints in (5) are never violated.

2) For any constant reference r such that c (x̄r, r) ≥ δ,
the equilibrium point x̄r is asymptotically stable and
admits {(x, g) ∶ c (x̄g, g) ≥ δ,∆(x, g) ≥ 0} as a basin
of attraction.



The proof is given in [17]. By properly defining the
dynamic safety margin and navigation field, the ERG can
be used to generate the auxiliary reference to ensure safe
tracking for a Prestablized system.

III. PROBLEM FORMULATION

Consider the dynamic system in (2). We define an
obstacle-free open set F ⊂ Rp and a closed obstacle set
O ∶= Rp/F . The safe state set is Fx = {x ∣ y = Cx ∈ F}. The
objective for the system is to comply with an STL formula
ϕstl while simultaneously preserving safety

ẋ = Ax +Bu
y = Cx

s.t. y(t) ∈ F .
(y, t) ⊧ ϕstl

(8)

Motivation. The relative degree of a differentiable func-
tion b(x) is the number of times it must be differentiated
along the dynamics of system (1) until the control input u
explicitly appears in the corresponding derivative. Formally,
the relative degree r ∈ Z+ is such that LgL

r
f b(x) ≠ 0 and

LgL
k−1
f b(x) = 0 for all k < r. Here, LgLf denotes the Lie

derivative notation [19].
If the system is a first-order control linear system, meaning

its relative degree is one, then the problem can be solved
using the CBFs. Safety and task satisfaction are coded into
barrier functions and solved for the control input. However, if
the relative degree of the system is greater than one, then (3)
is no longer applicable since u does not appear in the first
Lie derivative of b(x). For example, in the classic adaptive
cruise control (ACC) problem [20], the dynamics is

v̇e(t) = u(t), ḋ(t) = v0 − ve(t), (9)

where ve(t) is the velocity of the ego vehicle and d(t) is the
distance between the ego vehicle and the preceding vehicle
which maintains a constant moving speed v0. Let x(t) =
[d(t), ve(t)]⊺, we construct the barrier function b(x, t) =
d(t)−dδ to ensure that the distance is greater than dδ for all
times. After applying (3), the term ∂b(x,t)⊺

∂x
g(x)u becomes

0. Thus, we cannot use CBFs to formulate an optimization
control problem.

While higher-order control barrier functions (HOCBFs)
can construct the forward invariant set for systems with
higher relative-degree systems [7]. However, they are overly
conservative because it takes multiple times for the deriva-
tives to incorporate control input into the safety con-
straints [8]. Thus, it is difficult to apply control barrier
functions to systems with a high relative degree and restricted
safe sets such as when obstacles are closely spaced.

In this paper, we consider the problem of controlling a
high-order system to satisfy a specification given as an STL
formula and remain safe during task completion.

Problem 1. Given a feedback-linearlizable system, an STL
specification ϕstl in an environment with obstacles. Find
the controller such that the trajectory of the system x(t)
satisfies (8).

IV. SOLUTION

In section IV-A, we first introduce the ERG-guided control
barrier functions to solve navigation for STL task satisfac-
tion. A reference governor is constructed as a first-order
system that is directly applied with the first-order CBFs for
navigation. The agent as a high-order control system tracks
the governor via a stable controller with the safety guarantees
Then in section IV-B we apply differentiable programming
to iteratively learn the control parameters and improve the
performance by reducing the STL task completion time.

A. ERG-guided CBF
Consider the dynamic feedback-linearizable system with a

high relative degree in (2). The output of the system y = Cx
is set to track a reference governor g(t) ∈ Rp. The system
admits the controller u = K(x − x̄g) such that the closed-
loop system

ẋ = Ax +BK(x − x̄g)
y = Cx, (10)

is stable for the equilibrium at the point x̄g if the matrix
(A +BK) is Hurwitz [21].

The dynamic of the reference governor is constructed as
a simple first-order linear system:

ġ = ug (11)

where ug is the control input for the reference governor.
For controllable (A,B), the energy of the system in (2)

is
V (x, x̄g) = (x − x̄g)⊺P (x − x̄g) (12)

where P is the unique solution of the Lyapunov equa-
tion (A +BK)⊺P + P (A + BK) = −Q for any positive-
definite symmetric matrix Q. Denote the energy function as
∥x − x̄g∥2P .

Lemma 1. Consider the output y = Cx. The value of the
Lyapunov function in (12) is such that

∥Cx − g∥2 ≤ l2 ∥x − x̄g∥2P (13)

where l = λmax(L−1C⊺CL−⊺), and L is the square root of
positive-definite matrix P , i.e., P = LL⊺.

Proof. The proof follows from the bound of the Rayleigh
quotient R(A, z) = z⊺Az

z⊺z
≤ λmax(A). Let z = L⊺(x1 − x2)

and A = L−1C⊺CL−⊺. Then the inequality can be rewritten
as:

z⊺Az ≤ λmax(A)z⊺z,

which leads to

(x1 −x2)⊺LAL⊺(x1 −x2) ≤ λmax(A)(x1 −x2)⊺P (x1 −x2).

or equivalently,

∥C(x1 − x2)∥2 ≤ λmax(A)∥x1 − x2∥2P .

Define the distance between the governor reference g to
the nearest obstacle as ds(g,O) ∈ R.



Proposition 1. For a fixed g ∈ F , ∆(x, g) = d2s(g,O) −
l2V (x, g) is a barrier function, where V (x, g) is the Lya-
punov function in (12), and l is defined in Lemma 1. The set
{x ∣ ∆(x, g) ≥ 0} is positively forward invariant, the output
y(t) converges to g asymptotically and y(t) ∈ F .

Proof. If the initial value ∆(x(0), g) > 0 and since V (x, g)
is a Lyapunov function, the time derivative of ∆(x, g) =
∂∆(x,g)

∂x
ẋ = −l2 ∂V (x,g)

∂x
ẋ > 0. Hence, the set {x ∣ ∆(x, g) >

0} is forward invariant. The controller in (10) guarantees the
convergence of output tracking.

Lemma 2. ∆(x, g) is a valid dynamic safety margin for the
closed-loop system in (10).

Proof. Consider a positive dynamic safety margin. We have

∆(x, g) ≥ 0Ô⇒ d2s(g,O) ≥ l2∥x − x̄g∥2P
Ô⇒ ds(g,O) ≥ ∥Cx − g∥

(14)

Thus g ∈ F implies y = Cx ∈ cl(F). Using Prop. 1, the four
conditions in Def. 1 can be proved; see [18] for details.

The dynamic safety margin ∆(x, g) specifies how safe
the governor’s location is. The navigation field is used as
a direction change for the governor’s state. One way is to
construct artificial potential fields that are designed to satisfy
Def. 2. However, artificial potential fields are known to have
some limitations such as the inability to pass between closely
spaced obstacles, oscillation between obstacles, and getting
stuck in local minima [22]. This paper focuses on satisfying
the STL specification that can be leveraged to formulate the
navigation field as the objective of ERG in Thm. 1 especially,

Definition 3. A function ρ(g) ∶ Rp → Rp is a navigation
field if for any g(0) satisfying the constraints (5), the system
ġ = ρ(g) is such that

1) sup
(g)∈H ∥ρ(g)∥ is finite for each compact set H .

2) For any continuous reference g(t) ∈ Rp, the resulting
g(t) satisfies c (x̄g, g(t)) ≥ δ.

The reference governor defined in (11) is a first-order
linear system. Therefore the obstacle navigation for the
governor can be solved by constructing the control barrier
functions as a quadratic programming problem:

min u⊺gHug (15a)

s.t.
∂bobs(g)
∂g

ug ≥ −α(bobs(g)) (15b)

∂bstl(g, t)T
∂g

∆(t)ug +
∂bstl(g, t)

∂t
≥ −α(bstl(g, t))

(15c)

where H ∈ Rm×m is a positive semi-definite matrix, bstl
and bobs are the corresponding control barrier functions for
the STL formula [6] and obstacle avoidance, α is a class K
function and ∆(t) is the value of DSM at time t.

Proposition 2. The controller in (15a) is a valid navigation
field for Def. 3.

Proof. The control ug can be directly bounded through
optimization constraints. If g(0) ∈ F and (15b) is feasible,
then {g ∣ bobs(g) ≥ 0} is a forward invariant set which means

g(t) ∈ F . Since x̄g is the equilibrium point from g(t) to
the space of x(t), then g(t) ∈ F iff x̄g(t) ∈ Fx satisfies
Def. 3.

Theorem 2. Consider the prestabilized system in (10) and
constraints in (5) using the navigation field and the dynamic
safety margin in the Lemma 2 and Prop. 2. Given the
initial condition x(0), g(0) such that c(x(0), g(0)) > 0, the
controller

ġ =∆(x, g)ug, (16)

satisfies constraints (5) at all times for any piecewise con-
tinuous reference signal g(t) ∈ Rp.

Then. the governor trajectory g(t) is guaranteed to satisfy
the STL formula, and the system output trajectory y con-
verges to g and x converges to x̄g .

Proof. The proof is based on the proof for Thm. 1 [17]. Since
ġ is finite, g(t) exists and is continuous [23]. Likewise, since
system (2) is Lipschitz, the signal of x(t) is also continuous.
If the initial condition satisfies the constraints Def. 1, ∆(0) >
0. From continuity, we have that if there exists a time t such
that ∆(t) < 0, there must be a time t∗ < t such that ∆(t∗) =
0. However, since ∆(t∗) = 0 implies ġ(t∗) = 0 from (6).
Therefore, since ∆ is a valid DSM, by Def.1, ∆(t∗ + T ) is
nonnegative for T ≥ 0, which leads to a contradiction to the
∆(t) < 0. Thus, (5) is satisfied.

The STL satisfaction for the governor can be guaranteed
by using the STL-CBF constraints in (15c). The convergence
property is proved in Prop. 1.

When the governor is close to the obstacle, the DSM is
smaller, which slows down the update. Therefore, we add a
distance term to the objective function (15a)

min u⊺gHug + d⊺Qd (17)

where d = d(x(t, ug),O) and Q is a negative definite matrix
such that the governor maintains a feasible distance from
obstacles while still satisfying the constraints.

Remark 1. The barrier function for obstacle avoidance bobs
in (15) can be also coded as part of the STL formula using
conjunction as in (4). However, the construction of CBFs
for the STL formula tends to be conservative and involves
handpicked parameters and structure. To demonstrate the
effectiveness of the reference governor approach, we use
independent constraints for obstacle avoidance in this paper.

B. Iterative Tuning

The key component of satisfying STL specifications is the
performance of tracking controllers of the agents in (10).
To improve it, we employ differentiable programming and
iteratively improve the control parameters.

Let the task completion times for the governor and the
agent be denoted as tg and ta, respectively. Thm. 2 ensures
the safe tracking of the governor g(t) by the agent y(t).
Additionally, it guarantees that the governor complies with
the STL formula for g(t) and the agent trajectory x(t)
eventually converges to x̄g(t). However, the exact point in
time, ta, when the agent complies with the STL formula, is
not necessarily restricted within the time windows defined



for the STL specifications. This is largely dependent on the
parameters of the controller.

In Prop. 1, the DSM is constructed based on a heuristic
feedback controller to stabilize the system. Here, we apply
auto-differential iterative tuning to improve the performance
of the parameters in the feedback controller, thus minimizing
the tracking time and, as a result, decreasing ta.

Iterative tuning methods involve iteratively updating the
parameters for evaluations to improve performance based on
a loss function (e.g., tracking error) often using gradient-
based approaches [24], [25].

In our settings, we apply a model-based tuning method
called DiffTune [25] which uses the sensitivity equation to
propagate the gradient. Denote the parameters of the closed-
loop controller as θ. The loss is the tracking error between
the agent and the governor over the task completion time ta:

L ∶
ta

∑
t=0

(Cx(t) − g(t)), (18)

The parameters θ are updated as:

θ ← θ − α∇θL, (19)

where α is the step size and ∇θL is the gradient from the
sensitively function [19]. Thus, θ is iteratively updated to
decrease the loss and minimize the total tracking time.

V. SIMULATION RESULTS

In this section, we assess the performance of the ERG-
guided CBF for high-order systems with STL specifications.
We show two case studies for our evaluation. The first case
uses a double integrator model. The second case uses the
quadrotor model showing the application for the feedback-
linearizable system.
A. Double integrator model

1) Specifcations: Consider the agent dynamics as a dou-
ble integrator. The reference governor is a first-order gover-
nor system. Denote x, g ∈ R2 as the positions of the agent
and governor in a 2D environment:

ẋ = va, v̇a = ua
ġ = ug,

(20)

where va ∈ R2 is the velocity of the agent. Denote x =
[x, ẋ]⊺. The controller ua = Kx is a feedback controller in

R2, where K = [kp kp 0 0
0 0 kd kd

]. The output y = Cx is set

to extract the position of the agent, i.e., C = [1 0 0 0
0 1 0 0

].
The matrix K is initialised with kp = −6, kd = −4. The
locations of the agent and governor are initialized at the
origin with zero velocity. The simulation frequency is 100
Hz, and all optimizations are solved using Gurobi [26].

The STL formula specification is
◊[5,30]Reach1 ∧ ◊[30,80]Reach2 ∧ ◻[0,80]Stay3,

where Reachi means the agent needs to reach a circle area
Ri, i.e. ∥x − oi∥ < ri, where oi and ri are the center and
radius of areaRi. Stayi means the agent needs to stay within
the circle arena area R3. The large time windows for the
subtasks are chosen to ensure the STL feasibility in the auto-
tuning under different control parameters.

2) Performance: Fig. 1 shows the comparison of ERG-
guided CBF and HOCBF [7]. Obstacle locations are closely
spaced within the gray arena area to create narrow passages.
As shown in Fig. 1a, under the ERG-guided CBF, the agent
successfully tracks the governor, completes the STL speci-
fications and ensures safety. In contrast, the implementation
of HOCBF, depicted in Fig. 1b, demonstrates the agent fails
to reach the target. The narrow passages between obstacles
prevent the successful completion of the specification thus
highlighting the advantages of ERG-guided CBFs.

(a) (b)

Fig. 1: Environment: red circles are obstacles, blue circles are
target areas, and grey circles are arena areas. (a) trajectories
using ERG-guided CBF (b) agent trajectory using HOCBF

(a) Loss (b) Average DSM

(c) Task completion time (d) DSM over Time

Fig. 2: Iterative tuning performance

Iterative tuning is used for the parameters in the feedback
controller K. Fig. 2a illustrates the changes in the loss (18)
during 20 iterations. The results show that the tuning signifi-
cantly decreases the loss through iterations. The improved
control parameters, in turn, induce closer tracking of the
agent to the governor, thus increasing the mean DSM in
Fig. 2b. The governor’s update process is dictated by the
magnitude of the DSM. As a result, an increase in the mean
DSM leads to a faster adjustment of the governor, which
consequently accelerates the completion of the agent’s task.
Fig. 2c illustrates a significant reduction in completion times
for both the governor (tg) and the agent (ta), along with
their difference (∣tg−ta∣) during the iterative process. Fig. 2d
compares the DSM between the initial and final iteration
settings, with red diamond markers representing the time
points when the agent visits the two targets. In particular,
both DSM curves are above 0, indicating successful safe
navigation through iterations. Moreover, in the final iteration,



the agent reaches both targets and completes the STL task
faster than in the initial setting and with a higher average
DSM value, thus validating the effectiveness of the tuning.
B. Quadrotor model

1) Specifications: The quadrotor model is an underactu-
ated nonlinear system, and the dynamics are

ẋ = vq, mv̇q =mge3 − fRe3,
Ṙ = RΩ̂, JΩ̇ +Ω × JΩ =M,

(21)

where x, vq ∈ R3 is the location and velocity of the center
of mass in the inertial frame, f ∈ R is the total thrust force
generated by four rotors, M ∈ R3 is the total moment in the
body-fixed frame, R ∈ SO(3) the rotation matrix from the
body-fixed frame to the inertial frame, Ω ∈ R3 is the angular
velocity in the body-fixed frame, m ∈ R is the total mass and
J ∈ R3×3 is the inertia matrix in the body-fixed frame.

The authors in [27] develop a feedback-linearization model
to track a three-dimensional position and heading direction
with control inputs f,M chosen as

f = − (−kxex − kvev −mgζ3 +mẍd) ⋅Rζ3,
M = −kReR − kΩeΩ +Ω × JΩ

− J (Ω̂RTRdΩd −RTRdΩ̇d) ,
(22)

where xd(t) is the transnational command reference, and
ex, ev, eR and eΩ are the tracking errors between x and
xd, ζ3 = [0,0,1]⊺. Using feedback linearization in (22), we
obtain ẍd = ud such that the position control for the nonlinear
dynamics of the drone is simplified to controlling xd.

The feedback linearization regulates the center of mass
position of the quadrotor, and to ensure the entire frame of
the quadrotor is safe, we inflate the obstacles by the distance
from the center of mass to a rotor. The STL specification is

◊[5,30]Reach1 ∧ ◊[30,50]Reach2.
2) Performance: Fig. 3 shows the results from the 20th it-

eration. The figure on the left shows the navigation trajectory
of the quadrotor through obstacles starting from the origin
to a way point and then to the destination. The figure on the
right shows the DSM over time, which remains positive.

(a) (b)

Fig. 3: (a) Quadrotor trajectory. (b) DSM over time.

VI. CONCLUSION

This paper develops ERG-guided CBFs that assure safety
for high-order linearizable systems with STL tasks. Our ap-
proach demonstrates that by employing the explicit reference
governor, we can leverage first-order CBFs to manage a
system with a high relative degree. Furthermore, the con-
troller for such high-order systems can be optimized using
gradient-based methods via iterative tuning, thus enhancing
the performance of the CBFs.
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[15] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in Conference on Decision and Control,
pp. 81–87, IEEE, 2014.

[16] S. Sadraddini and C. Belta, “Robust temporal logic model predictive
control,” in 2015 53rd Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pp. 772–779, IEEE, 2015.

[17] M. M. Nicotra and E. Garone, “The explicit reference governor: A
general framework for the closed-form control of constrained nonlinear
systems,” IEEE Control Systems Magazine, vol. 38, no. 4, pp. 89–107,
2018.

[18] Z. Li and N. Atanasov, “Governor-parameterized barrier function for
safe output tracking with locally sensed constraints,” Automatica,
vol. 152, p. 110996, 2023.

[19] H. K. Khalil, Nonlinear control. Pearson, 2015.
[20] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function

based quadratic programs with application to adaptive cruise control,”
in Conference on Decision and Control, pp. 6271–6278, IEEE, 2014.

[21] B. A. Francis, “The linear multivariable regulator problem,” SIAM J.
on Control and Optimization, vol. 15, no. 3, pp. 486–505, 1977.

[22] Y. Koren, J. Borenstein, et al., “Potential field methods and their
inherent limitations for mobile robot navigation,” in International
Conference on Robotics and Automation, vol. 2, pp. 1398–1404, 1991.

[23] A. F. Filippov, Differential equations with discontinuous righthand
sides: control systems, vol. 18. Springer Science & Business Media,
2013.

[24] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller
optimization for quadrotors with gaussian processes,” in International
Conference on Robotics and Automation, pp. 491–496, IEEE, 2016.

[25] S. Cheng, L. Song, M. Kim, S. Wang, and N. Hovakimyan, “Difftune:
Hyperparameter-free auto-tuning using auto-differentiation,” in Learn-
ing for Dynamics and Control Conference, pp. 170–183, PMLR, 2023.

[26] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2020.
[27] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control

of a quadrotor UAV on SE (3),” in Conference on Decision and Control
(CDC), pp. 5420–5425, IEEE, 2010.


	Introduction
	Preliminary
	Signal Temporal Logic (STL)
	Time-varying CBF for STL
	Explicit Reference Governor

	Problem Formulation
	Solution
	ERG-guided CBF
	Iterative Tuning

	Simulation Results
	Double integrator model
	Specifcations
	Performance

	Quadrotor model
	Specifications
	Performance


	Conclusion
	References

